
 D3.7 - Secure Key Value Store	
 1

Secure Key Value Store
D3.7

Project reference No. 653884

December 2017

 D3.7 - Secure Key Value Store	
 2

Document information
Scheduled delivery 31.12.2017
Actual delivery 31.12.2017
Version 1.0
Responsible Partner INESC TEC

Dissemination level
Public

Revision history
Date Editor Status Version Changes
10.11.2017 João Paulo Draft 0.1 ToC
20.11.2017 João Paulo Draft 0.2 First Draft
25.11.2017 Francisco Maia Draft 0.3 Revision
26.11.2017 Rogério Pontes Draft 0.4 Revision
12.12.2017 Dorian Burihabwa Draft 0.5 Internal Revision
15.12.2017 Miguel Pardal Draft 0.6 Internal Revision
19.12.2017 João Paulo Final 1.0 Final Version

Contributors
João Paulo (INESC TEC)
Francisco Maia (INESC TEC)
Rogério Pontes (INESC TEC)

Internal reviewers
Miguel Pardal (INESC ID)
Dorian Burihabwa (UniNE)

Acknowledgements
This project is partially funded by the European Commission Horizon 2020 work
programme under grant agreement No. 653884.

More information
Additional information and public deliverables of SafeCloud can be found at
http://www.safecloud-project.eu

 D3.7 - Secure Key Value Store	
 3

Glossary of acronyms

Acronym Definition
IV Initialization Vector
MPC Multiparty Computation
OPE Order-Preserving Encryption
DET Deterministic Encryption
STD Standard Encryption
SQ1 Secure Queries 1
SQ2 Secure Queries 2
YCSB Yahoo Cloud Serving Benchmark
AES-GCM Advanced Encryption Standard – Galois Counter Mode
MPFR Multiple-Precision binary Floating-point library with correct Rounding

 D3.7 - Secure Key Value Store	
 4

Table of contents
Document	information	..	2

Dissemination	level	..	2

Revision	history	...	2

Contributors	..	2

Internal	reviewers	..	2

Acknowledgements	...	2

More	information	..	2

Glossary	of	acronyms	...	3

Table	of	contents	...	4

Executive	summary	...	6

1 Introduction	...	7

2 Background	..	11
2.1 Apache	HBase	..	11

2.1.1 HBase Architecture .. 12
2.1.2 HBase API ... 13
2.1.3 HBase Coprocessors .. 13

3 Secure	Key	Value	Store	Architecture	...	14

4 Solution	1:	Secure	processing	in	a	single	untrusted	domain	...	17
4.1 Overview	..	17
4.2 Architecture	...	18
4.3 Prototype	...	20

4.3.1 Setup and Usage .. 21

5 Solution	2:	Secure	processing	in	multiple	untrusted	domains	...	23
5.1 Overview	..	23
5.2 Architecture	...	23
5.3 Prototype	...	25

5.3.1 Setup and Usage .. 25

6 Conclusion	..	27

7 References	..	28

	

 D3.7 - Secure Key Value Store	
 5

List of Figures
Figure 1 - The SafeCloud framework. ... 6
Figure 2 – Overall architecture for secure queries. .. 8
Figure 3 - Secure Queries Solution 1 architecture. ... 9
Figure 4 - Secure Queries Solution 2 architecture. .. 10
Figure 5 - HBase map structure. .. 11
Figure 6 - HBase logical table view. ... 11
Figure 7 - HBase Architecture. ... 12
Figure 8 - Solutions 1 and 2 architectural components. ... 14
Figure 9 - CryptoWorkers in the trusted site. .. 16
Figure 10 - CryptoWorkers in the untrusted site. ... 17
Figure 11 - Solution 1 prototype architecture. ... 19
Figure 12 - HBase deployment configuration. .. 22
Figure 13 - YSCB deployment configuration. ... 22
Figure 14 - Solution 2 prototype architecture. ... 24
Figure 15 - HBase deployment configuration ... 26
Figure 16 - YCSB deployment configuration .. 26

 	

 D3.7 - Secure Key Value Store	
 6

Executive summary
The framework proposed by SafeCloud consists of three layers: secure communication,
secure storage, and secure queries. This deliverable is about the secure queries layer
that provides cryptographic constructions from the database storage layer to the end-
user processing requests. The overarching idea is to allow system developers to use the
techniques provided by these three layers in order to achieve application-specific
deployments. These deployments should surpass the state-of-the-art of existing tools
with respect to functionality, performance and security. We recall Figure 1, from the
general SafeCloud framework description.

Figure 1 - The SafeCloud framework.

In specific, this deliverable presents the final prototypes for the SafeCloud’s Secure Key
Value Store components. These are fundamental components for the Secure Queries
solutions 1 (Secure processing in a single untrusted domain) and 2 (Secure processing
in multiple untrusted domains) proposed in WP3. In fact, the SQL engines of both
solutions resort to the specific Key Value Store component to provide secure processing
capabilities for the WP5 use-cases.

The proposed architectures and implementations are modular, which facilitates the
integration of multiple cryptographic techniques in our solutions. In this deliverable, we
present concrete examples of how different encryption techniques (i.e., standard
encryption, deterministic encryption, order-preserving encryption) and multi-party
computation plus secret sharing are employed in our prototypes. Finally, we also detail
how the final prototypes can be configured and deployed for testing and production
purposes.

Solution: Vulnerability-tolerant	channels Protected	channels Route-aware	channels

Gives:
Tolerance	to	vulnerabilities

	in	components

Decreased	risk	of	fake	certificates;	
resistance	to	port	scans	and	enumeration	

of	network	infrastructure

Improved	confidentiality	with	warnings	
about	route	hijacking	and	making	harder	

access	to	communication

API: Extended	secure	socket	API Extended	secure	socket	API Extended	secure	socket	API

Provided	by: INESC-ID,	TUM INESC-ID,	TUM INESC-ID,	TUM

Solution: Secure	block	storage Secure	data	archive Secure	file	system

Gives:
Block	storage	on	individual	data	centers	
with	fine	control	over	data	placement

Entangled	immutable	data	storage	
for	protection	against	tampering	

and	censorship

Distributed	secure	file	storage	leveraging	
the	secure	block	storage

API: Key/value REST	(S3	or	similar) POSIX-like

Provided	by: UniNE,	INESC	TEC UniNE,	INESC	TEC UniNE,	INESC-ID

Solution: Secure	processing	in	a	
single	untrusted	domain

Secure	processing	in	
multiple	untrusted	domains

Secure	processing	in	multiple	untrusted	
domains	with	untrusted	clients

Gives:
Privacy	of	data	

against	the	server	
Privacy	of	data	

against	non-colluding	servers
Privacy	of	data	

against	non-colluding	servers	and	clients

API: SQL SQL SQL

Provided	by: INESC	TEC INESC	TEC,	Cyber Cyber

 SafeCloud architecture

Se
cu
re

st
or
ag
e

St
at
e	
of
	th
e	
ar
t:

En
cr
yp
te
d	
st
or
ag
e

St
at
e	
of
	th
e	
ar
t:

Cr
yp
tD
B

Se
cu
re

qu
er
ie
s

Se
cu
re
	

co
m
m
un
ic
at
io
n

St
at
e	
of
	th
e	
ar
t:

TL
S	
se
cu
re
	ch
an
ne
ls

 D3.7 - Secure Key Value Store	
 7

1 Introduction
The SafeCloud project structure considers three main layers: secure communication,
secure storage, and secure queries (or secure data processing). Secure communication
provides solutions for the establishment of secure channels that ensure confidentiality
and availability against adversaries that are more powerful than usually assumed.
Secure storage provides techniques for reliable storage, such as long-term
confidentiality, protection against file corruption, censorship or data deletion. Finally,
secure queries provide cryptographic constructions from the database storage layer to
the end-user data processing requests. The overarching idea is to allow system
developers to combine implementations by employing these three layers to achieve
application-specific deployments that choose different trade-offs between functionality,
performance and security.

In this document, we will focus on the secure data processing and, in particular, in one of
the key components that is used to implement the solutions of this layer: the Secure Key
Value Store. Namely, to provide detailed and updated descriptions of the final NoSQL
prototypes versions, we expand the descriptions of the architecture, privacy-preserving
techniques and initial prototype presented in the following deliverables:

• D3.1	-	Privacy-preserving	storage	and	computation	architecture.	This report
describes the architecture for the three solutions of the secure queries layer.	

• D3.2	 -	 Privacy-preserving	 storage	 and	 computation	 techniques.	 This
deliverable presents the different privacy-preserving techniques (e.g., multi-
party computation, standard encryption, deterministic encryption, order-
preserving encryption) that are used in the secure queries layer solutions.

• D3.3	 -	 Non-elastic	 Secure	 Key	 Value	 Store.	 This report presents the initial
prototypes of the Key Value Store component for Secure Queries solutions 1 and
2.

• D3.5	 -	 Secret-sharing	 and	 order-preserving	 encryption	 based	 private	
computation.	 This deliverable	 provides an extensive discussion about the
privacy-preserving techniques used in the secure queries layer while pointing the
different tradeoffs of each technique in terms of performance, security and
functionality.

• D3.6	-		Elastic	privacy-preserving	storage	and	computation.	This deliverable
discusses how elasticity is handled in each Secure Queries solution.

Recalling the Secure Queries layer architecture and description, three concrete solutions
were proposed in the context of the project, all of them following the overall
architecture depicted in Figure 2.

 D3.7 - Secure Key Value Store	
 8

Figure 2 – Overall architecture for secure queries.	

As observable in the figure, the architecture identifies two distinct sites where software
components will be deployed: a trusted and an untrusted one. In both, storage and
processing components can be deployed. Depending on the type of components chosen
and the configuration of the sites, three different solutions emerge:

• Secure	 Queries	 Solution	 1	 (SQ1): Secure processing in a single untrusted
domain

• Secure	 Queries	 Solution	 2	 (SQ2): Secure processing in multiple untrusted
domains

• Secure	 Queries	 Solution	 3	 (SQ3): Secure processing in multiple untrusted
domains with untrusted clouds

SQ1 and SQ21 aim at offering full SQL language support but require that most of the
query processing is done on the trusted site. SQ3 focuses on different workloads and use
cases, offering secure query processing mostly done on the untrusted sites but with
limited SQL support. Moreover, Solution 1 and 2 distinctly separate the type of
processing done in the trusted and untrusted sites. In fact, delving further in the
concrete architecture for the different solutions, there is a common design feature in
Solution 1 and 2. Both solutions rely on a key value store (NoSQL data storage system)
component that is independent from the query processing components (the NoSQL data
store components are delimited by the blue boxes in Figure 3 and Figure 4). Throughout
this document, our focus will be the key value store components of Solution 1 and
Solution 2, describing how this component is instantiated in a concrete implementation,
and how it can be set up and used.

1 In the document SQ1, SQ2 and SQ3 are also referred as Solutions 1, 2 and 3 respectively.

 D3.7 - Secure Key Value Store	
 9

Figure 3 - Secure Queries Solution 1 architecture.

It is important to notice that, as explained in deliverables D3.1 and D3.3, our
implementation of the secure key value components of Solutions 1 and 2 relies on
Apache HBase [APACHE17a], which is considered a mature NoSQL databases available
on the market. This decision was based both on the feasibility of solutions deployed over
such a widely used technology, as well as on the high level of experience and expertise
held by the SafeCloud’s partners with this system. Nevertheless, the proposed secure
framework architecture is generic to allow a possible integration with other NoSQL
databases e.g., Cassandra [APACHE17c], Redis [REDIS17].

The secure Key Value Store prototypes discussed in this document are designed while
having in mind with the requirements of MaxData’s CLINIdATA® healthcare application
for the following deployment scenarios:

• SaaS	 deployment: for small and medium-scale healthcare organizations that
want to reduce costs on infrastructure, CLINIdATA® will be offered using the
software- as-a-service (SaaS) model where all components are deployed on cloud
providers contracted by Maxdata.

• Hybrid	 deployment: for large healthcare organizations that want to reduce
costs on infrastructure but do not trust any cloud provider, CLINIdATA®
computation/processing will be installed on customer’s premises making use of
SafeCloud components to access data securely stored on untrusted cloud
providers contracted by healthcare organizations.

 D3.7 - Secure Key Value Store	
 10

Deliverable D5.2	-	Design	and	requirements,	Maxdata	SafeCloud-based	healthcare	
platform describes each of these cloud deployment scenarios in more detail, including
the way CLINIdATA® will leverage the SafeCloud framework to achieve the desired
goals.

Figure 4 - Secure Queries Solution 2 architecture.

The software components described in this deliverable are available for demonstration
upon explicit request. These components are not open source software to be inline with
the project’s exploitation plan. To get more information and place requests please go to
http://www.safecloud-project.eu.

The remainder of the document is structured as follows. We begin by providing a
background on Apache HBase in Section 2. In Section 3 we describe the high-level
architecture and design decisions for our Secure Key-Value Store solutions. We then
instantiate this generic design as Solution 1 in Section 4 and as Solution 2 in Section 5.
We conclude the document providing some remarks regarding these final prototypes.

 D3.7 - Secure Key Value Store	
 11

2 Background
2.1 Apache HBase
Apache HBase is a distributed, scalable and open-source non-relational database
[APACHE17a]. Inspired by Google's BigTable [CDG+08], it can be thought of as a multi-
dimensional sorted map or table. The map is indexed by a tuple composed by row key,
column family, column qualifier and timestamp, which is used as a key for a given value,
as illustrated in Figure 5.

Figure 5 - HBase map structure.	

Row keys might be associated with an unbounded and dynamic number of qualifiers
(columns) grouped into column families (groups of columns). As an example, in an
HBase table storing information of a given company’s employees, “employee” may be a
column family and the employee’s “name”, “age”, “salary” can be distinct column
qualifiers grouped by that column family. Each qualifier is then identified by
concatenating its column family's name and qualifier, i.e, family:qualifier. A number of
rows form a table, and each row may specify a distinct number of column families. Both
the row key and the associated values are arbitrary, non-interpreted arrays of bytes.
Data is maintained in a lexicographic order: first by row key, second by column’s family
name followed by qualifier and, in descendent order, by timestamp.

Figure 6 - HBase logical table view.	

A logical view of an HBase table is presented in Figure 6. In this view, each cell (value) is
the intersection of a row key, a column family (cf) and a column qualifier (q).

 D3.7 - Secure Key Value Store	
 12

Additionally, timestamps (ts) may be used to have a multi-dimensional table, since it
means that several versions may exist simultaneously. From this point onwards, we will
use the term “row" to denote a single row according to this logical view. Typically,
column families (cf) are well-defined and must be created before data can be stored. In
contrast, qualifiers are created at runtime by inserting new key-value pairs.

2.1.1 HBase Architecture

Figure 7 depicts the HBase architecture and its main components.

Figure 7 - HBase Architecture.

An HBase	 client component is provided so that applications are able to perform
queries, following the HBASE API, to the HBase backend (combination of HBase Masters
and Region Servers). Succinctly explained, the HBase client contacts the Master
component to know what Region Servers are responsible for storing the rows for a
specific request. After knowing such information, the HBase client issues the request to
the appropriate Region Servers that reply back with the query results.

The HBase	 Master, is responsible for redirecting HBase client requests to the
appropriate Region Servers, where the keys being stored/retrieved are kept. The HBase
Master may be deployed in a primary/secondary replication mode to ensure a
fault-tolerant design via redundancy.

Rows in a table are partitioned horizontally2 and each partition is called a Region. After
partition, resulting regions can be distributed across several nodes named

2 Horizontal partitioning divides a table into multiple ones. Each table then contains the same number of
columns, but fewer rows. In HBase, the rows of a table can be stored (partitioned) in different Region Servers.

HBase
Region Server

HBase Client

HBase
Region Server

Region 1 Region 3

Region 4Region 2

Master
HBase Master

HDFS

 D3.7 - Secure Key Value Store	
 13

RegionServers that are responsible for serving one or more regions. All columns and
values of a given key (row) are available in the same Region Server. Regions Servers
store and retrieve Regions’ data using the Hadoop Distributed File System (HDFS)
[APACHE17b]. Ideally, each Region Server is collocated in the same machine with the
HDFS data node serving the data for the Regions belonging to that Region Server. This
option promotes data locality and allows Regions Servers to have a more efficient access
to their data. In addition, this capability of partitioning data horizontally across
different Region Servers provides HBase with a scalable design. In other words, by
launching additional Region Servers and partitioning data across these, it becomes
possible to serve requests from an increasing number of clients while maintaining the
NoSQL database’s throughput and latency.

2.1.2 HBase API

HBase exposes a set of operations for data access that is quite similar to the one used in
other key-value data stores. This interface is provided by the HBase client component
and encompasses the following operations:

• GET - Get key-value pairs of a given row, identified by row key;
• PUT - Insert or update a key-value pair for an existing or a new row;
• SCAN - Get all key-value pairs for a specific range of rows;
• DELETE - Remove one or more key-value pairs belonging to one or more rows;

Note that, for GET and PUT requests, it is only possible to retrieve or update specific
column qualifiers if the requests specify the row key, column family and column
qualifier being targeted. Additionally, HBase provides filter operations for both GET and
SCAN requests. Namely, it is possible to request several key-value pairs with a scan
request and then to filter only the key-values where a specific column has a certain
value. As an example, if a company stores in HBase information about its employees, it is
possible to query all employees with identification numbers (row key) between number
100 and 1000, and then to filter the request to only retrieve the entries for employees
that were born in 1986 (assuming that age is a column qualifier).

2.1.3 HBase Coprocessors

The computation done at the HBase Backend can be extended with novel functionalities,
without modifying the core implementation of HBase, by using the HBase coprocessor
mechanism. Coprocessors can be seen as plugins that are implemented and added to
HBase backend extending its capabilities [APACHE12].

Two types of coprocessors are available: observers and endpoints. Observer
coprocessors bind a piece of code to system events. For instance, they may be used to
add access control when a client requests a GET operation. Furthermore, endpoint
coprocessors can also extend the client-server protocol communication with arbitrary
remote code execution through Remote Procedure Calls (RPC). This kind of
coprocessors is similar to stored procedures of traditional relational databases.

For some of the SafeCloud solutions, observer and endpoint coprocessors are essential
because additional computation must be done at the HBase backend. For instance,

 D3.7 - Secure Key Value Store	
 14

multi-party computation protocols (MPC) require performing computation over secrets
stored at the HBase backend [PMP+16]. As further explained in Deliverables 3.1, 3.2 and
3.5, this computation is essential for supporting GET and SCAN requests when row
identifiers are protected (private). Moreover, MPC requires computing over stored
secrets and exchanging the computation results with other parties (HBase clusters),
which also needs to resort to coprocessors. To sum up, when a GET request is issued by
the client, coprocessors will be key for performing the additional computation and
exchange results across parties, before replying back to the client. Finally, coprocessors
are also required for SafeCloud SQ1 solution when the cryptographic techniques being
used require maintaining some sort of index at the HBase backend in order to do
computation over private data. The access to the index and computation to process a
request also requires coprocessors [PRZ+11]. Without this mechanism, we would have
to change the core implementation of HBase backend components, which would
significantly increase the implementation and maintenance costs of our solution.

3 Secure Key Value Store Architecture
In order to provide usable and manageable solutions we designed our solution in such a
way that completely avoids changing the Apache HBase core implementation. This
allows our system to be compatible with evolving versions of HBase and allows its own
development to be independent of HBase releases or roadmap. Additionally, it also
renders the process of changing the underlying system from HBase to another NoSQL
store easier. To achieve this design, we base our approach in software components that
can be placed in the middle of the normal HBase workflow and that actively modify such
workload transparently from the perspective of the client application and HBase itself.
These components are deployed both in the untrusted and the trusted sites, and are
named CryptoWorkers.

Figure 8 - Solutions 1 and 2 architectural components.	

In Figure 8 we depict the organization of the different components that are used for the
secure key value stores prototypes supporting SQ1 and SQ2 solutions. It is important to

 D3.7 - Secure Key Value Store	
 15

note that, for Solution 2 (secure multi-cloud database server), the components of the
untrusted deployment are instantiated multiple times to account for the multiple
untrusted domains that are considered in such solution. These details will be addressed
in subsequent sections. For now, we briefly describe the design of the CryptoWorkers.

From a high-level perspective, CryptoWorkers are responsible for two tasks:

• Trusted	site: CryptoWorkers transform plain NoSQL operations in secure NoSQL
operations according to the requested privacy technique;

• Untrusted	site: CryptoWorkers add extra behavior to allow data processing over
encrypted data. Depending on the privacy technique in use, this may require the
addition of extra communication steps.

It is important to notice that, in our prototype, HBase is the NoSQL database and
CryptoWorkers currently take advantage of its specific characteristics such as co-
processors. However, the software itself does not depend on HBase, making our design
extensible and potentially compatible with other NoSQL databases. This HBase-agnostic
approach allows general cryptographic mechanisms to overlay the data storage and
management in a close to black-box way, which can afterwards be instantiated and
optimized according to the specific circumstances in which they are deployed, e.g. in our
case employing co-processors for performing general remote computations.

In Section 2 we have detailed the HBase API that is composed of three main operations:
PUT, GET and SCAN. As illustrated in Figure 9, the basic functionality of the
CryptoWorker is to translate those plain data requests into secure	 requests. Secure
requests are encoded according to some associated cryptographic technique (e.g.,	
standard encryption, deterministic encryption), so that when they are transmitted to
some untrusted (potentially adversarial) site, the required security guarantees will hold.
The encryption techniques used for protecting a specific request are defined in a
configuration file. For instance, for a certain GET operation issued in the trusted
deployment, the CryptoWorker will issue one or more concrete HBase operations (via
the HBase Client library) to the HBase backend running on the untrusted deployment.
That set of operations will ensure that such GET operation is made with specific data
privacy guarantees according to the CryptoWorker configuration, which specifies the
protocol encoding the data.

 D3.7 - Secure Key Value Store	
 16

Figure 9 - CryptoWorkers in the trusted site.	

Each CryptoWorker on the trusted deployment is responsible for a specific workflow
that allows the translation of plain requests to secure requests and their correspondent
replies with respect to a specific cryptographic technique or set of techniques. In order
to manage the workflow, each cryptographic technique employs a set of operations.
These operations will take care of requests in a secure fashion, involving three general
sequential operations: a client-side encode, a server-side operation, and a client-side
decode. Each cryptobox offers a set of cryptographic implementations that are useful in
certain privacy workflows. In other words, a cryptobox can be seen as a black box that
offers a specific encryption scheme. For instance, in order to provide standard
encryption over HBase it is necessary that a plain request content is encrypted using
AES-GCM. Consequently, a SafeCloud standard encryption cryptobox is made accessible
by CryptoWorkers.

 D3.7 - Secure Key Value Store	
 17

Figure 10 - CryptoWorkers in the untrusted site.

Similarly, in the untrusted domain, CryptoWorker co-processors provide additional
behavior that allows the system to reply according to the data privacy level required
(Figure 10). For example, CryptoWorkers that use techniques such as multi-party
computation provide additional computation over encoded data and communication
steps that must be added to the untrusted NoSQL backend in order to comply with the
protocols. The specific operations used and the different configurations that are
considered in the current design of the system are described in detail in deliverable D3.5
(Sections 2 to 4).

In the context of the present document, it suffices to state that HBase itself remains
unmodified in our design and that our system simply adds functionality to the HBase
system by translating typical NoSQL operations to operations that are data
privacy-aware. A more in-depth discussion of the security techniques, their deployment
within SafeCloud, and the associated security guarantees is provided in Deliverable
D3.5. In the following sections, we focus on the actual system prototype and how it can
be installed, run and tested.

4 Solution 1: Secure processing in a single untrusted domain
4.1 Overview
Solution 1 of the secure processing layer of SafeCloud focuses on providing secure data
processing when a single untrusted domain is used. This corresponds to the typical use
of a single cloud provider for data storage and processing. As noted previously, this
solution relies on a secure key value store component that is composed of both trusted
and untrusted deployment sub-components.

 D3.7 - Secure Key Value Store	
 18

In this Section, we describe the prototype for the HBase secure key value store. This
prototype was designed to allow for the configuration of the different privacy
preserving techniques described in D3.5. These techniques include order preserving
encryption, deterministic and standard encryption.

4.2 Architecture
The architecture of the final prototype for Solution 1 follows the originally planned
architecture. In terms of implementation, it supports all the techniques mentioned in the
previous WP3 deliverables (i.e, standard encryption, deterministic encryption, and
order-preserving encryption). The architecture was designed with strong modularity
concerns, which allows the prototype to be ready for quick integration with the SQL
Engine components developed along in the project. In Figure 11 we present the concrete
architecture for the prototype.

The prototype follows the architecture presented in the previous sections and, as
described previously, uses Apache HBase. The SafeCloud CryptoWorker code works as
an extension of the HBase client library and, on the server side, runs in co-processors at
each HBase Region Server. Looking at the specific case of solution 1, we consider only
one remote site with a single HBase deployment, which in turn can hold multiple Region
Servers. Region Server management is left to HBase itself and SafeCloud co-processors
only extend their behavior.

Figure 11 depicts the basic workflow for the deterministic encryption case that serves as
an illustrative example of how the solution 1 prototype works. Note however that the
configuration file, present at the client premises, can specify different combinations of
the supported cryptographic techniques for protecting specific database values. As an
example, suppose the database is holding sensitive information regarding the
appointments of patients for a given Hospital. In order to keep the Date of the
appointments private while still being able to query all the appointments for a specific
period of time, one can resort to order-preserving encryption as the protection
technique for this Date field. On the other hand, for searching the appointments of a
specific patient by her Name, the Name database field can be protected with
deterministic encryption. The combinations of cryptographic techniques and the
database fields to which these are applied to, are specified in a configuration file.

 D3.7 - Secure Key Value Store	
 19

Figure 11 - Solution 1 prototype architecture.	

Going back to the example depicted in Figure 11, upon a request, the CryptoWorker,
configured to use deterministic encryption, knows it has to instantiate a deterministic
encryption cryptobox to deal with cryptographic operations. It also knows that requests
contain plain (unencrypted) values that do not make any sense to the HBase server,
which only contains encrypted data. Accordingly, the CryptoWorker uses the cryptobox
to cipher the request values in order to be able to issue secure operations to the remote
HBase server. Because we are using deterministic encryption, equality operations are
still valid over the encrypted data. As a consequence, the GET operation can still be
performed normally and no extra server-side behavior is needed. However, the scan
operation requires relative order to be maintained in the encrypted data, which is not
the case for deterministic encryption. In fact, this operation requires all data that could
possibly answer the scan operation to be retrieved and processed in the trusted site.
Observe that this specific instantiation of deterministic encryption still follows the more
abstract API proposed in Deliverable D3.5, since there is an initial step of computation
on the client-side encrypting data, a step of server-side operations for storing/retrieving
data, and a final step for decoding upon obtaining encrypted values. There is no
extended behavior deployed on the server side (at the coprocessors) that can prevent
this overhead without compromising deterministic encryption privacy levels. This will

 D3.7 - Secure Key Value Store	
 20

significantly impact the performance of the prototype and such impact is different when
using different techniques, as we will see further on. This substantiates our initial claim
that there is no solution that fits all cases. Compromises between privacy levels and
performance must be taken into account when choosing a specific privacy technique or
set of techniques.

In terms of scalability, as further discussed in deliverable Deliverable D3.6, SQ1
leverages HBase horizontal partitioning to scale for deployments with an increasing
number of clients. The encryption techniques supported by our prototype do not have
an impact in the original partitioning design, which allows the solution to inherit the
scalability of NoSQL solutions.

The workflow presented for Solution 1 is somewhat straightforward, which will get
gradually more complex as CryptoWorkers have to deal with more convoluted
workflows, as detailed in deliverable D3.5. An example of this is the CryptoWorker
deployed in the prototype for Solution 2.

4.3 Prototype
The final NoSQL prototype of SQ1 follows the architecture described in the previous
section and, as one of the main concerns, it follows a modular and flexible approach
where several cryptographic techniques can be easily integrated in the future.

In more detail, the final prototype contemplates three distinct CryptoBoxes. The
standard encryption CryptoBox relies on OpenSSL [OPENSSL17] cryptographic library.
The deterministic encryption is implemented in accordance to the construction
described in [RS07]. Finally, the Order-Preserving Encryption CryptoBox is
implemented following the design of [BCL+09] and it relies on OpenSSL and MPFR
[FHL+07], a multiple-precision floating-point library. The implementation of these
encryption techniques allows supporting the vanilla HBase operations i.e., PUT, GET,
SCAN, DELETE and Filters.

During the experimental evaluation of the prototype, we noticed that decoding
information encrypted with order-preserving encryption has a significant penalty in the
latency and throughput of HBase operations. As such, we propose an optimization that
trades additional storage space for a considerable performance improvement. In our
system, every column qualifier encrypted with order-preserving encryption will be
accompanied by the same value protected with standard encryption. Then, when a value
protected with order-preserving encryption must be retrieved by the client, instead of
decoding the order-preserving encryption, the CryptoWorker module decodes the value
protected with standard encryption instead, which is considerably faster. For instance,
decoding a 14 byte length ciphertext with order-preserving encryption takes 567.434μs
and with standard encryption takes 5.884μs. Moreover, for a 256 byte ciphertext, order-
preserving encryption takes 2.861s to decode while standard encryption takes 8.028μs.
As this optimization still contemplates the storage of data encrypted with order-
preserving encryption, filtering operations such as equality or range queries are also
supported.

Note that the main advantage of our architecture and implementation is that it can be
easily integrated with other techniques such as searchable encryption. Implementation-

 D3.7 - Secure Key Value Store	
 21

wise, the supported techniques do not require any additional computation at the HBase
backend (co-processors) since the CryptoWorker	deployed at the trusted infrastructure
is responsible for ciphering and deciphering the data as well as doing the additional
computation required to support the full HBase API. However, for supporting
cryptographic techniques that require state/computation at the HBase backend, e.g.
maintaining some obfuscated function for comparison, we can employ co-processors in
a similar fashion to the approach described in Solution 2, where this mechanism is
necessary.

4.3.1 Setup and Usage

SQ1 NoSQL prototype is currently installable through docker containers [DOCKER16].
Docker containers are isolated components that possess a configuration file where it is
detailed what are the software packages that must be installed and how to deploy these
components. This allows having a stable “recipe” that establishes a docker setup for
automatically setting up our SafeCloud solution.

In our docker containers we have the required configuration to install HBase
components, our HBase client supporting the CryptoWorker, and all the necessary
dependencies. Currently we have two docker images relevant to this solution in the
docker public registry. The first image is an HBase backend on a standalone
configuration. This configuration deploys all the necessary HBase components on a
single server3. The second image contains the necessary dependencies to use our HBase
Client, plus our model for the CryptoWorker.

Finally, to perform an evaluation of our proposal, we integrated our final prototype
(M28) with the Yahoo Cloud Serving Benchmark (YCSB) [YCSB17], a widely used
framework to evaluate the performance of different NoSQL databases. For these
experiments, we chose workloads that were inspired on the Health WP5 use-case that
will leverage SQ1. Briefly, the workload mimics a typical Hospital Database that must
store query information about patients and their medical appointments. Most of this
information contains sensitive information about patients (e.g., name, address, date of
the appointments). All this information is protected with the appropriate techniques
(i.e., standard encryption, deterministic encryption and order-preserving encryption) in
a way that it is possible to query such data without disclosing any sensitive information
from it, even if the infrastructure where the NoSQL database is deployed becomes
compromised. The experimental results show that by combining different cryptographic
techniques, it is possible to have a practical solution that balances the desired
functionality, performance and security for different applications. In average, when
compared with a baseline HBase deployment without any data privacy guarantees, our
prototype introduces less than 15% of performance overhead across the different
realistic workloads tested. Further details on these experiments are discussed in
[MPP+17].

SafeCloud docker containers can be deployed either on a distributed cluster or on a
single machine. As there are a variety of docker orchestration tools that can be used to
deploy containers in a distributed setting, this Section only presents the steps required

3 This setup is used for demonstration purposes as it allows the evaluation of our solutions in a more
contained and easy to run setup. Production-ready versions are available upon explicit request

 D3.7 - Secure Key Value Store	
 22

to do a local deployment. A local deployment only requires an operating system with a
docker engine and the deployment steps required are the same for every platform.
Nonetheless, the process of installing a docker engine also changes depending on the
operating system. As this process is beyond the scope of this document, we refer the
installation process to the docker official website documentation [DOCKER17]. An
additional tool, docker-compose [DOCKERC17], is also required to simplify the
deployment process. Such tool allows defining in what machines the SafeCloud
components will be deployed and the necessary network configuration so that these
different components can interact with each other.

Besides the referred essential tools, two configuration files are required. Figure 12 and
Figure 13 display the exact content that each file must have. These files incorporate the
required configuration to deploy the two docker images on a local server.

baseline:
 image: safecloud/hbase:standalone
 net: ncwork
 hostname: baseline
 container_name: baseline

Figure 12 - HBase deployment configuration.

ycsb:
 image: safecloud/ycsb:sq1
 net: ncwork
 hostname: ycsb
 container_name: ycsb

Figure 13 - YSCB deployment configuration.

To deploy and test our current demonstrator the following steps are necessary:

• Write the contents of Figure 12 to a new file hbase.yml
• Write the contents of Figure 13to a new file ycsb.yml
• Create a new docker network named ncwork with the following command:

docker	network	create	ncwork
• Deploy the hbase backend with the following command:

 docker-compose	-f		hbase.yml	up
• Deploy the ycsb image with the following command:

docker-compose	-f	ycsb.yml	up

After executing these commands the YCSB benchmark starts issuing requests to the
database and, after completing the benchmark, an output with the achievable latency
and throughput for requests is displayed.

 D3.7 - Secure Key Value Store	
 23

5 Solution 2: Secure processing in multiple untrusted domains
5.1 Overview
Similarly to SQ1, this solution is based on a secure Key Value Store backend. However,
due to the different security model of multi-party protocols that defines SQ2, the system
architecture requires multiple untrusted domains and an additional discovery
service. Nevertheless, the high-level approach taken is similar to the one previously
described for SQ1, i.e., we do not modify HBase itself but rather externally add the
necessary behavior via the appropriate embedding mechanisms.

For the particular case of SQ2, we consider three independent untrusted clusters, each
with a separate HBase deployment. The added behavior enables each HBase instance to
provide secure operations by following multi-party computation algorithms. Moreover,
this entails the requirement for communication capabilities between the different
entities since this is a fundamental necessity for general multi-party protocols.

In the following Sections, we present the prototype for the multi-party computation
HBase solution.

5.2 Architecture
The concrete architecture for this second final prototype is presented in Figure 14. As
expected, this prototype considers three different remote deployments, where three
different HBase clusters are deployed. Supporting distributed HBase clusters with
multiple Region Servers that play the role of a party in multi-party protocols requires an
additional discovery	 service. This service supports dynamic and scalable clusters with
different configurations as it enables region servers of a cluster to learn with which
region servers from the other clusters they should communicate (i.e., the ones that have
the corresponding data secrets) and correctly evaluate an MPC protocol. This discovery
service can be deployed in any one of the clusters and is transparent to the client. More
details on how this discovery service is key for enabling the scalability of the NoSQL
prototype are available in Deliverable D3.6.

A client-side CryptoWorker, at the trusted site, is instantiated and configured with the
appropriate multi-party computation parameters and workflow. In contrast with the
previous prototype, the backend-side CryptoWorkers	that take part in the MPC are now
responsible for request processing and engage in a specific workflow to be able to
address the data requests from the client. In particular, they follow multi-party
computation protocols that require communication between the three CryptoWorkers
deployed in the three different untrusted sites.

 D3.7 - Secure Key Value Store	
 24

Figure 14 - Solution 2 prototype architecture.	

Briefly, a GET operation is encoded into three different operations to be issued to the
three independent backends. When a backend-side CryptoWorker identifies such
request as a multi-party computation request, it starts a specific set of procedures to
process it. This typically includes querying the local HBase instance for data,
communicating with the discovery service to identify which region server is handling
the same request, then connect to the other backend-side	 CryptoWorkers and, finally,
replying to the trusted site. The client-side CryptoWorker processes the answers and
translates them into a plain data reply to the client application.

The computation and communication steps necessary for this workflow are thorough
and subtle, since they depend on the underlying complex cryptographic mechanisms
that allow for general secure computation of functionalities over several participants.
For a more in-depth overview of MPC protocol details, please refer to deliverable D3.5.

 D3.7 - Secure Key Value Store	
 25

5.3 Prototype
The final demonstrator of Solution 2 follows the architecture described in the previous
section. In more detail, the prototype supports multi-party computation over secret
shared data by implementing CryptoWorkers both at the trusted domain (HBase client)
and untrusted domain (HBase coprocessors). The MPC CryptoBox used by these
CryptoWorkers is written in Java and is a tailored implementation of Sharemind
protocols, thus leveraging previous knowledge of the CYBERNETICA project partner.
The communication done across CryptoWorkers in different HBase clusters is done by
resorting to a middleware component implemented using Java NIO.

The implementation of this technique allows supporting the vanilla HBase operations
i.e., PUT, GET, SCAN and DELETE and filters. Furthermore, unlike the initial
implementation, this version already supports concurrent client requests and batch
operations. Note that the architecture used in this prototype is based on the one used for
SQ1 so it is still highly modular and, any other security techniques that resort to multiple
untrusted domains could be integrated with Solution 2.

5.3.1 Setup and Usage

The deployment of the NoSQL component of SQ2 follows a very similar approach to SQ1.
It uses the same tools and technologies. However, the docker images and configurations
are updated to reflect the multiple backend architecture of this solution. Three instances
of the HBase backend components have to be instantiated with different configurations.
As such, Figure 14 contains the configuration file that must be used to deploy three
HBase clusters, each with an integrated CryptoWorker module, which are named
cluster1, cluster2 and cluster3. To deploy the YCSB benchmark and HBase client plus
CrytpoWorker	bundle, only a minor detail must be changed. Instead of using the tag aes,
the tag mpc must be used instead, as shown in Figure 15.

To deploy this solution4, it is assumed that a docker engine and the docker-compose tool
are installed on a single machine as in the deployment of solution 1. Again, this section
only presents the steps required to do a local deploy. The necessary commands are:

• Write the contents of Figure 11 to a new file hbase.yml
• Write the contents of Figure 12 to a new file ycsb.yml
• Create a new docker network named ncwork with the following command:

docker	network	create	ncwork
• Deploy the hbase backend with the following command:

 docker-compose	-f		hbase.yml	up
• Wait around 40 seconds for the MPC cryptoworkers to establish a connection and

for the instances to be operational.
• Deploy the ycsb image with the following command:

docker-compose	-f	ycsb.yml	up

After executing these commands, the YCSB benchmark starts issuing requests to the
prototype and after completing them, the benchmark should produce a final output with

4 This setup is used for demonstration purposes as it allows the evaluation of our solutions in a more
contained and easy to run setup. Production-ready versions are available upon explicit request.

 D3.7 - Secure Key Value Store	
 26

the throughput and latency metrics for the NoSQL operations issued. Preliminary results
for this prototype are further detailed in deliverable D3.5 and in [PMP+16].

cluster1:
 image: safecloud/untrusted:latest
 ports:
 - "60010:60010" # Master info web portal port
 - "60000:60000" # Master port for client to connect
 - "16262:16262" # Zookeeper port for the client to connect
 net: ncwork
 hostname: cluster1
 container_name: cluster1
 command: "-s 0 6262 cluster2 6262 cluster3 6262 60000 16262"

cluster2:
 image: safecloud/untrusted:latest
 ports:
 - "60020:60010"
 - "61000:61000"
 - "17262:17262"
 net: ncwork
 hostname: cluster2
 container_name: cluster2
 command: "-s 1 6262 cluster3 6262 cluster1 6262 61000 17262"

cluster3:
 image: safecloud/untrusted:latest
 ports:
 - "60030:60010"
 - "62000:62000"
 - "18262:18262"
 net: ncwork
 hostname: cluster3
 container_name: cluster3
 command: "-s 2 6262 cluster1 6262 cluster2 6262 62000 18262"

Figure 15 - HBase deployment configuration

ycsb:
 image: safecloud/ycsb:sq2
 net: ncwork
 hostname: ycsb
 container_name: ycsb

Figure 16 - YCSB deployment configuration

 D3.7 - Secure Key Value Store	
 27

6 Conclusion
Along this document we have described the final prototype versions for the NoSQL
components of Secure Queries Solutions 1 and 2. Although two different prototypes are
described, both are based on a common secure framework architecture, which not only
enables code reuse, but also allows easier extensions to each prototype. For example,
prototype extensions with novel cryptographic techniques or even secure frameworks
(e.g., Intel SGX [INTEL17]).

Both prototypes are part of a bigger picture and were already integrated with other
components, such as query engines and transactional management systems, in order to
provide full functionality. This is key for achieving final products that will run the
full-fledged use-cases detailed in WP5.

Currently, both prototypes are being further tested and optimized to improve both
performance and scalability. Such optimizations will allow reaching the non-functional
requirements of the use cases.

 D3.7 - Secure Key Value Store	
 28

7 References

[APACHE17a] Apache HBase Team (2017). “Apache HBase ™ Reference Guide”.

(https://hbase.apache.org/book.html)
 [APACHE17b] Apache Hadoop documentation (2017).

(https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
hdfs/HdfsUserGuide.html)

[APACHE17c] Apache Cassandra documentation (2017).
(http://cassandra.apache.org)

[APACHE12] Apache HBase Team (2012). “Coprocessor Introduction”.
(https://blogs.apache.org/hbase/entry/coprocessor_introduction)

[BCL+09] Boldyreva A, Chenette N, Lee Y, O’Neill A.“Order-preserving symmetric
encryption,” in Int. Conference on Advances in Cryptology: The Theory and
Applications of Crypto- graphic Techniques, 2009.

[CDG+08] Chang F, Dean J, Ghemawat S, Hsieh W, Wallach D, Burrows M, Chandra T,
Fikes A, and Gruber R. Bigtable: A Distributed Storage System for
Structured Data. ACM	Trans.	Comput.	Syst. 26, 2, Article 4, 26 pages, 2008.

[DOCKER17] Docker containers web page (2017).
(https://www.docker.com)

[DOCKERC17] Docker-Compose web page (2017).
(https://docs.docker.com/compose)

[FHL+07] Fousse L, Hanrot G, Lefèvre B, Pélissier P, Zimmer-mann P. “Mpfr: A
multiple-precision binary floating-point library with correct rounding,”
ACM Transactions on Mathematical Software, vol. 33, no. 2, p. 13, 2007.

[INTEL17] Intel SGX web page (2017).
(https://software.intel.com/en-us/sgx)

[MPP+17] Macedo R, Paulo J, Pontes R, Portela B, Oliveira T, Matos M, Oliveira R. “A
Practical Framework for Privacy-Preserving NoSQL Databases”. 36th IEEE
International Symposium on Reliable Distributed Systems (SRDS), 2017.

[OPENSSL17] Openssl web page (2017).
(http://www.openssl.org/)

[PMP+16] Pontes R, Maia F, Paulo J, Vilaça R.“SafeRegions: Performance Evaluation of
Multi-party Protocols on HBase”. 2016 IEEE 35th Symposium on Reliable
Distributed Systems Workshops (SRDSW), 2016.

 [PRZ+11] Popa R, Redfield C, Zeldovich N and Balakrishnan H. “Cryptdb: protecting
confidentiality with encrypted query processing”. In Proceedings	 of	 the	
Twenty-Third	ACM	Symposium	on	Operating	Systems	Principles, pages 85-
100. ACM, 2011.

[REDIS17] REDIS database web page (2017).
(https://redis.io)

[RS07] Rogaway P, and Shrimpton T. “Deterministic authenticated encryption,” in
Advances in Cryptology–EUROCRYPT, vol. 6, 2007.

[YCSB17] YCSB benchmark repository (2017).
(https://github.com/brianfrankcooper/YCSB)

