
	 D4.1	–	SafeCloud	Architecture	 1	

 
 
 
 
 
 
 
 

SafeCloud Architecture 
 

D4.1 
 

Project reference no. 653884 
 

August 2016 
	  



	 D4.1	–	SafeCloud	Architecture	 2	

Document	information	
Scheduled	delivery	 	 01.09.2016	
Actual	delivery	 	 18.09.2016	
Version	 	 	 1.8	
Responsible	Partner	 	 CYBER	
	

Dissemination	level	
Public	
	

Revision	history	
Date	 Editor	 Status	 Version	 Changes	 	 	
04.07.2016	 K.	Tarbe	 Draft	 0.1	 Initial	TOC	
18.08.2016	 K.	Tarbe	 Draft	 0.2	 Integrated	inputs	from	others	
29.08.2016	 K.	Tarbe		 Draft	 0.5	 Address	the	reviews	
31.08.2016	 M.	Barbosa	 Revision	 0.7	 Additional	reviews	
01.09.2016	 J.	Paulo	

and	F.	Maia	
Final	 1	 Final	version	

18.09.2016	 K.	Tarbe	
and	R.	
Rebane	

Final	 1.8	 New	release	with	the	changes	
discussed	during	the	SafeCloud	Fall	
2016	meeting	in	Munich.	

	

Contributors	
K.	Tarbe	(CYBER)	
R.	Rebane	(CYBER)	
H.	Mercier	(UniNE)	
M.	Correia	(INESC-ID)	
J.	Paulo	(INESC	TEC)	
F.	Maia	(INESC	TEC)	
B.	Portela	(INESC	TEC)	
M.	Barbosa	(INESC	TEC)	

Internal	reviewers	
P.	Sousa	(Maxdata)	
V.	Schiavoni	(UniNE)	

Acknowledgements	
This	 project	 is	 partially	 funded	 by	 the	 European	 Commission	 Horizon	 2020	 work	
programme	under	grant	agreement	no.	653884.	
	

More	information	
Additional	 information	 and	 public	 deliverables	 of	 SafeCloud	 can	 be	 found	 at	
http://www.safecloud-project.eu	



	 D4.1	–	SafeCloud	Architecture	 3	

	

	
Glossary	of	acronyms	
	
Acronym	 Definition	
AES	 Advanced	Encryption	Standard	
API	 Application	Programming	Interface	
CA	 Certificate	Authority	
FUSE	 Filesystem	in	Userspace	
IP	 Internet	Protocol	
JDBC	 Java	Database	Connectivity	
MPC	 Multi-Party	Computation	
MPTCP	 Multi-Path	TCP	
NoSQL	 Not	Only	Structured	Query	Language	
ODBC	 Open	Database	Connectivity	
PKI	 Public	Key	Infrastructure	
REST	 Representational	State	Transfer	
SOCKS	 Socket	Secure	(Network	proxy	protocol)	
SQL	 Structured	Query	Language	
TCP	 Transport	Control	Protocol	
TLS	 Transport	Layer	Security	
TTL	 Time	To	Live	
UDP	 User	Datagram	Protocol	
	 	



	 D4.1	–	SafeCloud	Architecture	 4	

Table	of	contents	
Document	information	.................................................................................................................................	2	

Dissemination	level	.......................................................................................................................................	2	

Revision	history	..............................................................................................................................................	2	

Contributors	.....................................................................................................................................................	2	

Internal	reviewers	.........................................................................................................................................	2	

Acknowledgements	........................................................................................................................................	2	

More	information	...........................................................................................................................................	2	

Glossary	of	acronyms	....................................................................................................................................	3	

Table	of	contents	............................................................................................................................................	4	

Executive	summary	........................................................................................................................................	6	

1	 Introduction	............................................................................................................................................	7	

2	 Secure	communication	........................................................................................................................	9	
2.1	 Vulnerability-tolerant	channels	....................................................................................................................	9	
2.1.1	 Features	.........................................................................................................................................................	9	
2.1.2	 Deployment	and	integration	................................................................................................................	9	
2.1.3	 Security	.......................................................................................................................................................	10	

2.2	 Protected	channels	...........................................................................................................................................	11	
2.2.1	 Features	and	usage	................................................................................................................................	11	
2.2.2	 Deployment	and	integration	.............................................................................................................	11	
2.2.3	 Security	.......................................................................................................................................................	13	

2.3	 Route-aware	channels	....................................................................................................................................	13	
2.3.1	 Features	and	usage	................................................................................................................................	13	
2.3.2	 Deployment	and	integration	.............................................................................................................	14	
2.3.3	 Security	.......................................................................................................................................................	16	

2.4	 Other	solutions	and	comparison	................................................................................................................	17	

3	 Secure	storage	.....................................................................................................................................	18	
3.1	 Secure	block	storage	........................................................................................................................................	18	
3.1.1	 Features	and	usage	................................................................................................................................	18	
3.1.2	 Deployment	and	integration	.............................................................................................................	18	
3.1.3	 Security	.......................................................................................................................................................	19	

3.2	 Long-term	distributed	encrypted	data	storage	...................................................................................	20	
3.2.1	 Features	and	usage	................................................................................................................................	20	
3.2.2	 Deployment	and	integration	.............................................................................................................	20	
3.2.3	 Security	.......................................................................................................................................................	21	

3.3	 Secure	file	system	..............................................................................................................................................	21	
3.3.1	 Features	and	usage	................................................................................................................................	22	
3.3.2	 Deployment	and	integration	.............................................................................................................	22	
3.3.3	 Security	.......................................................................................................................................................	23	

3.4	 Comparison	.........................................................................................................................................................	23	

4	 Secure	queries	.....................................................................................................................................	24	
4.1	 SQ1:	Secure	processing	in	a	single	untrusted	domain	......................................................................	25	
4.1.1	 Features	and	usage	................................................................................................................................	25	
4.1.2	 Deployment	and	integration	.............................................................................................................	26	
4.1.3	 Security	.......................................................................................................................................................	27	

4.2	 SQ2:	Secure	processing	in	multiple	untrusted	domains	...................................................................	28	
4.2.1	 Features	and	usage	................................................................................................................................	28	
4.2.2	 Deployment	and	integration	.............................................................................................................	29	



	 D4.1	–	SafeCloud	Architecture	 5	

4.2.3	 Security	.......................................................................................................................................................	31	
4.3	 Secure	processing	in	multiple	untrusted	domains	with	untrusted	clients	...............................	31	
4.3.1	 Features	......................................................................................................................................................	32	
4.3.2	 Deployment	and	integration	.............................................................................................................	32	
4.3.3	 Security	.......................................................................................................................................................	34	

4.4	 Comparison	.........................................................................................................................................................	34	

5	 Integration	and	specific	use	cases	................................................................................................	36	

6	 Conclusion	............................................................................................................................................	40	

7	 References	............................................................................................................................................	41	

	
	 	



	 D4.1	–	SafeCloud	Architecture	 6	

Executive	summary	
SafeCloud	architecture/framework	is	composed	by	three	main	layers	that	target	secure	
communication,	 secure	 storage,	 and	 secure	 data	 processing.	 These	 layers	 consist	 of	
multiple	solutions	that	each	solve	a	problem	in	their	area.	In	this	document	we	provide	
the	 reader	 with	 an	 overview	 of	 every	 solution	 in	 the	 SafeCloud	 architecture,	 how	 to	
deploy	 and	 integrate	 them	 to	 applications	 and	 a	 brief	 description	 of	 the	 security	
guarantees	 they	 provide.	 We	 also	 give	 concrete	 examples	 of	 how	 the	 solutions	 are	
deployed	for	the	Maxdata	and	Cloud&Heat	use	cases.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	 D4.1	–	SafeCloud	Architecture	 7	

1 Introduction	
	
The	 components	 of	 the	 general	 SafeCloud	 framework	 are	 depicted	 in	 Figure	 1.	 The	
framework	 consists	 of	 three	 separate	 layers,	 each	 providing	 solutions	 in	 their	 own	
technological	 domain.	 The	 solutions	 provide	 different	 security	 guarantees	 at	 different	
costs.	 Generally,	 stricter	 security	 guarantees	 impose	 greater	 functional	 limitations	 or	
performance	 costs	 on	 the	 applications	 using	 the	 solution.	 The	 three	 layers	 of	 the	
SafeCloud	 framework	 are	 secure	 communications,	 secure	 storage	 and	 secure	 query	
processing.	
	
The	secure	communications	layer	provides	solutions	that	 improve	the	security	aspects	
of	 communication	 channels	 over	 some	 untrusted	 environment.	 We	 tackle	 three	
important	 challenges	 in	 this	 layer.	 First,	 the	 vulnerability-tolerant	 channels	 solution	
gives	 communication	 channels	 that	 are	 built	 on	 multiple	 redundant	 security	
mechanisms	 to	 ensure	 that	 failure	 of	 any	 one	 mechanism	 does	 not	 cause	 a	 security	
failure	 in	 the	 channel.	 Second,	 the	 protected	 channels	 solution	 introduces	 multiple	
methods	 to	 reduce	 the	 risk	 of	 fake	 certificates	 used	 by	 the	 parties.	 This	 solution	 also	
makes	 it	 more	 difficult	 to	 run	 port	 scans	 and	 do	 enumeration	 of	 the	 network	
infrastructure.	 Third,	 the	 route-aware	 channels	 solution	 deploys	methods	 to	 improve	
confidentiality	and	detect	route	hijacking.	All	of	the	solutions	are	built	on	top	of	the	Java	
Secure	Socket	API.1	Further	details	for	this	layer	are	discussed	in	WP1	deliverable	D1.1.	
	
The	secure	storage	layer	consists	of	solutions	that	provide	confidentiality	and	integrity	
guarantees	for	data	stored	in	an	untrusted	environment.	The	secure	block	storage	and	
the	 secure	 file	 system	 give	 similar	 secure	 storage	 benefits	 but	 with	 APIs	 at	 different	
levels	 of	 the	 stack.	 The	 long-term	distributed	 encrypted	 archival	 solution	 provides	 an	
entangled	 immutable	 data	 store	 for	 protection	 against	 tampering	 and	 censorship.	
Further	details	for	this	layer	are	discussed	in	WP2	deliverables	D2.1	and	D2.2.	
	
The	 secure	 query	 processing	 layer	 makes	 it	 possible	 to	 store	 encrypted	 data	 in	
untrusted	 environments	 while	 still	 being	 able	 to	 process	 it	 in	 useful	 ways.	 All	 the	
techniques	 in	 this	 layer	 provide	 SQL	query	processing	 in	 untrusted	 environments	 but	
differ	in	the	degree	on	which	data	is	kept	undisclosed	to	the	different	parties	and	on	the	
type	of	queries	 that	 can	be	performed.	The	deployment	model	 is	 also	different.	 In	 the	
first	approach	data	 is	 stored	and	processed	 in	a	 single	untrusted	domain,	while	 in	 the	
second	 data	 is	 stored	 and	 processed	 across	multiple	 untrusted	 domains.	 Additionally,	
the	 third	 solution	 contemplates	 several	 data	 owners	 that	 wish	 to	 perform	 cross	
computation	across	their	data	without	revealing	any	sensitive	information	to	each	other.	
Further	details	for	this	layer	are	discussed	in	WP3	deliverables	D3.1	and	D3.2.	
	
	
																																																								
1  https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/package-summary.html 



	 D4.1	–	SafeCloud	Architecture	 8	

	

	
Figure	1:	SafeCloud	architecture	components.	

	
This	deliverable	provides	an	overview	of	the	whole	SafeCloud	architecture	and	how	it	
suits	the	requirements	of	the	project’s	use	cases.		In	the	following	sections	we	describe	
the	features,	the	deployment	and	integration	views	of	the	architecture	and	security	
guarantees	for	each	solution	in	every	layer.		
	 	



	 D4.1	–	SafeCloud	Architecture	 9	

2 Secure	communication	
	
The	secure	communications	layer	provides	protocols	that	improve	the	security	aspects	
of	communication	channels	over	untrusted	environments.	We	briefly	describe	three	
kinds	of	novel	security-enhanced	communication	channels	in	this	layer.	Further	details	
can	be	found	in	deliverable	D1.1.	
	

2.1 Vulnerability-tolerant	channels	
Vulnerability-tolerant	channels	(Secure	Communication	1	or	SC1)	is	a	solution	that	is	
similar	to	Transport	Layer	Security(TLS)	protocol.	It	exceeds	TLS	by	utilizing	redundant	
cryptographical	mechanism	to	provide	communication	channels	with	data	
confidentiality,	integrity	and	authenticity	even	in	the	case	of	zero	day	vulnerabilities	
found	in	a	subset	of	the	used	mechanisms.	
	
2.1.1 Features	

Diversity	 and	 redundancy.	 SC1	 uses	 k	 different	 cipher	 suites	 together.	 Up	 to	 k	–	1	
compromised	suites	the	channel	remains	secure.	SC1	should	be	considered	for	mission-
critical	 applications,	 because	 it	 provides	 additional	 protection	 against	 vulnerabilities	
that	may	be	found	in	each	of	the	underlying	cypher	suites.		
	
Java	Secure	Socket	API.	SC1	leverages	the	indirection	provided	by	Java	Secure	Sockets.	
The	creation	of	a	socket	is	done	through	a	factory	object	that	abstracts	the	concrete	class	
that	is	instantiated.	Therefore,	SC1	remains	API	compatible	with	the	existing	Java	Secure	
Socket	API.	
	

2.1.2 Deployment	and	integration	

Stakeholders	
1) Client	-	establishes	a	connection,	wants	to	make	sure	that	the	channel	provides	

authenticity,	confidentiality	and	integrity.		
2) Server	 -	 awaits	 connection	 requests,	 wants	 to	 make	 sure	 that	 the	 channel	

provides	authenticity,	confidentiality	and	integrity.	
Security-wise	both	Client	and	Server	are	symmetrical.	
SC1	components	

1) SC1	Client	 -	 the	component	to	be	deployed	by	the	Client,	provides	replacement	
for	the	Java	Secure	Socket	API	and	vulnerability	tolerant	channels.	

2) SC1	Server	-	the	component	to	be	deployed	by	the	Server,	provides	replacement	
for	the	Java	Secure	Socket	API	and	vulnerability	tolerant	channels.	
	



	 D4.1	–	SafeCloud	Architecture	 10	

	
Figure	2:	SafeCloud	SC1	deployment	diagram	

	
The	 deployment	 of	 SC1	 is	 straightforward:	 SC1	 Client	 component	 is	 deployed	 by	 the	
Client	and	SC1	Server	component	is	deployed	by	the	Server	as	is	depicted	on	Figure	2.	
	

	
Figure	3:	SafeCloud	SC1	component	diagram	

	
Figure	3	describes	 the	 components	 in	more	detail.	 SC1	Client	 and	Server	Components	
are	mostly	identical.	Client	/	server	application	uses	Java	Secure	Sockets	API	to	interface	
with	 the	 Vulnerability	 Tolerant	 Channels	 Library,	 which	 in	 turn	 provides	 the	
implementation	for	Java	Secure	Sockets.	
	
2.1.3 Security	

Trust	assumptions	
1) The	Client	and	Server	are	trusted.	
2) The	network	between	Client	and	Server	is	untrusted.	
3) There	 is	an	upper	bound	for	the	number	of	cryptographic	mechanisms	that	can	

be	compromised.	
Client	&	Server.	Both	endpoints	of	a	secure	channel	will	see	the	data	 flowing	through	
the	channel.	They	are	interested	that	they	are	communicating	with	each	other	not	with	
an	 impostor,	 no	 other	 party	 can	 decipher	 the	 data	 and	 data	 is	 not	 changed	 while	 in	
transit.	In	other	words,	SC1	provides	authenticity,	confidentiality	and	integrity.	
Network.	 Internet	 is	 a	 heterogeneous	 global	 network,	 where	 connections	 usually	 go	
through	many	different	 intermediate	nodes.	The	network	is	prone	to	malicious	agents,	



	 D4.1	–	SafeCloud	Architecture	 11	

who	might	want	to	spy	on	the	communication	between	the	Client	and	the	Server	or	alter	
the	communication.	
Cryptography.	Communication	 is	 protected	 with	 k	 cryptographic	 mechanisms	 at	 the	
same	time,	and	up	to	k	–	1	compromised		mechanisms	the	communication	is	secure.	
	

2.2 Protected	channels	
Protected	channels	(Secure	Communication	2	or	SC2)	provide	protection	against	service	
discovery.	 In	 this	 solution	 services	 are	 behind	 a	 firewall	 which	 blocks	 all	 connection	
attempts	unless	a	successful	port	knocking	is	performed.	
	

2.2.1 Features	and	usage	

Complete	coverage.	SC2	can	cover	 the	whole	machine,	meaning	that	port	knocking	 is	
needed	 for	 all	 inbound	 connections.	 Connection	 attempts	 made	 without	 a	 valid	 port	
knock	are	blocked	by	the	firewall.	
PKI	based	authentication.	Servers	and	clients	all	have	certificates.	Server	needs	only	
the	 CA	 certificate	 to	 verify	 the	 validity	 of	 clients’	 port	 knocking	 requests.	 Certificate	
revocation	lists	are	used	to	revoke	access.	
Proxy	service.	For	legacy	applications	that	cannot	use	the	port	knocking	client	library,	
there	is	a	proxy	service	that	handles	the	port	knocking	transparently.	Client	applications	
connect	 to	 the	 proxy	 using	 SOCKS	 protocol	 and	 ask	 the	 proxy	 service	 to	 open	 the	
connection	to	the	protected	server.	
	
SC2	 hides	 available	 services	 from	 a	 port	 scanner.	 This	 reduces	 the	 attack	 surface:	 an	
attacker	 cannot	 determine	 the	 vulnerable	 services	 and	 cannot	 access	 them,	 because	
without	a	successful	port	knocking,	 the	attacker	 is	blocked	by	a	 firewall.	This	solution	
can	be	used	on	all	servers	to	additionally	protect	remote	administration	services.	
	

2.2.2 Deployment	and	integration	

Stakeholders	
1) Client	-	sends	the	port	knocking	packet,	then	establishes	connection.	
2) Server	-	runs	a	service	to	listen	for	port	knocking	requests.	

SC2	components	
1) SC2	 Client	 library	 -	 the	 component	 to	 be	 deployed	 by	 the	 Client.	 Provides	 a	

mechanism	for	sending	the	port	knocking	request.	
2) SC2	Server	component	 -	 the	component	 to	be	deployed	by	 the	Server.	Listens	

for	port	knocking	requests	and	opens	ports	for	specific	clients	in	the	firewall.	
3) SC2	Proxy	-	the	component	to	be	deployed	by	the	Client.	Provides	a	proxy	service	

for	applications	that	cannot	use	the	SC2	Client	library.	
	



	 D4.1	–	SafeCloud	Architecture	 12	

	
Figure	4:	SafeCloud	SC2	deployment	diagram	

	
Figure	 4	 illustrates	 the	 relations	 between	 the	 stakeholders	 and	 the	 component	 they	
deploy.	We	assume	that	there	is	a	trusted	PKI.	PKI	can	be	deployed	and	administered	by	
the	cloud	service	provider.	

	
Figure	5:	SafeCloud	SC2	component	diagram	(without	proxy)	

	
The	architecture	of	the	SC2	is	depicted	on	Figure	5.	Client	application	uses	the	SC2	Client	
library	and	the	PKI	to	construct	valid	port	knocks	sent	over	UDP	to	the	server.	
Knocking	Service	on	the	server	is	integrated	with	the	Firewall:	it	rejects	all	connections	
by	default,	expect	port	knocks	which	are	handled	by	the	Knocking	Service.	In	the	case	of	
a	valid	port	knock,	the	Knocking	Service	will	use	the	Firewall	API	to	allow	packets	from	
the	Client	through	the	Firewall.	



	 D4.1	–	SafeCloud	Architecture	 13	

	
Figure	6:	SafeCloud	SC2	component	diagram	(with	proxy)	

	
The	use	of	 the	optional	Proxy	 component	 is	depicted	on	Figure	6.	 In	 this	 scenario	 the	
port	 knock	 is	 sent	 by	 the	 SC2	 Proxy.	 This	 is	 useful	 to	 run	 existing	 client	 applications	
without	further	modifications.	
	

2.2.3 Security	

Trust	assumptions	
1) CA	and	PKI	are	trusted.	
2) Firewall	component	is	trusted.	

PKI.	 PKI	 is	 used	 for	 exchanging	 the	 public	 keys	 needed	 for	 verifying	 the	 identity	 of	
participants.	
Firewall.	 Most	 of	 the	 security	 comes	 from	 the	 firewall	 component	 that	 blocks	
unauthorized	(without	a	valid	port	knock)	connections.	
	

2.3 Route-aware	channels	
Route-aware	 channels	 (Secure	 Communication	 3	 or	 SC3)	 provide	 active	 and	 passive	
methods	 to	 detect	 anomalies	 in	 the	 network	 path.	 This	 helps	 to	 detect	 IP	 prefix	
hijacking.	 Also	 multiple	 network	 paths	 are	 used	 to	 make	 eavesdropping	 on	 the	
connection	harder.	
	
2.3.1 Features	and	usage	

Route	 monitoring.	 SC3	 will	 monitor	 the	 number	 of	 intermediate	 nodes	 between	
endpoints.	It	uses	TTL	(Time-To-Live)	field	in	TCP	headers,	and	also	various	approaches	
based	 on	 Traceroute,	 Secure	 Traceroute	 [PS03]	 and	 IP	 options	 (Record	 Route,	 Strict	
Source	 Record	 Route,	 Loose	 Source	 Route).	 In	 addition,	 SC3	 will	 monitor	 network	
latency,	bandwidth	and	packet	loss.		
Anomaly	 detector.	 SC3	 will	 keep	 a	 history	 of	 metrics	 collected	 and	 runs	 statistical	
analysis	on	the	metrics	to	detect	anomalies.	
Multi-path	routing.	SC3	will	provide	ways	to	achieve	multi-path	routing	with	the	help	
of	 overlay	network	 consisting	of	 relays.	Multi-path	 routing	 splits	 data	 across	different	
network	paths	and	therefore	may	make	it	hard	for	an	eavesdropper	to	get	access	to	the	
communication	between	two	nodes.	
	



	 D4.1	–	SafeCloud	Architecture	 14	

2.3.2 Deployment	and	integration	

Stakeholders	
1) Client	-	is	one	endpoint	of	the	communication.	
2) Server	-	is	the	other	endpoint	of	the	communication.	
3) Relay	Host	-	provides	proxy	services	to	allow	multi-path	routing.	

Client	and	Server	are	just	two	entities	who	want	to	communicate.	Relay	Hosts	consist	in	
a	number	of	relays	forming	an	overlay	network	that	will	be	used	for	multi-path	routing	
between	Client	and	Server.	
SC3	components	

1) TTL	monitor	-	the	component	to	be	deployed	on	both	communication	endpoints	
(Client	and	Server).	Provides	multiple	ways	to	determine	the	number	of	hops	on	
the	communication	path.	

2) Route	metrics	monitor	-	the	component	to	be	deployed	on	both	communication	
endpoints	(Client	and	Server).	Provides	metrics	like	network	latency,	bandwidth	
and	packet	loss.	

3) Anomaly	 detector	 -	 the	 component	 to	 be	 deployed	 on	 both	 communication	
endpoints	(Client	and	Server).	Finds	anomalies	by	using	statistical	analysis	on	the	
metrics	collected	by	the	monitors.	

4) Relay	 service	 -	 the	 component	 to	 be	 deployed	 on	 Relay	 Host.	 Provides	
application-layer	routing	for	multi-path	communication.	

5) Membership	 service	 -	 the	 distributed	 service	 to	 be	 used	 by	 all	 Stakeholders,	
provides	 a	 membership	 service,	 so	 relays	 do	 not	 have	 to	 be	 fixed.	 Multi-path	
communication	 uses	 the	 information	 from	 membership	 service	 to	 choose	 the	
actual	 relays	 and	 paths	 used.	 The	 membership	 service	 has	 to	 be	 secure	 so	
replication	and	cryptographic	techniques	will	be	used	to	achieve	this	goal.	

SC3	 consists	 of	 two	 related	 services:	 route	monitoring	 and	multi-path	 routing.	 In	 the	
reminder,	we	first	discuss	deployment	and	architecture	for	route	monitoring,	and	then	
the	deployment	and	architecture	for	multi-path	communication.	
	

	
Figure	7:	SafeCloud	SC3,	route	monitor	deployment	diagram	

	
Figure	7	 illustrates	 the	 relations	between	 stakeholders	and	 the	deployed	 components.	
Route	monitoring	 is	 active	 on	both	 endpoints.	 The	Client	 and	 Server	 components	will	
deploy	the	Route	Monitor.	
	



	 D4.1	–	SafeCloud	Architecture	 15	

	

	
Figure	8:	SafeCloud	SC3,	route	monitor	component	diagram	

The	components	of	SC3	route	monitoring	are	depicted	on	Figure	8.	Route	Monitor	 is	a	
service	 that	 consists	 of	many	 components	which	 extract	 data.	 An	 additional	 Anomaly	
Detector	component	 is	deployed	 to	detect	anomalies	using	statistical	analysis.	Further	
details	for	each	component	can	be	found	in	WP1	deliverable	D1.1.	
	

	
Figure	9:	SafeCloud	SC3,	multi-path	communication	deployment	diagram	

	
Relations	of	SC3	multi-path	communication	stakeholders	and	deployed	components	are	
illustrated	 on	 Figure	 9.	 For	 constructing	 overlay	 networks	 with	 distinct	 physical	
network	 paths,	 there	 are	 a	 number	 of	 Relay	 Service	 nodes	 needed.	 Different	 cloud	
providers	 currently	 host	 these	 relay	 service	 nodes,	 typically	 one	 per	 data	 center.	 To	
check	the	availability	of	relays,	Relay	Membership	service	exists,	distributed	between	all	
stakeholders.	
	



	 D4.1	–	SafeCloud	Architecture	 16	

	
Figure	10:	SafeCloud	SC3,	multi-path	communication	component	diagram	

Components	of	SC3	multi-path	communication	are	depicted	on	Figure	10.	
The	 Multi-path	 Communication	 Library	 is	 the	 component	 that	 is	 integrated	 into	 the	
Client	 and	 Server	 applications	 for	 providing	multi-path	 communications	 through	 Java	
Secure	Sockets	compatible	APIs.	
The	 Relay	 Service	 is	 responsible	 for	 providing	 application-layer	 routing.	 Data	 flow	 is	
routed	through	distinct	Relays	to	minimize	the	number	of	network	hops	that	are	shared	
between	network	paths.	
The	 Relay	 Membership	 Service	 is	 a	 distributed	 service	 built	 on	 top	 of	 DepSpace	
[BAC+08],	and	it	is	used	for	listing	active	relays.	
Further	details	regarding	these	components	can	also	be	found	in	WP1	deliverable	D1.1.	
	

2.3.3 Security	

Trust	assumptions	
1) Relay	membership	service	is	trusted.	
2) Network	is	untrusted.	
3) There’s	an	upper	bound	for	the	number	of	relays	that	can	be	compromised.	

Relay	membership	service.	 Relay	membership	 service	 is	 trusted,	 but	 it	 is	 replicated	
using	an	 intrusion-tolerant	protocol,	 so	 the	assumption	 is	 that	no	more	 than	a	 certain	
number	of	replicas	is	compromised.	
Network.	 The	 adversary	 cannot	 eavesdrop	 on	 more	 than	 a	 certain	 number	 of	
communication	paths	over	the	Internet	and	control	a	certain	number	of	relay	nodes.	
Relays.	 The	 adversary	 cannot	 control	 more	 than	 a	 certain	 number	 of	 relay	 nodes.	
Controlling	 all	 the	 relays,	 means	 that	 the	 adversary	 has	 access	 to	 all	 the	 data	 and	
physically	distinct	network	path	do	not	add	any	confidentiality.	
	



	 D4.1	–	SafeCloud	Architecture	 17	

2.4 Other	solutions	and	comparison	

Since	 the	 secure	 communication	 channels	 have	 different	 properties,	 it	 does	 not	make	
much	sense	to	compare	them	with	each	other.	Here	we	refer	to	relevant	related	work	for	
each	of	the	SafeCloud	Secure	Communication	mechanisms.	
Vulnerability-tolerant	channels	
To	the	best	of	our	knowledge	there	is	no	similar	protocol	available	and	it	is	the	first	time	
diversity	approaches	are	applied	to	secure	communication	protocols.	
Protected	channels	
Other	 solutions	 for	 port	 knocking	 like	 [AJ05],	 [K03],	 [VHT09]	 and	 [KG14]	 use	 shared	
secrets.	 In	 SafeCloud’s	 Protected	 channels	 we	 use	 public	 key	 cryptography	 and	 PKI	
instead	of	pre-shared	secrets.	
Route	monitoring	
SafeCloud’s	mechanism	for	route	monitoring	is	new,	but	leverages	on	existing	methods.	
Other	solutions	that	can	detect	ip	prefix	hijacking	are	[ZJP07]	and	[ZZH+08].	
Multi-path	communication	 		 		 		 	
SafeCloud’s	multi-path	 communication	 scheme	 leverages	 a	 set	 of	 existing	mechanisms		
—	overlay	routing,	multi-homing,	and	MPTCP(Multi-Path	TCP)	—	but	combines	them	in	
a	novel	way.	 	



	 D4.1	–	SafeCloud	Architecture	 18	

3 Secure	storage	
	
The	secure	storage	layer	consists	of	services	that	provide	security	and	dependability	
guarantees	for	data	stored	in	an	untrusted	environment.	Next	we	briefly	describe	each	
solution	while	further	details	can	be	found	in	deliverables	D2.1	and	D2.2.	
	

3.1 Secure	block	storage	
This	 SafeCloud	 service	 (Secure	 Storage	 1	 or	 SS1)	 is	 an	 abstraction	 that	 may	 be	
implemented	in	different	ways,	e.g.,	commercial	cloud	storage	services	 like	Amazon	S3	
or	 key/value	 stores	 like	 Cassandra.	 SafeCloud	 will	 implement	 an	 instantiation	 that	
provides	a	secure	block	storage.	
	

3.1.1 Features	and	usage	

Distributed	 key/value	 store.	 SS1	 is	 essentially	 a	 key/value	 store	 that	 may	 include	
additional	mechanisms	 to	 ensure	 data	 confidentiality	 and	 integrity.	 Individual	 storage	
instances	are	orchestrated	by	separate	components,	the	block	storage	managers,	which	
can	explicitly	place	data	on	individual	instances	of	the	block	storage.	
Explicit	placement.	SS1	is	able	to	explicitly	place	data	in	distinct	locations	to	respond	to	
the	 needs	 of	 the	 SafeCloud	 platform.	 Placement	 of	 data	 blocks	 can	 be	 enforced	 at	
multiple	 levels,	e.g.	administrative	domain,	application-defined	partitions,	geographical	
region	or	country,	data	center,	rack,	node,	etc.	
RESTful	 key/value	 store	 API.	 SS1	 provides	 a	 REST-based	 key/value	 store	 API	 with	
support	for	explicit	placement	of	data.	
	
The	Secure	block	storage	targets	clients	who	wish	to	outsource	their	data	but	want	fine-
grained	 control	 over	 how	 and	 where	 the	 data	 is	 stored.	 It	 can	 be	 used	 directly,	 but	
mostly	 serves	 as	 a	 building	 block	 for	 the	 other	 storage	 solutions	 of	 the	 SafeCloud	
platform.	
	

3.1.2 Deployment	and	integration	

Stakeholders	
1) Client	-	owns	the	data,	it	is	interested	in	outsourcing	the	storage.	
2) Storage	Provider	-	provides	the	infrastructure	and	platform	for	storing	the	data.	

The	 Secure	 block	 storage	 can	 be	 deployed	 on	 a	 single	 storage	 provider	 with	
multiple	storage	nodes	or	data	centers,	and	on	multiple	storage	providers.	

SS1	components	
1) SS1	 Block	 Storage	 Manager	 -	 the	 component	 to	 be	 deployed	 by	 the	 Storage	

Provider.	It	provides	the	REST	API	for	the	key/value	store.	
2) SS1	 Block	 Storage	 Instance	 -	 the	 component	 to	 be	 deployed	 by	 the	 Storage	

Provider,	 typically	 many	 in	 the	 same	 data	 center.	 It	 contains	 the	 actual	 block	
storage	device.	



	 D4.1	–	SafeCloud	Architecture	 19	

	
Figure	11:	SafeCloud	SS1	deployment	diagram	

	
Deployment	 of	 SS1	 is	 illustrated	on	Figure	11,	 there	 are	 typically	many	Block	 Storage	
Instances	per	data	 center	 and	 at	 least	 one	Block	 Storage	Manager	which	manages	 the	
Block	Storage	Instances.	
	

	
Figure	12:	SafeCloud	SS1	component	diagram	

	
Figure	12	shows	the	architecture	of	SS1.	Client	uses	a	REST	API	that	acts	as	a	key/value	
database.	 Block	 Storage	 Manager	 distributes	 the	 data	 across	 different	 Block	 Storage	
Instances.		
	

3.1.3 Security	

Trust	assumptions	
1) The	Client	is	trusted.	
2) The	Storage	Provider	is	untrusted.	

	
Client.	 The	 Client	 has	 the	 rights	 to	 store	 and	 process	 the	 data.	 It	 is	 motivated	 to	
outsource	storage	to	reduce	its	own	infrastructure	needs.		
	



	 D4.1	–	SafeCloud	Architecture	 20	

Storage	 Provider.	 The	 Storage	 Provider	 offers	 reliable	 storage	 services,	 which	 are	
focused	on	high	availability	and	dependability.	Typically,	these	services	are	encryption-
agnostic,	and	a	Client	who	wishes	to	store	confidential	data	is	responsible	to	encrypt	it	
before	storing	it.		
	

3.2 Long-term	distributed	encrypted	data	storage	
This	 SafeCloud	 service	 (Secure	 Storage	 2	 or	 SS2)	 provides	 a	 long-term	 distributed	
encrypted	 data	 storage.	 It	 builds	 on	 top	 of	 Secure	 block	 storage(SS1)	 and	makes	 the	
stored	data	tamper-resistant.	
	

3.2.1 Features	and	usage	

Amazon	 S3	 compatible	 document	 store	API.	 SS2	 provides	 a	 REST-based	 document	
store	API	largely	compatible	with	the	Amazon	S3	API.	
Immutable	 tamper-resistant	 storage.	 Documents	 stored	 in	 SS2	 will	 be	 stored	
redundantly	 and	 will	 be	 protected	 against	 tampering	 with	 coding	 and	 entanglement	
techniques,	i.e.,	they	are	encoded	and	combined	with	previous	documents	to	ensure	that	
no	 party	 can	 modify	 or	 delete	 them	 without	 affecting	 a	 significant	 portion	 of	 all	
documents.	
	
A	 typical	 application	 for	 SS2	 is	 a	 bank	 interested	 in	 storing	 its	 transaction	 records	 so	
that	 they	 cannot	 be	 tampered	 with.	 Other	 examples	 include	 financial	 transactions,	
medical	records	and	scientific	data.	The	purpose	of	SS2	is	similar	to	that	of	a	blockchain,	
but	allows	the	storage	of	large	amounts	of	data.	
	
3.2.2 Deployment	and	integration	

Stakeholders	
1) Client	-	owns	the	data,	wants	to	protect	it	from	tampering.	
2) Service	Provider	-	provides	the	infrastructure	to	encode/decode	the	documents.		
3) Storage	Provider	-	provides	the	infrastructure	for	storage.	

Components	
1) Document	 Storage	 Manager	 -	 the	 component	 to	 be	 deployed	 by	 the	 Service	

Provider.	It	provides	the	REST	document	store	API.	
2) Encoder	-	the	component	to	be	deployed	by	the	Service	Provider.	It	handles	the	

encoding,	entanglement	and	reconstruction	of	documents.	
3) Storage	Service	 -	 the	 service	 to	be	deployed	by	Storage	Provider.	 It	 stores	 the	

encoded	and	entangled	documents.	
	



	 D4.1	–	SafeCloud	Architecture	 21	

	
Figure	13:	SafeCloud	SS2	deployment	diagram	

Figure	13	shows	the	deployment	of	components	needed	for	SS2.	Document	Store	Server	
requires	moderate	processing	power	to	encode	and	reconstruct	the	documents,	whereas	
Storage	Server	requires	storage.	
	

	
Figure	14:	SafeCloud	SS2	component	diagram	

	
Figure	14	illustrates	the	architecture	of	SS2.	Client	Application	talks	with	the	Document	
Storage	Manager	with	 a	 REST	 API	 that	 is	 compatible	with	 the	 Amazon	 S3.	 Document	
Storage	Manager	 also	 interacts	 with	 the	 storage	 service	 using	 a	 REST	 key/value	 API.	
Encoder	is	responsible	for	encoding	and	reconstructing	the	documents.	Storage	service	
can	have	multiple	backends,	but	one	of	them	is	SafeCloud’s	Secure	Storage	3.	
	
3.2.3 Security	

SS2	 is	 built	 on	 top	 of	 SS1	 and	 inherits	 its	 security	 features.	 The	 additional	 SS2	 layer	
provides	integrity	and	protection	against	tampering	and	censorship.	
Trust	assumptions	

1) The	Client	is	trusted.	
2) The	Storage	Provider	is	untrusted.	

Client.	 The	 Client	 has	 the	 rights	 to	 archive	 and	 process	 the	 data.	 It	 is	 motivated	 to	
outsource	storage	to	reduce	its	own	infrastructure	needs.	It	is	assumed	that	the	data	is	
immutable.	
Storage	Provider.	The	Storage	Provider	provides	the	storage	infrastructure	and	wishes	
to	 convince	 its	 customers	 of	 its	 availability	 and	 reliability.	 The	 entanglement	 of	 data	
makes	 it	very	difficult	 for	 the	Storage	Provider	 to	 tamper	with	 it	without	affecting	 the	
entire	system.	
	

3.3 Secure	file	system	
This	SafeCloud	solution	(Secure	Storage	3	or	SS3)	provides	a	distributed	file	system.	SS3	
adds	 a	 filesystem	API	 on	 top	 of	 Secure	 block	 storage(SS1).	 The	 solution	 takes	 care	 of	
encrypting	the	data.	



	 D4.1	–	SafeCloud	Architecture	 22	

3.3.1 Features	and	usage	

POSIX	compliant	 file	 system	API.	 SS3	 provides	 a	 FUSE-based	 file	 system	API	 that	 is	
designed	to	be	mostly	POSIX	compliant.	
Policies	 for	security	and	dependability.	Placement	 of	 data	 in	 the	 file	 system	can	be	
guided	by	policies	that	express	security	and	dependability	requirements	like	replication	
degree,	tolerance	against	whole	data	centre	failure	and	geo-localization	of	data.	
	
A	 first	 example	 for	 SS3	 is	provided	by	our	 first	use	 case:	Cloud&Heat	operates	micro-
clouds	 and	wishes	 to	 optimize	 data	 storage	 and	 processing	 among	 a	 large	 number	 of	
very	small	clouds.	A	second	application	comes	from	our	second	use	case:	Maxdata	must	
physically	store	medical	data	in	each	patient's	country.		
	
3.3.2 Deployment	and	integration	

Stakeholders	
1) Client	-	owns	the	data	and	is	interested	in	storing	it	in	the	cloud.	
2) Service	Provider	-	provides	the	infrastructure	and	platform	for	securely	storing	

data.		
SS3	components	

1) Client	component	 -	 the	component	to	be	deployed	by	the	Client.	 It	 is	based	on	
FUSE	and	provides	the	file	system	API	for	the	external	storage.	

2) Storage	service	-	the	service	to	be	deployed	by	the	Service	Providers.	It	provides	
the	storage	service.	
	

	
Figure	15:	SafeCloud	SS3	deployment	diagram	

	
Figure	15	shows	 the	relations	between	stakeholders	and	 the	components	 they	deploy.	
The	Storage	service	is	deployed	by	a	set	of	Service	Providers,	i.e.,	it	is	replicated.	There	
needs	 to	 be	 a	 lightweight	 service	 running	 on	 the	 Client	 deployment	 to	 run	 the	 FUSE-
based	component	to	provide	a	file	system.	
	



	 D4.1	–	SafeCloud	Architecture	 23	

	
Figure	16:	SafeCloud	SS3	component	diagram	

	
The	architecture	of	SS3	is	depicted	on	Figure	16.	The	client	interacts	with	the	system	by	
using	 the	File	System	API.	The	 file	system	 is	 implemented	using	FUSE.	The	 file	system	
communicates	with	the	storage	services	using	a	RESTful	key/value	API.	
	

3.3.3 Security	

SS3	is	built	on	top	of	SS1	and	inherits	its	security	features.	
Trust	assumptions	

1) The	Client	is	trusted.	
2) The	Storage	Providers	are	untrusted.	

	
Client.	 The	 Client	 has	 the	 rights	 to	 store	 and	 process	 the	 data.	 It	 is	 motivated	 to	
outsource	storage	to	reduce	its	own	infrastructure	needs.		
	
Storage	 Provider.	 The	 Storage	 Providers	 deliver	 the	 storage	 infrastructure,	 typically	
the	SafeCloud’s	block	storage	abstraction	(SS1).	The	secure	file	system	(SS3)	is	deployed	
by	a	set	of	Service	Providers,	i.e.,	it	is	replicated.	This	replication	is	critical	for	obtaining	
availability,	integrity,	and	disaster	tolerance.	Byzantine	fault-tolerant	protocols	are	used	
to	 ensure	 the	 consistency	 of	 the	 data	 stored	 in	 the	 file	 system	 despite	 the	 failure	 of	
individual	 clouds	 or	 Storage	 Providers.	 Other	 mechanisms	 used	 include	 symmetric	
encryption,	 erasure	 coding,	 secret	 sharing,	 homomorphic	 encryption,	 and	 proofs	 of	
storage.	Consult	deliverables	D2.1	and,	in	M18,	D2.4	for	more	details.	
	

3.4 Comparison	
Table	 1	 gives	 a	 quick	 overview	 of	 different	 solutions	 for	 secure	 storage.	 They	 offer	
different	capabilities.	X	shows	that	a	feature	is	supported.	Consult	deliverables	D2.1	and	
D2.2	for	technical	details	about	solutions	in	SafeCloud	secure	storage	layer.	
	

Feature	\	Solution	 SS1	 SS2	 SS3	
Encrypted	storage	 X	 X	 X	
Mutable	data	 X	 	 X	
Immutable	data	 	 X	 	

Physical	placement	of	data	blocks	 X	 X	 X	
Replication	level	control	 X	 X	 X	
Protection	against	data	tampering	 	 X	 	

Table	1:	Comparison	of	solutions	for	secure	storage	
	 	



	 D4.1	–	SafeCloud	Architecture	 24	

4 Secure	queries	
	
Real	world	deployments	can	consider	wildly	different	scenarios	with	respect	to	security,	
functionality	 and	 performance	 requirements.	 Towards	 constructing	 a	 framework	 that	
can	 feasibly	 attend	 to	 these	 possibilities,	 the	 secure	 queries	 layer	 proposes	 three	
fundamentally	 different	 solutions,	 which	 can	 be	 instantiated	 to	 deploy	 tailor-made	
implementations	to	a	wide	variety	of	application	scenarios.		
	
The	 solutions	 in	 the	 secure	 queries	 layer	make	 it	 possible	 to	 store	 data	 in	 untrusted	
environments	while	still	being	able	to	process	the	data.	To	achieve	this	goal,	 two	main	
components	exist	in	SafeCloud’s	processing	architecture.	The	first	is	a	SQL	query	engine	
that	exports	a	SQL	API	to	the	clients	and	translates	SQL	queries	into	NoSQL	operations.	
Then,	 a	 NoSQL	 backend	 is	 used	 to	 process	 the	 operations	 received	 from	 the	 query	
engine.	 In	SafeCloud	we	chose	 to	use	HBase	as	 the	NoSQL	backend	since	 it	 is	 a	highly	
known	and	used	NoSQL	database.	
	
This	separation	is	important	to	achieve	a	scalable	solution.	Since	the	query	engine	relies	
on	 the	 NoSQL	 backend	 storage	 and	 querying	 capabilities,	 it	 is	 easier	 to	 scale-up	 this	
component	 i.e.,	 to	 have	 several	 query	 engines	 running	 in	 a	 distributed	 setup.	 On	 the	
other	hand,	NoSQL	backends	are	known	for	 their	 inherent	scalability.	These	databases	
don’t	 support	 a	 complex	query	 interface	 such	 as	 the	 SQL	one,	which	 is	 tackled	by	 the	
translation	 mechanism	 built-in	 the	 query	 engine.	 The	 details	 of	 each	 component	 are	
further	discussed	in	deliverables	D3.1	and	D3.2.	
	
As	another	 important	detail,	SafeCloud	processing	solutions	are	thought	 for	a	scenario	
where	 clients	may	have	 access	 or	 not	 to	 a	 trusted	 infrastructure	 (for	 instance,	 an	 on-
premises	infrastructure).	This	way,	some	of	the	solutions	discussed	next	assume	that	the	
query	 engine	 component	 is	 deployed	 on	 a	 trusted	 infrastructure	 while	 the	 NoSQL	
backend	is	deployed	on	an	untrusted	infrastructure	(for	instance,	a	cloud	infrastructure	
where	data	privacy	must	be	protected	 from	attackers).	 In	 such	deployment,	 the	query	
engine	does	not	require	privacy-aware	security	mechanisms	while	the	NoSQL	backend	
requires	 them.	 Ensuring	 that	 such	 security	 mechanisms	 are	 in-place	 is	 a	 major	
contribution	of	WP3.	
	
In	the	remaining	of	this	section	we	refer	to	the	client	or	data	owner	infrastructure	as	the	
trusted	 environment	 and	 to	 the	 server	 or	 cloud	 infrastructure	 as	 the	 untrusted	
environment.	 Again	 further	 details	 regarding	 the	 deployment	 scenarios	 and	 secure	
processing	solutions	are	discussed	in	D3.1	and	D3.2.	
	
The	 first	 solution	 (SQ1)	 considers	 a	 single	 trusted	 client	 interacting	 with	 a	 single	
untrusted	 deployment2 ,	 where	 the	 challenge	 is	 to	 benefit	 from	 the	 untrusted	
deployment	computational	power	while	enforcing	the	required	security	guarantees.	The	
second	 solution	 (SQ2)	 extends	 the	 previous	 scenario	 to	 allow	 for	 multiple	 untrusted	
deployments,	 which	 allows	 for	 employing	 security	mechanisms	 that	 hinge	 on	 a	more	
complex	 trust	 model.	 Finally,	 the	 third	 solution	 (SQ3)	 considers	 multiple	 (mutually	
untrusted)	 clients,	 allowing	 for	 joint	 querying	of	 sensitive	data	 for	 aggregated	 results,	
protecting	the	confidentiality	of	individual	entries.	
																																																								
2  In particular, this can be seen as an untrusted cloud/service provider, however the definition can 
encompass any instance of remote untrusted deployment. 



	 D4.1	–	SafeCloud	Architecture	 25	

	
A	more	 in-depth	discussion	of	cryptographic	mechanisms	and	 their	deployment	 in	 the	
context	of	SafeCloud	can	be	found	in	D3.2.	
	

4.1 SQ1:	Secure	processing	in	a	single	untrusted	domain	
This	SafeCloud	solution	(Secure	Queries	1	or	SQ1)	provides	a	secure	database	querying	
capability	 with	 the	 following	 deployment	 scenario:	 Data	 Owner	 has	 a	 trusted	
deployment	and	a	single	Service	Provider	with	an	untrusted	deployment	is	used.	
	
4.1.1 Features	and	usage	

NoSQL	 interface.	 SQ1	 is	 built	 on	 HBase3	and	 uses	 it	 as	 a	 storage	 backend.	 Thus,	 the	
native	 interface	 is	 very	 similar	 to	 NoSQL.	 The	 SafeCloud	 cryptographic	 behaviour	 is	
transparent	from	the	end-user	perspective.	
Transactional	ANSI	SQL	interface.	SQ1	provides	a	full	transactional	ANSI	SQL	interface	
by	integrating	with	the	technology	from	EC	FP7	CumuloNimbo	project4.	This	builds	on	
the	NoSQL	interface	and	performs	additional	operations	needed	to	complete	the	queries	
on	the	client	side.	
	
SQ1	is	designed	to	be	instantiated	with	a	variety	of	cryptographic	techniques,	depending	
on	 the	 requirements	 of	 SafeCloud	 applications.	 These	 techniques	 are	 often	 associated	
with	specific	 tradeoffs	between	security	and	functionality,	which	makes	then	adequate	
in	different	circumstances.		
	
Prioritizing	 security,	 standard	 secret	 key	 authenticated	 encryption	 can	 be	 employed	
when	 robust	 security	 guarantees	 are	 necessary,	 sacrificing	 functionality	 on	 the	
untrusted	 deployment	 side	 (effectively	 disabling	 the	 possibility	 for	 data	 querying).	 As	
security	 requirements	 are	 relaxed,	 other	 alternatives	 to	 remote	 computation	 can	 be	
employed.	 Deterministic	 encryption	 [BBO07]	 and	 other	 variants,	 such	 as	 Message-
Locked	 Encryption	 [BKR13],	 can	 have	 the	 untrusted	 deployment	 check	 for	 duplicate	
plaintexts	 without	 disclosing	 the	 information	 stored.	 Order-Preserving	 Encryption	
schemes	 [AKS+04]	 can	 actively	 preserve	 the	 relative	 order	 of	 the	 plaintexts	 in	 the	
ciphertexts,	 which	 enables	 for	 remote	 querying	 of	 encrypted	 data.	 Alternatively,	
approaches	 such	 as	 CryptDB	 [PRZ12]	 and	 Arx	 [PBP16]	 allow	 for	 other	 tradeoffs	 for	
encrypted	 data	 querying	 with	 varying	 levels	 of	 performance	 values	 and	 security	
assumptions.	 Furthermore,	 these	 techniques	 can	 be	 combined	 in	 the	 same	 system,	
enabling	for	more	optimized	deployments.	
	
As	an	example	application	for	SQ1,	consider	a	laboratory	that	owns	or	completely	trusts	
a	private	cloud	with	some	computational	power,	but	is	interested	in	offloading	most	of	
the	 storage	 effort	 into	 an	 untrusted	 cloud	 domain.	 The	 laboratory	manages	 sensitive	
data,	so	it	is	not	acceptable	to	have	it	stored/processed	in	the	clear	outside	of	what	the	
laboratory	 considers	 to	 be	 its	 trusted	 domain.	 The	 laboratory	 can	 then	 specify	 the	
security	 levels	 of	 the	 offloaded	 data	 to	 have	 tailor-made	 levels	 of	 security	 and	
functionality,	e.g.	highly	sensitive	data	is	stored	using	standard	authenticated	encryption	
while	order-insensitive	data	can	be	securely	stored	and	queried	using	techniques	such	
as	order-preserving	encryption.	
																																																								
3   https://hbase.apache.org/ 
4   http://www.cumulonimbo.eu/ 



	 D4.1	–	SafeCloud	Architecture	 26	

4.1.2 Deployment	and	integration	

Stakeholders	
1) Data	Owner	 -	 controls	 the	 data	 to	 be	 processed,	 is	 interested	 in	 protecting	 it	

from	the	hosts	of	the	query	service	(e.g.,	cloud).	
2) Service	 Provider	 -	 provides	 the	 infrastructure	 and	 platform	 for	 storing	 and	

securely	querying	data.	
We	 assume	 that	 the	 Data	 Owner’s	 computing	 environment	 has	 some	 computational	
power	but	scarce	storage	resources,	whereas	the	untrusted	deployment	provided	by	the	
Service	 Provider	 has	 both	 complementary	 computational	 power	 and	 the	 necessary	
storage	capabilities.	
SQ1	components	

1) SQ1	Client	-	the	component	to	be	deployed	by	the	Data	Owner,	provides	a	secure	
querying	capability	and	connects	to	the	SQ1	Server	for	storage.	

2) SQ1	Server	-	the	component	to	be	deployed	by	the	Service	Provider,	provides	a	
secure	NoSQL	storage	capability.	
	

	
Figure	17:	SafeCloud	SQ1	deployment	diagram	

	
Figure	17	 illustrates	 the	 relations	between	 the	 stakeholders	and	 the	 components	 they	
deploy.	Note	that	the	client	application	can	be	implemented	in	a	number	of	ways:	it	can	
be	an	app	on	an	application	server,	a	standalone	application,	a	mobile	application,	etc.	It	
is	 observable	 that	 most	 of	 the	 processing	 is	 done	 by	 the	 Data	 Owner	 in	 the	 trusted	
deployment.	Almost	all	storage,	on	the	other	hand,	is	left	under	the	responsibility	of	the	
Service	Provider.	
	



	 D4.1	–	SafeCloud	Architecture	 27	

	
Figure	18:	SafeCloud	SQ1	component	diagram	

	
We	give	a	more	in-detail	architecture	of	the	components	in	Figure	18.	In	addition	to	the	
client	application,	the	components	are	divided	into	two	major	parts:	SQ1	Client	and	SQ1	
Server.	 The	 client	 application	 has	 two	 interfaces	 available	 for	 use,	 offered	 by	 the	 SQ1	
client:	 a	 SQL	 interface	 (accessible	over	 JDBC)	and	a	NoSQL	 interface	 (using	 the	HBase	
Java	API).	
The	SQL	interface	supports	the	full	ANSI	SQL	standard	which	is	implemented	by	the	SQL	
Query	 Engine.	 The	 purpose	 of	 the	 SQL	 Query	 Engine	 is	 to	 translate	 SQL	 queries	 into	
NoSQL	queries.	It	uses	the	same	NoSQL	interface	that	is	offered	to	the	Client	Application.	
The	Transactional	Support	System	enables	the	use	of	transactions	in	SQL	queries.		
The	NoSQL	interface	offers	standard	key-value	database	functions:	get,	put	and	scan.	It	is	
implemented	 by	 an	 extended	 version	 of	 the	 HBase	 Client	 Library	 which	 passes	
commands	to	the	HBase	Server.	
The	 Cryptographic	 Library	 provides	 the	 functionality	 of	 handling	 encrypted	 data.	 The	
mechanisms	 employed	 will	 depend	 on	 schema	 specifications,	 which	 will	 ultimately	
instantiate	 the	 system	 according	 to	 application-specific	 security	 requirements.	 This	
component	is	central	to	the	deployment	of	applications,	as	it	will	allow	for	HBASE	core	
operations	to	be	carried	over	encrypted	data	in	a	way	that	is	transparent	to	the	NoSQL	
engine.		
In	 this	 setting,	 the	 SQ1	 server	 consists	 only	 of	 an	 HBase	 server	 with	 its	 standard	
components.		
	
4.1.3 Security	

Trust	assumptions	
1) The	Data	Owner	is	trusted.	
2) The	Service	Provider	is	untrusted.	

	
Data	 owner.	The	 data	 owner	 can	 freely	 process	 data	 as	 a	 trusted	 environment.	 This	
assumes	that	the	trusted	deployment	in	SQ1	is	always	protected	from	malicious	activity,	
so	 all	 internal	 integrity/confidentiality	 attacks	 should	be	handled	 in	 an	administrative	



	 D4.1	–	SafeCloud	Architecture	 28	

fashion.	 Implicitly,	 it	 is	 motivated	 (by	 regulation,	 contracts	 or	 general	 distrust)	 to	
enforce	security	mechanisms	to	protect	the	held	data	from	untrusted	environments.	
	
Service	Provider.	 The	Service	Provider	provides	 infrastructure	 and	platform	services	
for	customers	to	use.	Since	this	is	a	platform	that	is	considered	by	the	Data	Owner	to	be	
untrusted,	the	Service	Provider	should	offer	an	environment	to	process	over	encrypted	
data,	 thus	 providing	 remote	 data	 processing	 to	 the	 client	 without	 significant	 data	
leakage.	
	
From	the	fundamental	benefits	and	 limitations	of	 the	available	cryptosystems,	 it	 is	not	
possible	to	infer	a	scheme	that	is	strictly	better	for	deployment	on	all	possible	solutions.	
Furthermore,	when	considering	real-world	applications,	the	selection	of	techniques	for	
specific	requirements	is	hardly	often	straightforward.	Since	most	practical	solutions	for	
cloud	deployment	consider	a	very	reduced	subset	of	cryptographic	mechanisms,	users	
lack	 the	 tools	 required	 for	 deploying	 implementations	 tailored	 to	 their	 application-
specific	security	requirements.	
	
SafeCloud’s	 approach	 for	 SQ1	 targets	 this	 significant	 niche	 of	 secure	 frameworks,	
allowing	 for	 solutions	 that	 opt	 into	 different	 cryptographic	 mechanisms	 for	 different	
security	assumptions.	This	is	not	the	first	approach	targeting	a	more	granular	approach	
to	 data	 protection	 (e.g.	 Google’s	 Encrypted	 BigQuery5,	 SAP’s	 SEEED6	and	 Microsoft’s	
Always	 Encrypted	 SQL	 Server7),	 but	 should	 rather	 be	 interpreted	 as	 a	 natural	
progression	 towards	 improved	 user	 control	 with	 respect	 to	 secure	 data	 storage	 and	
processing.	
	

4.2 SQ2:	Secure	processing	in	multiple	untrusted	domains	
This	SafeCloud	solution	(Secure	Queries	2	or	SQ2)	provides	a	secure	database	querying	
capability.	In	this	case	more	versatile	mechanism	can	be	offered	than	in	SQ1,	because	in	
SQ2,	there	are	multiple	Service	Providers	with	their	untrusted	deployments.	
	
4.2.1 Features	and	usage	

NoSQL	 interface.	 SQ2	 is	 built	 on	 HBase	 and	 uses	 it	 as	 a	 storage	 backend.	 Thus,	 the	
native	 interface	 is	 very	 similar	 to	 NoSQL.	 The	 SafeCloud	 cryptographic	 behaviour	 is	
transparent	from	the	end-user	perspective.	
Transactional	ANSI	SQL	interface.	SQ2	provides	a	full	transactional	ANSI	SQL	interface	
by	 integrating	with	 the	 technology	 from	EC	FP7	CumuloNimbo	project.	This	builds	on	
the	NoSQL	interface	and	performs	additional	operations	needed	to	complete	the	queries	
on	the	client	side.	
	
The	 design	 of	 SQ2	 considers	 a	 scenario	 where	 multiple	 untrusted	 deployments	 are	
available.	 This	 extends	 the	 scenario	 of	 SQ1	 for	 more	 complex	 trust	 models,	 where	
cryptographic	 techniques	 can	 be	 employed	 that	 benefit	 from	 this	 characteristic.	 In	
particular,	 secure	 multiparty	 computation	 protocols	 can	 be	 deployed	 over	 a	 set	 of	
untrusted	participants	if	they	can	be	assumed	to	not	collude.	This	is	often	considered	to	

																																																								
5  https://cloud.google.com/bigquery/ 
6  https://www.sics.se/sites/default/files/pub/andreasschaad.pdf 
7  https://msdn.microsoft.com/en-us/library/mt163865.aspx 



	 D4.1	–	SafeCloud	Architecture	 29	

be	a	realistic	assumption	for	some	use	cases,	as	multiple	cloud	services	are	available	in	
competing	scenarios,	and	are	therefore	motivated	to	not	cooperate.		
	
Secret	 sharing	 with	 homomorphic	 properties	 [WCK+14,	 D+12,	 LTV12]	 has	 been	 a	
relatively	 common	 approach	 for	 delegating	 secure	 computations	 over	 untrusted	
participants.	 This	 is	 the	 one	 taken	by	 Sharemind,	which	 is	 employed	 in	 SQ2	 for	 three	
main	advantages:	 i)	 it	 allows	SafeCloud	 to	 take	advantage	of	a	mature	protocol	where	
practical	 multiparty	 computation	 has	 been	 executed	 and	 evaluated,	 ii)	 the	
security/functionality	 considerations	 complement	 the	 alternative	 solutions	 SQ1	 and	
SQ3,	and	iii)	the	know-how	of	the	involved	partners	regarding	the	referred	tool	allows	
for	comprehensively	building	upon	and	expand	the	framework	state-of-the-art.	
	
A	 typical	 example	 for	 the	 usage	 of	 SQ2	 to	 instrument	 a	 solution	would	 be	 a	 use	 case	
where	highly	sensitive	data	must	be	remotely	processed.	The	employment	of	multiparty	
computation	protocols	allows	for	arbitrary	functionalities	to	be	run	over	protected	data,	
while	maintaining	strong	security	guarantees	for	confidentiality	and	integrity.	
	

4.2.2 Deployment	and	integration	

Stakeholders	
1) Data	Owner	 -	 controls	 the	 data	 to	 be	 processed,	 is	 interested	 in	 protecting	 it	

from	the	host	of	the	query	service	(e.g.,	cloud).	
2) Service	 Providers	 -	 provide	 the	 infrastructure	 and	 platform	 for	 storing	 and	

securely	querying	data.	
We	 assume	 that	 the	 Data	 Owner’s	 computing	 environment	 has	 some	 computational	
power	but	scarce	storage	resources,	while	the	untrusted	deployment	provided	by	three	
independent	Service	Providers	have	both	complementary	computational	power	and	the	
necessary	 storage	 capabilities.	 We	 also	 assume	 that	 the	 Service	 Providers	 are	 non-
colluding.	
SQ2	components	

1) SQ2	Client	-	the	component	to	be	deployed	by	the	Data	Owner,	provides	a	secure	
querying	capability	and	connects	to	the	SQ2	Servers	for	storage.	

2) SQ2	 Server	 -	 the	 component	 to	 be	 deployed	 by	 the	 independent	 Service	
Providers,	provides	a	secure	NoSQL	storage	capability.	
	



	 D4.1	–	SafeCloud	Architecture	 30	

	
Figure	19:	SafeCloud	SQ2	deployment	diagram	

	
Figure	19	 illustrates	 the	 relations	between	 the	 stakeholders	and	 the	 components	 they	
deploy.	Like	 in	SQ1,	 the	client	application	can	be	 implemented	in	a	number	of	ways:	 it	
can	be	an	app	on	an	application	server,	a	standalone	application,	a	mobile	application,	
etc.	It	is	observable	that	most	of	the	processing	is	done	by	the	Data	Owner	in	the	trusted	
deployment.	Almost	all	storage,	on	the	other	hand,	is	left	under	the	responsibility	of	the	
Service	Providers.	The	difference	from	SQ1	is	that	in	SQ2	there	are	3	independent,	non-
colluding	Service	Providers.	

	
Figure	20:	SafeCloud	SQ2	component	diagram	

	
Figure	20	depicts	the	architecture	for	SQ2.	The	major	architectural	difference	from	SQ1	
is	 that	 now	 there	 are	 three	 HBase	 instances	 hosted	 in	 different	 untrusted	
infrastructures.	
Similar	 to	 SQ1,	 the	 Cryptography	 Library	 handles	 protected	 data	 in	 a	 fashion	 that	 is	
transparent	to	the	end-user.	This	component	can	employ	techniques	described	in	SQ1	as	
well	as	multiparty	computation	protocols	for	data	storage	and	processing.	For	the	latter,	
the	Data	Owner	secret	shares	sensitive	data	over	three	HBase	remote	servers,	which	are	
equipped	to	remotely	process	multiparty	queries	accordingly.	



	 D4.1	–	SafeCloud	Architecture	 31	

The	SQ2	server	is	composed	of	two	basic	components,	a	regular	HBase	server	as	in	SQ1	
and	a	Multi-party	Computation	Library.	By	default,	HBase	cannot	process	secret	shared	
data,	 thus	 requiring	 an	 extension	 to	 its	 core	 functionality.	 	 This	 extension	 is	 achieved	
through	an	HBase	Coprocessor,	an	embedded	framework	of	the	HBase	server	described	
in	 detail	 in	 Deliverable	 D3.2.	 Briefly,	 this	 framework	 and	 a	 Multi-party	 Computation	
library	 are	 leveraged	 to	 enable	 regular	 HBase	 operations	 on	 top	 of	 encrypted	 data	
(secret	shared	data).		
	
4.2.3 Security	

Trust	assumptions	
1) The	Data	Owner	is	trusted.	
2) The	Service	Providers	are	untrusted.	
3) The	Service	Providers	do	not	collude.	

	
Data	Owner.	The	assumptions	about	Data	Owner	are	exactly	 the	same	as	 in	SQ1.	The	
Data	 Owner	 has	 the	 rights	 to	 process	 the	 data	 and	 does	 it	 in	 a	 trusted	 environment,	
assumed	to	be	secure	at	all	times.	It	is	motivated	to	outsource	storage	and	querying	to	
reduce	its	infrastructure	needs,	while	also	under	the	obligation	(by	regulation,	contracts	
or	distrust)	to	keep	untrusted	participants	from	freely	accessing	the	clear	data.	Thus,	it	
does	 not	 trust	 the	 Service	 Provider	 to	 process	 it	 in	 an	 unprotected	 fashion.	 The	
SafeCloud	SQ2	gives	the	Data	Owner	full	access	to	the	data,	so	all	internal	confidentiality	
attacks	should	be	handled	in	an	administrative	fashion.	
	
Service	 Provider.	 Like	 for	 SQ1,	 the	 Service	 Providers	 provide	 infrastructure	 and	
platform	 services,	 and	 allow	 customers	 to	 offload	 data	 and	 computation.	 These	
participants	should	be	equipped	 to	compute	over	encrypted	data,	 since	 they	expect	 to	
handle	protected	information.	
	
Non-collusion.	 If	all	Service	Providers	collude,	SQ2	would	be	a	particular	case	of	SQ1.	
Data	 security	 of	 SQ2	 should	 be	 able	 to	 leverage	 a	 scenario	 where	 the	 untrusted	
participants	are	not	 cooperating,	 as	 this	 is	 a	 fundamental	 assumption	 for	 the	usage	of	
schemes	such	as	Secret	Sharing	[BNT+12].	
	
Solutions	presented	in	SQ1	can	be	enforced	against	arbitrary	malicious	behaviour	from	
the	Service	Provider.	SQ2	proposes	alternative	protocols	that	can	both	provide	stronger	
security	guarantees	and	offer	a	wider	variety	of	functionalities	over	protected	data,	if	the	
Data	Holder	can	assume	the	Service	providers	to	be	semi-honest	and	non-colluding.	This	
is	yet	another	possibility	for	deployment	tradeoffs	in	the	SafeCloud	framework.		
	

4.3 Secure	processing	in	multiple	untrusted	domains	with	untrusted	clients	
This	SafeCloud	solution	(Secure	Queries	3	or	SQ3)	provides	a	secure	database	querying	
and	generic	 secure	processing	capability.	SQ3	considers	multiple	 (mutually	untrusted)	
clients,	 allowing	 for	 joint	 querying	 of	 sensitive	 data	 for	 aggregated	 results,	 protecting	
the	confidentiality	of	individual	entries.	



	 D4.1	–	SafeCloud	Architecture	 32	

4.3.1 Features	

SQL	interface.	SQ3	provides	a	SQL	interface,	however	it	is	not	fully	ANSI	SQL	compliant.	
For	example,	any	filtering	on	less	than	n	rows	where	n	is	a	security	parameter,	will	yield	
an	empty	result	to	protect	the	confidentiality	of	individual	data	rows.	
Stored	 procedure	 support.	 The	 SQ3	 SQL	 interface	 provides	 support	 for	 executing	
stored	 procedures.	 The	 stored	 procedures	 are	 implemented	 in	 the	 SecreC	 [BLR14]	
privacy-preserving	programming	language.	Stored	procedures	offer	the	full	capabilities	
for	processing	data,	while	thanks	to	type	level	privacy	modifiers	in	SecreC,	the	amount	of	
unintentional	data	leaks	is	minimized.	
Low	computation	needed	on	 the	client	 side.	SQ3	 stores	 private	 data	 using	 additive	
secret	 sharing.	 All	 the	 database	 operations	 are	 executed	 on	 the	 service	 providers	 and	
use	 multi-party	 computation	 (MPC)	 techniques	 to	 ensure	 the	 confidentiality	 of	 data.	
MPC	 techniques	have	moderate	overhead	 in	 terms	of	performance	when	compared	 to	
plain-text	processing.	
Mutually	untrusted	clients.	In	SQ1	and	SQ2,	a	moderate	amount	of	processing	is	done	
in	the	trusted	deployment	with	the	decrypted	data.	In	SQ3,	Data	Owners	do	not	need	to	
trust	the	client,	because	data	is	reconstructed	from	secret	shares	only	in	the	last	step.	All	
the	intermediate	steps	for	processing	a	query	are	done	securely.	Furthermore,	clients	of	
SQ3,	can	only	make	aggregating	queries.	
	
SQ3	considers	the	common	use	case	where	several	entities	want	to	jointly	execute	some	
function	(data	analytics,	for	instance)	over	highly	sensitive	data.	If	no	trusted	third	party	
can	 be	 agreed	 upon	 (which	 is	 the	 case	 for	many	 real-world	 scenarios),	 then	 this	 is	 a	
textbook	example	of	a	multiparty	computation	scenario.	Contrary	to	SQ1	and	SQ2,	SQ3	
now	assumes	 that	untrusted	deployments	can	receive	data	 from	several	Data	Holders,	
and	 must	 therefore	 provide	 computational	 results	 that	 do	 not	 leak	 information	
regarding	the	stored	sensitive	information.	
As	 an	 example	 application	 for	 SQ3,	 consider	 multiple	 hospitals	 in	 the	 same	 region.	
Hospitals	have	the	data	about	their	patients,	but	they	cannot	share	that	data	because	of	
privacy	 concerns.	 However,	 they	 are	 interested	 in	 aggregate	 queries	 over	 the	 data	 to	
detect	 region-wide	 epidemics.	 With	 SQ3,	 the	 hospitals	 can	 solve	 their	 data	 sharing	
problem	 and	 even	 deploy	 the	 system	 using	 the	 infrastructure	 of	 an	 untrusted	 cloud	
service	provider.	
	

4.3.2 Deployment	and	integration	

Stakeholders	
1) Data	Owner	 -	 controls	 the	 data	 to	 be	 processed,	 is	 interested	 in	 protecting	 it	

from	other	Data	Owners,	Service	Providers	and	Analysts.	
2) Analyst	-	uses	the	SQL	interface	to	query	the	system.	
3) Service	 Providers	 -	 provide	 the	 infrastructure	 and	 platform	 for	 storing	 and	

securely	querying	data.	
We	assume	that	there	are	multiple	Data	owners,	otherwise	SQ1	or	SQ2	can	be	used.	It	is	
perfectly	valid	and	in	some	cases	even	preferable	that	one	entity	fulfils	multiple	roles.	As	
an	example,	Data	Owner	might	want	 to	also	get	 the	benefits	 from	sharing	 its	data	and	
therefore,	should	also	take	on	the	Analyst	role.	
	
	
SQ3	components	



	 D4.1	–	SafeCloud	Architecture	 33	

1) SQ3	 Client	 -	 the	 component	 to	 be	 deployed	 by	 the	 Data	 Owner	 and	 Analyst,	
provides	secure	querying	capability	and	connects	to	SQ3	Servers	for	running	the	
queries.	

2) SQ3	 Server	 -	 the	 component	 to	 be	 deployed	 by	 the	 independent	 Service	
Providers,	provides	a	secure	database.	

	
SQ3	is	built	on	top	of	Sharemind[BNT+12]	which	is	a	programmable	distributed	secure	
computation	framework	utilizing	MPC.	

	
Figure	21:	SafeCloud	SQ3	deployment	diagram	

	
Figure	21	 illustrates	 the	 relations	between	 the	 stakeholders	and	 the	 components	 they	
deploy.	In	many	cases	it	makes	sense	for	the	Client	application	and	the	trusted	domain	
component	(SQ3	Client)	to	be	deployed	on	the	same	machine.	Like	for	SQ1	and	SQ2,	the	
client	 application	 can	 be	 implemented	 in	 a	 number	 of	 ways:	 it	 can	 be	 an	 app	 on	 an	
application	server,	a	standalone	application,	a	mobile	application,	etc.	Note	that	the	SQ3	
Client	component	does	very	 little	processing	and	all	data	 intensive	work	 is	 left	 for	 the	
Service	Providers.	
	

	
Figure	22:	SafeCloud	SQ3	component	diagram	

	
Figure	 22	 provides	 a	 more	 detailed	 description	 of	 the	 components	 of	 SQ3.	 Client	
application	 communicates	 with	 the	 SQ3	 Client	 component	 via	 PostgreSQL	 database	
drivers.	The	SQL	Query	Engine	offers	a	SQL	interface,	which	mimics	PostgreSQL	server,	
however	it	will	not	support	all	the	commands.	SQL	Query	Engine	handles	the	query	and	



	 D4.1	–	SafeCloud	Architecture	 34	

calls	procedures	on	the	servers	to	handle	the	processing.	The	Sharemind	Client	Library	
handles	 communication	 with	 the	 SQ3	 servers	 (secure	 channels	 are	 used).	 The	
Cryptography	Library	provides	functionality	for	secret	sharing	data	and	reconstructing	
data	from	shares.	The	SQ3	Server	consists	of	a	Sharemind	Server,	a	Database	and	a	SQL	
Backend.	 The	 SQL	 Backend	 provides	 the	 algorithms	 for	 privacy-preserving	 database	
operations	and	is	implemented	in	the	SecreC	language.	The	Database	component	is	built	
on	top	of	HDF5	and	is	used	primarily	for	storage.	
	
4.3.3 Security	

Trust	assumptions	
1) The	Data	Owners	are	mutually	untrusted.	
2) The	Analyst	is	trusted.	
3) The	Service	Providers	are	untrusted.	
4) The	Service	Providers	do	not	collude	to	break	privacy.	

	
Data	 Owners.	 The	 Data	 Owners	 have	 sensitive	 information	 and	 are	 interested	 in	
performing	computations	with	it,	as	well	as	cooperate	with	other	Data	Owners	for	joint	
computations.	
	
Analyst.	The	Analyst	is	the	stakeholder,	who	will	get	the	query	results	in	clear,	therefore	
analyst	must	use	a	trusted	computing	environment.	This	environment	is	not	equipped	to	
perform	 meaningful	 amounts	 of	 computation,	 so	 it	 should	 not	 be	 considered	 as	 a	
potential	trusted	party	for	data	storage	and	processing.	
	
Service	Providers.	As	is	the	case	with	previous	solutions,	the	Service	Providers	provide	
infrastructure	 and	 platform	 services,	 and	 allow	 customers	 to	 offload	 data	 and	
computation.	 These	participants	 should	be	 equipped	 to	 compute	 over	 encrypted	data,	
since	they	are	expected	to	handle	protected	information.	
	
Non-collusion.	 Service	Providers	are	assumed	 to	not	collude	under	any	circumstance,	
which	is	an	essential	requirement	for	the	considered	underlying	mechanisms.	
	

4.4 Comparison	
Table	 2	 provides	 a	 broad	 overview	 of	 different	 solutions	 suggested	 for	 secure	 query	
processing.	 X	 shows	 that	 a	 feature	 is	 supported,	 X*	shows	 that	 a	 feature	 is	 partially	
supported.	
	
All	solutions	are	designed	to	allow	for	encrypted	storage	and	data	processing,	which	is	
the	central	scope	of	the	secure	query	layer	of	SafeCloud.	Furthermore,	all	of	these	also	
provide	both	a	SQL	and	a	NoSQL	interface,	as	described	in	deliverable	D3.1.	
	
SQ1	and	SQ2	provide	a	more	complete	SQL	interface	with	transactional	support,	which	
can	be	a	requirement	for	specific	use	cases.	However,	these	are	limited	to	a	single	client	
(Data	Holder),	which	narrows	their	focus	to	the	access	and	management	of	single	data	
items,	and	restricts	 their	application	 from	use	cases	 that	 require	 joint	data	processing	
from	several	different	 sources.	Alternatively,	 SQ3	 is	designed	 to	 consider	 several	Data	
Holders,	and	allows	for	external	participants	(Analysts)	to	request	data	processing	from	



	 D4.1	–	SafeCloud	Architecture	 35	

multiple	sources,	receiving	aggregated	results	while	maintaining	confidentiality	of	single	
data	items.	
	
SQ1	and	SQ2	allow	for	the	usage	of	a	wide	variety	of	cryptographic	mechanisms,	where	a	
subset	 of	 these	 is	 resistant	 to	 malicious	 adversarial	 behaviour	 from	 the	 Service	
Provider(s).	As	a	tradeoff	to	employ	multiparty	computation	algorithms	of	Sharemind	in	
SQ2	and	SQ3,	semi-honest	behaviour	must	be	assumed	from	the	Service	Providers.	
	
As	 a	whole,	 the	 versatility	 of	 proposed	 techniques	 for	 secure	 queries	 is	 helpful	 in	 the	
context	of	the	framework,	as	the	architecture	allows	for	a	deployment	that	implements	
these	 cryptographic	 mechanisms	 in	 a	 way	 that	 is	 transparent	 to	 the	 end-user.	 The	
provided	modularity	is	crucial	to	the	success	of	the	SafeCloud	project	towards	solving	a	
broader	set	of	real-world	problems:	it	allows	for	users	of	SafeCloud-enabled	solutions	to	
experience	a	standard	well-known	API	 that	 is	maintained	regardless	of	 the	underlying	
techniques,	 and	 enables	 the	deployment	of	 services	 according	 to	 fine-grained	 security	
and	performance	requirements.	
	
Deliverable	D3.2	provides	more	detailed	information	regarding	these	three	solutions	of	
SafeCloud	secure	queries	layer,	as	well	as	individual	discussions	regarding	applicability	
and	relevance	in	different	contexts.	
	

Feature	\	Solution	 SQ1	 SQ2	 SQ3	
Encrypted	storage	and	processing	 X	 X	 X	
Transaction	Support	 X	 X	 	

SQL	interface	 X	 X	 X	

NoSQL	interface	 X	 X	 X	

Allows	for	malicious	adversaries	 X*	 X*	 	

Secure	data	processing	between	clients	 	 	 X	

Single	data	items	can	be	accessed	 X	 X	 	

Table	2:	Comparison	of	solutions	for	secure	query	processing	
	
	 	



	 D4.1	–	SafeCloud	Architecture	 36	

5 Integration	and	specific	use	cases	
We	apply	 the	SafeCloud	 framework	 to	 the	Maxdata	and	Cloud&Heat	use	 cases.	All	 the	
use	 cases	 are	 described	 in	 more	 detail	 in	 D5.1	 and	 D5.2.	 Both	 project	 partners	 have	
multiple	 use	 cases	 with	 different	 requirements	 which	 we	 address	 by	 using	 the	
framework	components	described	in	this	deliverable.	
	
The	instantiation	of	the	SafeCloud	architecture	with	regard	to	the	Maxdata	use	cases	is	
illustrated	 in	 Figure	23,	 Figure	24	 and	Figure	25.	 In	 use	 case	1	 and	2,	 the	 application	
uses	 the	 SafeCloud	 APIs	 to	 either	 store	 the	 data	 directly	 on	 the	 distributed	 secure	
filesystem	residing	in	the	untrusted	domain	or	to	store	the	data	through	the	secure	SQL	
engine.	 The	 latter	 option	 also	 provides	 the	 functionality	 to	 process	 queries	 on	 the	
securely	 stored	 data.	 The	 SQL	 engine	 uses	 a	 NoSQL	 database	 backend.	 The	 NoSQL	
database	 can	 either	 reside	 directly	 on	 the	 local	 storage,	 or	 run	 on	 top	 of	 the	 secure	
filesystem	 or	 block	 storage.	 In	 the	 trusted	 domain,	 the	 local	 storage	 is	 required	 for	
caching	 purposes.	 Use	 case	 3	 is	 similar	 to	 the	 previous	 scenarios	 with	 the	 following	
differences:	the	NoSQL	database	is	replaced	with	the	distributed	Sharemind	engine,	and	
the	SQL	engine	in	the	trusted	environment	no	longer	requires	a	local	storage.	For	each	
use	 case,	 the	 communication	 layer	 components	 of	 the	 framework	 are	used	 to	provide	
security	in	trusted-untrusted	and	untrusted-untrusted	domain	communications.	
	
	

	
Figure	23:	Maxdata	use	case	1	

	



	 D4.1	–	SafeCloud	Architecture	 37	

	
Figure	24:	Maxdata	use	case	2	

	

	
Figure	25:	Maxdata	use	case	3	

	
The	Cloud&Heat	 architecture	 for	 its	 two	use	 cases	 is	 respectively	 shown	 in	 Figure	 26	
and	 Figure	 27.	 Both	 use	 cases	 take	 advantage	 of	 the	 distributed	 nature	 of	 the	
Cloud&Heat	micro-clouds.	In	use	case	1	we	deploy	the	distributed	secure	block	storage	
on	 the	 data	 centers.	 The	 block	 storage	 can	 then	 be	 used	 by	 the	 virtual	 machines	
provisioned	by	Cloud&Heat.	This	will	allow	to	provide	reliability	and	provisioning	over	



	 D4.1	–	SafeCloud	Architecture	 38	

multiple	data	centers.	In	use	case	2	we	deploy	an	additional	file	system	layer	on	top	of	
the	secure	block	storage	and	leverage	the	properties	of	the	long-term	data	store.	
	

	
Figure	26:	Cloud&Heat	use	case	1	



	 D4.1	–	SafeCloud	Architecture	 39	

	
Figure	27:	Cloud&Heat	use	case	2	

	 	



	 D4.1	–	SafeCloud	Architecture	 40	

6 Conclusion	
The	 SafeCloud	 architecture	 consists	 of	 three	 layers:	 secure	 communication,	 secure	
storage	and	secure	queries.	Each	of	these	layers	contains	multiple	solutions	that	address	
various	problems	in	those	areas.	
	
In	 the	 communication	 layer	 the	 solutions	 improve	 over	 existing	 solutions	 by	 using	
techniques	 such	 as	 redundant	 encryption,	 port	 knocking,	 route	monitoring	 and	multi-
path	routing.	These	solutions	can	be	deployed	in	distributed	systems,	such	as	the	cloud,	
to	archive	better	security	guarantees	for	the	communication,	where	much	of	the	traffic	
travels	 over	 the	 public	 internet.	 The	 storage	 layer	 uses	 encryption,	 geographic	
distribution	and	entanglement	to	provide	storage	solutions	that	are	well	suited	for	cloud	
environments,	 where	 a	 client	 wants	 to	 ensure	 its	 data	 is	 kept	 private	 and	 is	 not	
tampered	with.	 The	 queries	 layer	 provides	 different	 secure	 SQL	 and	 NoSQL	 database	
solutions.	 These	 databases	 allow	 to	 outsource	 the	 storage	 of	 an	 application	 while	
keeping	the	data	itself	private.	
	
The	 described	 solutions	 are	 deployed	 to	 solve	 real-life	 problems	 in	 the	 Maxdata	 and	
Cloud&Heat	uses	 cases.	We	 show	concrete	 examples	how	 the	 solutions	 are	 integrated	
into	existing	applications	and	infrastructure.	
	 	



	 D4.1	–	SafeCloud	Architecture	 41	

7 References	
	
[AJ05]	 Aycock,	 John,	 and	 M.	 Jacobson.	 "Improved	 port	 knocking	 with	 strong	

authentication."	 21st	 Annual	 Computer	 Security	Applications	 Conference	
(ACSAC'05).	IEEE,	2005.		

[AKS+04]	 Rakesh	 Agrawal,	 Jerry	 Kiernan,	 Ramakrishnan	 Srikant,	 and	 Yirong	 Xu.	
Order	preserving	encryption	 for	numeric	data.	 In	Proceedings	of	the	2004	
ACM	SIGMOD	international	conference	on	Management	of	data,	 pages	563-
574.	ACM,	2004.	

[BAC+08]	 Bessani,	Alysson	Neves,	et	al.	"DepSpace:	a	Byzantine	fault-tolerant	
coordination	service."	ACM	SIGOPS	Operating	Systems	Review.	Vol.	42.	No.	
4.	ACM,	2008.	

[BBO07]	 Mihir	 Bellare,	 Alexandra	 Boldyreva	 and	 Adam	O’Neill.	 Deterministic	 and	
efficiently	 searchable	 encryption.	 Annual	 International	 Cryptology	
Conference.	Springer	Berlin	Heidelberg,	2007.		

[BKR13]	 Mihir	Bellare,	Sriram	Keelveedhi	and	Thomas	Ristenpart.	"Message-locked	
encryption	 and	 secure	deduplication."	Annual	International	Conference	on	
the	Theory	and	Applications	of	Cryptographic	Techniques.	 Springer	 Berlin	
Heidelberg,	2013.	

[BLR14]	 Bogdanov,	Dan,	Peeter	Laud,	and	Jaak	Randmets.	"Domain-polymorphic	
programming	of	privacy-preserving	applications."	Proceedings	of	the	
Ninth	Workshop	on	Programming	Languages	and	Analysis	for	Security.	
ACM,	2014.	

[BNT+12]	 Bogdanov,	Dan,	et	al.	"High-performance	secure	multi-party	computation	
for	data	mining	applications."	International	Journal	of	Information	
Security	11.6	(2012):	403-418.	

[D+12]	 Ivan	 Damgård	 et	 al.	 "Multiparty	 computation	 from	 somewhat	
homomorphic	encryption."	Advances	in	Cryptology–CRYPTO	2012.	Springer	
Berlin	Heidelberg,	2012.	643-662.	

[K03]	 Krzywinski,	Martin.	"Port	knocking	from	the	inside	out."	SysAdmin	
Magazine	12.6	(2003):	12-17.	

[KG14]	 Kirsch,	 Julian,	 and	 C.	 Grothoff.	 "Knock:	 Practical	 and	 Secure	 Stealthy	
Servers."	(2014).		

[LTV12]	 Adriana	 López-Alt,	 Eran	 Tromer	 and	 Vinod	 Vaikuntanathan.	 On-the-fly	
multiparty	 computation	 on	 the	 cloud	 via	 multikey	 fully	 homomorphic	
encryption.	Proceedings	 of	 the	 forty-fourth	 annual	 ACM	 symposium	 on	
Theory	of	computing.	ACM,	2012.	

[NKW15]	 Naveed,	Muhammad,	Seny	Kamara,	and	Charles	V.	Wright.	"Inference	
attacks	on	property-preserving	encrypted	databases."	Proceedings	of	the	
22nd	ACM	SIGSAC	Conference	on	Computer	and	Communications	Security.	
ACM,	2015.	

[PBP16]	 Poddar,	Rishabh,	Tobias	Boelter,	and	Raluca	Ada	Popa.	"Arx:	A	Strongly	
Encrypted	Database	System."	.	

[PRZ12]	 Popa,	Raluca	Ada,	et	al.	"CryptDB:	processing	queries	on	an	encrypted	
database."	Communications	of	the	ACM	55.9	(2012):	103-111.	

[PS03]	 Padmanabhan,	Venkata	N.,	and	Daniel	R.	Simon.	"Secure	traceroute	to	
detect	faulty	or	malicious	routing."	ACM	SIGCOMM	Computer	
Communication	Review	33.1	(2003):	77-82.	



	 D4.1	–	SafeCloud	Architecture	 42	

[VHT09]	 Vasserman,	 Eugene	 Y.,	 Nicholas	 Hopper,	 and	 James	 Tyra.	 "SilentKnock:	
practical,	 provably	 undetectable	 authentication."	 International	 Journal	 of	
Information	Security	8.2	(2009):	121-135.		

[WKC+14]	 W.	 K.	 Wong,	 B.	 Kao,	 D.	 W.	 L.	 Cheung,	 R.	 Li	 and	 S.	 M.	 Yiu.	 Secure	 query	
processing	 with	 data	 interoperability	 in	 a	 cloud	 database	 environment.		
Proceedings	 of	 the	 2014	 ACM	 SIGMOD	 International	 Conference	 on	
Management	of	Data,	ser.	SIGMOD	’14,	2014,	pp.	1395–1406.	

[ZJP07]	 Zheng,	Changxi,	et	al.	"A	light-weight	distributed	scheme	for	detecting	IP	
prefix	hijacks	in	real-time."	ACM	SIGCOMM	Computer	Communication	
Review.	Vol.	37.	No.	4.	ACM,	2007.	

[ZZH+08]	 Zhang,	Zheng,	et	al.	"Ispy:	detecting	ip	prefix	hijacking	on	my	own."	ACM	
SIGCOMM	Computer	Communication	Review.	Vol.	38.	No.	4.	ACM,	2008.	


