
 D3.8 – Secure SQL Engine 1

Secure SQL Engine

D3.8

Project reference no. 653884

February 2018

 D3.8 – Secure SQL Engine 2

Document information

Scheduled delivery 01.03.2018
Actual delivery 01.03.2018
Version 1.0
Responsible Partner Cybernetica

Dissemination level

Public

Revision history

Date Editor Status Version Changes
05.02.2018 K. Tarbe Draft 0.1 Initial version
13.02.2018 F. Maia Draft 0.2 Revised version
20.02.2018 K. Tarbe Draft 0.3 Revised version
28.02.2018 K. Tarbe Final 1.0 Final version

Contributors

K. Tarbe (CYBER)
F. Maia (INESC-TEC)
V. Sokk (CYBER)

Internal reviewers

M. Pardal (INESC-ID)
H. Niedermayer (TUM)

Acknowledgements

This project is partially funded by the European Commission Horizon 2020 work
programme under grant agreement no. 653884.

More information

Additional information and public deliverables of SafeCloud can be found at
http://www.safecloud-project.eu

http://www.safecloud-project.eu/

 D3.8 – Secure SQL Engine 3

Glossary of acronyms

Acronym Definition
ACID Atomicity, Consistency, Isolation, Durability

MPC Multi-Party Computation
OMID Optimistically transaction Management In Datastores
REPL Read-Eval-Print Loop
SQ1 Secure database server
SQ2 Secure multi-cloud database server
SQ3 Secure multi-cloud application server
SQL Structured Query Language

 D3.8 – Secure SQL Engine 4

Table of contents

Document information... 2

Dissemination level ... 2

Revision history .. 2

Contributors .. 2

Internal reviewers ... 2

Acknowledgements ... 2

More information ... 2

Glossary of acronyms ... 3

Table of contents .. 4

Executive summary ... 5

1 Introduction ... 6

2 Background .. 7
2.1 Goals .. 7
2.2 Architecture ... 7

3 Secure database server and Secure multi-cloud database server 11
3.1 Brief description of the solution ...11
3.2 New Features ..11
3.3 Quickstart user manual ..11

3.3.1 Distribution Structure .. 11
3.3.2 Distribution configuration .. 12
3.3.3 Derby.properties ... 12
3.3.4 HBase-site.xml ... 13
3.3.5 Schema configuration (Schema.xml) .. 14

4 Secure multi-cloud application server .. 17
4.1 Brief description of the solution ...17
4.2 New Features ..17
4.3 Quickstart user manual ..18

4.3.1 Installing ... 18
4.3.2 Running ... 18
4.3.3 Whitelisting ... 18

5 Conclusion .. 19

6 References .. 20

 D3.8 – Secure SQL Engine 5

Executive summary

This document gives a very brief overview of the three solutions in the secure queries layer
of the SafeCloud project. This deliverable is a software deliverable and the main focus of this
document is on the quickstart guide for the three solutions.

We do not link to the software from this deliverable, because all the solutions incorporate
existing commercial components. The first two solutions: SQ1 and SQ2 can be obtained from
SafeCloud Technologies Sàrl1 and the third solution, SQ3 is offered by Cybernetica AS2.

We refer readers to previous deliverables for more details about the solutions.

1 https://safecloudtech.com/
2 https://sharemind.cyber.ee/

https://safecloudtech.com/
https://sharemind.cyber.ee/

 D3.8 – Secure SQL Engine 6

1 Introduction

The SafeCloud secure queries layer has three solutions as shown in Figure 1:

Figure 1: Secure queries solutions.

For each processing solution, a detailed architecture, the prototypes and the different sets
of supported privacy-preserving techniques have been described in previous deliverables
D3.1 to D3.7. The different architectures and privacy-preserving techniques used in each
solution assume different trust models and, as a consequence, different privacy guarantees
emerge for each solution.

This deliverable introduces the latest improvements and changes to the three secure queries
layer solutions. In section 2 we summarise the initial goals of the secure queries layer of the
SafeCloud project. After describing the goals we recap the deployment diagrams of the
solutions and then proceed with quick start manuals for each solution.

 D3.8 – Secure SQL Engine 7

2 Background

The Initial architecture of the secure queries layer solutions was detailed in D3.1. The
cryptographic techniques used for the solutions were described in D3.2 and later refined in
D3.5. Elasticity properties of the solutions were described in D3.6.

2.1 Goals

The most important goal of secure queries layer was to explore different techniques and
trade-offs in enabling processing on encrypted data in a database setting. We achieved this
goal by having three solutions, each with its own security model. The first solution, Secure
database server, utilizes cryptographic techniques such as order-preserving encryption,
deterministic and standard encryption and searchable encryption. The choice of the
encryption scheme for particular database table column provides applications with a
performance-security trade-off. The other solutions: Secure multi-cloud database server and
Secure multi-cloud application server, both use multi-party computation based on additive
secret-sharing, but they differ in the approach taken to ensure SQL capabilities. Solution 1
and solution 2 build a relational database on top of a key-value database HBase, which they
extend with coprocessors to support cryptographic operators, while solution 3 uses a
different approach, Sharemind, which does not rely on a component capable of
transforming SQL queries into HBase queries. However, running SQL queries directly on top
of the Sharemind MPC platform does come with a significant cost: SQL as supported by the
Secure multi-cloud application server is not ANSI SQL standard compliant, because many
advanced parts of the standard are not implemented, but all the important data
transforming operations like filters, joins and aggregations are available.

2.2 Architecture

All three solutions follow a similar architecture, when looked at distance. But there are clear
differences in the solutions.

Lets start with SQ1 – Secure database server. The deployment is pictured on Figure 2. We
have a distinction between trusted deployment and untrusted deployment. In terms of
security we protect data from the untrusted deployment.

 D3.8 – Secure SQL Engine 8

Figure 2: Concrete SafeCloud deployment for Solution 1: Secure database server

In SQ2 – Secure multi-cloud database server - the untrusted deployment as in SQ1 is
separated into 3 untrusted deployments that in addition must not collude. The deployment
can be seen on Figure 3.

In SQ3 – Secure multi-cloud application server- we have more deployment domains, because
SQ3 separates data between multiple users. An example is shown on Figure 4.

 D3.8 – Secure SQL Engine 9

Figure 3: Concrete SafeCloud deployment for Solution 2: Secure multi-cloud database

server

 D3.8 – Secure SQL Engine 10

Figure 4: Solution 3: Secure multi-cloud application server deployment

 D3.8 – Secure SQL Engine 11

3 Secure database server and Secure multi-cloud database server

3.1 Brief description of the solution

Secure queries solutions 1 and 2 share a similar high-level architecture and components.
Although their deployment settings are different, from the point of view of the client
application, they export the same APIs and have similar setup procedures.
Briefly, both solutions expose a SQL API comparable to those of traditional relational
database management systems. With the exception of potential SQL dialect differences and
minor incompatibilities, which are easily addressed should they arise, any application can
use our Secure Database Server and our Secure Multi-Cloud Database Server
interchangeably with any commercially available relational database system.
Naturally, the actual deployment of our databases will differ with respect to traditional
systems. In order to provide protection against untrusted Cloud infrastructures our database
systems are installed in two different sites: untrusted site (Cloud provider(s)) and trusted
site (on premises or trusted Cloud(s)). The goal of our database systems is to ensure that
data uploaded to the Cloud provider (or Cloud providers for SQ2) will be protected at all
times. Only the client, in the trusted site, will have access to such data.
The enforcement of this privacy-by-design approach differs for SQ1 and SQ2 as they consider
different security models. SQ1 uses a single untrusted deployment and guards the data from
it, while SQ2 uses multiple untrusted deployments. These security models are extensively
discussed in previous deliverables such as D3.2 and D3.5.
In this Section, we describe how these two database systems can be installed and configured
to be used by any application. In particular, we provide an example of how the system can
be configured to use specific privacy-preserving techniques.

3.2 New Features

In this final version of the Secure Database Server and the Secure Multi-Cloud Database
Server we added support for transactions. To this end we leverage the Apache Omid system
[APACHE17c] to provide full ACID (Atomicity, Consistency, Isolation, Durability) semantics.

3.3 Quickstart user manual

Solution SQ1 and Solution SQ2 follow the same lifecycle of initialisation and termination.
They both provide an extensible configuration to enable adaptation to user requirements. In
addition, their configuration flexibility allows to update the system software without
disrupting working database deployments.
A distribution of these systems is made available through a compressed file with the
necessary binaries for initiating the system, runtime Java and C dependencies, a folder with
example configurations and this guideline that helps users to correctly install, configure and
use the software. This guideline focuses on the configuration of the trusted domain part as it
is expected that the untrusted domain has a standard HBase deployment in one or three
clusters depending on the solution.

3.3.1 Distribution Structure

The distribution file contains the following structure which is exemplified on Figure 5:

 bin
 lib
 lib.hb

 D3.8 – Secure SQL Engine 12

 cryptoboxes
 etc
 Readme
 Manual

Figure 5: Example Distribution folder structure.

The bin folder contains the scripts to start and stop the database on either standalone mode
or distributed mode. The standalone mode is used for development and testing while the
distributed mode is intended for production purposes. In either mode, SQ1 is configured in
the same way. Standalone mode is, however, not currently available for SQ2.
The bin folder also contains a client interface to remotely access an active database. The lib,
lib.hb and cryptoboxes contain all of the dependencies required for system. In detail, the lib
and lib.hb folder contain Java dependencies while the cryptoboxes folder contains C
dependencies. The Java dependencies are loaded when starting the database system and no
additional step needs to be taken. However, the cryptoboxes are C shared libraries and need
to be installed on the trusted domain. These libraries only support a Linux operating
system. As any other C library, cryptoboxes are installed by adding the shared libraries (.so)
to the OS library folders such as /usr/lib or /usr/local/lib and by updating the dynamic library
variables. These libraries have additional dependencies which are specified on a Readme
document inside the folder. In the same folder there is also a shell script “install.sh” that
requires administrator privileges and installs the dependencies and the cryptoboxes.
On the untrusted domain, no dependencies need to be manually installed as the database
relational engine can dynamically load the necessary dependencies to the remote HBase
servers.

3.3.2 Distribution configuration

The most important step before starting the relational database engine is the configuration
of three property files in the etc folder. The three main files that need to be configured are
the “derby.properties”, “hbase-site.xml” and “schema.xml”. In “derby.properties” it is
possible to configure the properties of the relational database engine. The “hbase-site.xml”
file contains the information about the connection to the remote untrusted domain NoSQL
databases and whether data will be protected or not before being stored. The “schema.xml”
file contains a description of the database schema and which cryptographic schemes should
be used to protect sensitive data.

3.3.3 Derby.properties

This property file supports all of the default Derby properties and already has a set of
standard predefined configurations which can be safely used for a correct and efficient
deployment of the relational engine. The only new property that must actually be
considered by users is if the system is using a transaction manager or not. The default
configuration assumes that the system is using the OMID transaction manager and, if this is
the desired behaviour, then no steps need to be taken. However, if a transaction manager is
not necessary, “derby.properties” should contain the property “dqe.storage” set to “vanilla”
as presented in Figure 6.

 D3.8 – Secure SQL Engine 13

Figure 6: Derby configuration without transaction manager.

3.3.4 HBase-site.xml

The HBase-site.xml has the HBase client properties necessary to connect to the HBase
deployment to the untrusted domain. Solution 1 and 2 have specific sets of properties and
values, however, they are designed in such a way that both solutions share a set of common
properties to minimise and simplify the configuration process. In fact, the configuration of
SQ1 can be seen as a subset of the configurations of SQ2. An example of the configurations
is presented in Figure 7.
An SQ1 deployment requires 6 essential configurations, the first two are
“hbase.zookeeper.quorum” and “hbase.zookeeper.property.clientPort” that point the
relational engine to the location of the untrusted domain HBase database. The value of the
first property must contain the hostname of the HBase Zookeeper3 location and the second
property value must have the Zookeeper listening port (default: 2181). The third property is
“hbase.cryptotable” which accepts a boolean value to activate the security mode that
protects confidential data. If the value is set to “false” the system does not protect client
requests and processes them as any other database without security guarantees. The value
of the fourth property, “cryptographickey”, must point to a file in the “etc” folder that
contains the cryptographic key used to protect the confidential data. A sample key file is
available on the distribution but it should be changed for security reasons. The fifth property
is the “baseTable” that allows the user to choose between Solution SQ1 and SQ2. For the
SQ1 solution, this property should have the value set to “HTable” so an underlying standard
HBase table is used. In Solution SQ2, this property should have the value “SharedTable” to
use our own implementation of an HTable that abstracts the distribution of data over three
distinct HBase databases. Apart from this, SQ2 requires the user to specify the location of
the remote NoSQL databases. It follows a similar approach to SQ1 where the zookeeper
location and port must be specified, but the properties must follow the following syntax
“cluster<ID>.hbase.zookeeper.quorum” and
“cluster<ID>.hbase.zookeeper.property.clientPort” where the ID is a value from 1 to 3 that
identifies and distinguishes the remote databases.
The final property is the “schema” which must have the value set to a full path to a
configuration file that describes the database schema and the encryption techniques that
should be used to protect the database. This configuration file is presented in the following
subsection.

3 Apache Zookeeper - a system for distributed coordination

 D3.8 – Secure SQL Engine 14

Figure 7: Example configuration of SQ1 and SQ2 HBase-site.xml

3.3.5 Schema configuration (Schema.xml)

The final configuration file is the schema defined in the property “schema” on the HBase-
site.xml file. This configuration is an XML file that has a set of common elements that define
the protection mode that should be used to protect database tables and columns. The
protection modes available are the following:

 DET - Deterministic Encryption
 OPE - Order-preserving Encryption
 STD - Standard Encryption
 OTP - One-Time Pad
 ISMPC - Integer Secure Multi-party Protocols
 LSMPC - Long Secure Multi-party Protocols
 PLT - Plaintext, data is not sensitive and is left unprotected

 D3.8 – Secure SQL Engine 15

This file, as any other XML file, has tree data structure with a root node and multiple
children. The file starts with the root element with the tag name “schema” which has at least
two children: a default element with the name tag “default” and at least a table element
with the tag “table”. The “default” sets the default protection mode that should be used to
protect data on the level in which it is defined. For instance, if this element is defined as a
child of the root “schema” element it defines the defaults for every table but if defined
within the context of a “table” element, it defines the defaults for that specific table. This
element cannot be defined as a child of any other element. The properties that can be
defined inside the element “default” are the following:

 key - Defines the default cryptographic scheme used to protect table identifiers.
 column - Defines the default cryptographic scheme used to protect table columns.
 keypadding - Flag value to determine if a binary padding is necessary on the table

identifiers.
 columnpadding - Flag value to determine if a binary padding is necessary on the

table columns.
 keyformatsize - Fixed identifier size that should be used if identifier padding is

active.
 columnformatsize- Fixed column size that should be used if column padding is

active.
 encryptionmode - Flag value to determine if cryptographic schemes should be

used.

If a table identifier or column is protected with DET or OPE, it is necessary to apply padding
in order to ensure that the values all have the same size and the system behaves correctly.
Besides the “default” element, there can be one or more “table” elements that have at most
three child elements: an inner tag “name” that defines the table name, an optional “default”
element that takes precedence over the schema “default” element, and a “columns”
element which contains the information relevant to the table columns. The “columns”
element has only a single child, the “family” element. Inside the “family” family element
there is an element “name” which must always have the value “DQE”, a “cryptotechnique”
element that defines the default cryptographic technique used to protect every column
qualifier and an optional “qualifier” element. Columns that need to be protected with
specific schemas can specify a “qualifier” element, which has child nodes with the same
properties as the “default” element. Any property defined in this “qualifier” element takes
precedence over the defaults defined by the “default” element at table level, or schema
level.
As an example, consider a relational table schema with the name Users that has two
columns, Name and Age. These two columns are mapped to an HBase table in the column
family “DQE” and the qualifiers “Name” and “Age”. Furthermore, the columns are protected
with STD and the table identifiers are left unprotected as PLT. A sample schema file of this
example is shown in Figure 8.

 D3.8 – Secure SQL Engine 16

Figure 8: Sample Schema file for User table.

 D3.8 – Secure SQL Engine 17

4 Secure multi-cloud application server

4.1 Brief description of the solution

The third solution is built on top of the Sharemind framework [SHAREMIND+08]. It uses
multi-party computation (MPC) to process the queries on the untrusted domains. This
requires very little resources on the trusted deployment and can also be used with data from
multiple data owners without revealing it to other data owners.

The solution uses a simple client side component which secret-shares the literals used inside
the query and then sends the classified literals and the query to the Sharemind servers.
Inside the servers there is the new mod_sql module, which translates the SQL statements
into Sharemind Analytics Engine operations and executes the operations. At the end, the
results of the query are declassified and returned to the client. However, this approach is
not fully secure: it does not protect the data owners’ data from people that are allowed to
execute SQL queries. To allow multiple non-trusting data owners, then one needs to use
custom SecreC4 [BLR14] programs to allow only specific queries that are whitelisted to only
give aggregation results that do not leak private data.

4.2 New Features

We have made improvements since the initial release of the SQ3 in D3.4 – Non-elastic
restricted Secure SQL Engine. We had the SQL statements translation to Sharemind Analytics
Engine operations done on the client side in the trusted deployment, but we figured that it
would be beneficial to move the translation into a Sharemind module called mod_sql. For
this deliverable we did that refactoring and we gained a number of benefits:

 Better audit logs – Previously the logs contained only the Analytics Engine
operations, but now we can also log SQL statements directly.

 Less latency – For one SQL statement many Analytics Engine operations were
run as separate Sharemind program invocations. Now one SQL statement can be
run inside one Sharemind program invocation and we got rid of the additional
overhead of setting up multiple Sharemind processes for all the operations
needed to process the statement.

 Embedding SQL statements in SecreC – Now we can embed SQL statements
directly in the SecreC code. This simplifies access control and should be very
convenient when writing Sharemind applications using SecreC.

 Better access control – We had a problem that we did not know, when it was
okay to declassify some results. Now we have the full SQL query on the server
side and in future work we might be able to automatically deduce that some
query results are safe to publish without infringing on the privacy of data
owners. Also we can now explicitly whitelist queries known to not leak private
data.

4 SecreC is a programming language for the Sharemind Framework.

 D3.8 – Secure SQL Engine 18

4.3 Quickstart user manual

4.3.1 Installing

Compile sql_server.sc in the SecreC directory. Pass the SecreC directory as an include path
to the SecreC compiler. Copy the compiled sql_server.sb program to the Sharemind servers
scripts directories.

To load mod_sql in the Sharemind server, add the following lines to the server configuration
file:

[Module sql]
File = libsharemind_mod_sql.so

4.3.2 Running

sharemind-sql-client needs to be configured to connect to the Sharemind servers. You will
need the client library configuration file, public and private keys of the client and public keys
of the servers. By default, sharemind-sql-client looks for the client.conf file in the following
directories (in that order):

1. ~/.config/sharemind
2. /etc/xdg/sharemind
3. /etc/sharemind

If your client.conf is in one of those directories, just executing sharemind-sql-client will work.
You can also supply the path to the configuration file with the --config-file (or -c) argument.

Before using SQL for the first time, you should run the following command to create tables
that SQL uses internally:

sharemind-sql-client --initbackend

To interpret SQL scripts pass the filenames as arguments to sharemind-sql-client:

sharemind-sql-client script1.sql script2.sql

If no filenames are supplied the client enters the read-eval-print loop (REPL).

4.3.3 Whitelisting

The sharemind-sql-client program declassifies the output of all SELECT queries and is not
safe.

To only allow specific SQL programs, execute them from a SecreC script. Using the SQL
module as a SecreC library is described in docs/secrec-tutorial.md. If the sql_server.sc
program is not installed then we rely on the same model as SecreC programs – whoever
compiles and installs a SecreC program on the server verifies its source code (including the
embedded SQL programs) prior to installing.

 D3.8 – Secure SQL Engine 19

5 Conclusion

This deliverable gave a quick overview of the solutions in the Secure queries layer of the
SafeCloud project. It also contains quick instructions on how to configure and run these
solutions, but more detailed information is available in other SafeCloud work package 3
deliverables5.

5 http://www.safecloud-project.eu/results/deliverables

http://www.safecloud-project.eu/results/deliverables

 D3.8 – Secure SQL Engine 20

6 References

[APACHE17c] Apache Omid (Optimistically transaction Management In Datastores)

 documentation. (https://omid.incubator.apache.org), 2017

[BLW08] Dan Bogdanov, Sven Laur, Jan Willemson. Sharemind: a framework for fast
privacy-preserving computations. In Proceedings of 13th European
Symposium on Research in Computer Security, ESORICS 2008, LNCS, vol.
5283, pp. 192-206. Springer, Heidelberg. 2008.

[BLR14] Dan Bogdanov, Peeter Laud, and Jaak Randmets. Domain-polymorphic

programming of privacy-preserving applications. In Proceedings of the
Ninth Workshop on Programming Languages and Analysis for Security,
PLAS’14, pages 53–65. ACM, 2014.

https://omid.incubator.apache.org/

