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Executive	summary	
The	 framework	 proposed	 by	 SafeCloud	 consists	 of	 three	 layers:	 secure	 communication,	
secure	 storage,	 and	 secure	 queries.	 Secure	 communication	 provides	 schemes	 for	 the	
establishment	 of	 channels	 amongst	 protocol	 participants	 employing	 technologies	 for	
tamper-resistant	channels,	ensuring	confidentiality	and	availability.	Secure	storage	provides	
techniques	 for	 reliable	 storage,	 such	 as	 long-term	 confidentiality,	 protection	 against	 file	
corruption	or	data	deletion.	Finally,	secure	queries	provide	cryptographic	constructions	from	
the	database	storage	 layer	to	the	end-user	processing	requests.	The	overarching	 idea	 is	 to	
allow	system	developers	 to	use	 the	 techniques	provided	by	 these	 three	 layers	 in	order	 to	
achieve	 application-specific	 deployments.	 These	 deployments	 should	 surpass	 the	 state-of-
the-art	of	existing	 tools	with	 respect	 to	 functionality,	performance	and	 security.	We	 recall	
Figure	1,	from	the	general	SafeCloud	framework	description.	
	

	
Figure	1:	The	SafeCloud	framework.	

	
	
The	 Secure	 queries	 layer	 contemplates	 three	 different	 solutions,	 each	 assuming	 different	
trust	 models,	 deployment	 models,	 privacy-preserving	 techniques,	 and	 consequently,	
different	tradeoffs	in	terms	of	performance,	dependability	and	security.	
This	 deliverable	 is	 concerned	 with	 the	 elasticity	 of	 the	 three	 distinct	 solutions.	 In	 other	
words,	the	ability	to	scale-up	or	down	the	resources	used	by	each	of	the	solutions,	according	
to	the	performance	and	availability	requirements	of	the	applications	using	these,	is	a	crucial	
property	that	is	nowadays	present	in	state-of-the	art	commercial	cloud	services.	
The	 document	 presents	 how	 elasticity	 is	 achieved,	 for	 each	 of	 the	 three	 solutions,	 by	
recapping	 the	 main	 components	 present	 in	 each	 architecture	 and	 specifying	 in	 a	 per-
component	basis	 the	needed	 steps	 for	achieving	an	elastic	and	 fault-tolerant	deployment.	
This	 discussion	 takes	 into	 account	 the	 impact	 in	 fault-tolerance	 and	 elasticity	 for	 the	
different	 privacy-preserving	 techniques	 that	 each	 solution	 supports	 and	 how	 the	 overall	
architectures	are	able	to	scale-up	or	down	according	to	demand.	
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1 Introduction	
The	SafeCloud	secure	queries	architecture	has	three	solutions	as	shown	in	Figure	2:	
	

	
Figure	2:	Secure	Queries	Solutions.	

	
For	 each	processing	 solution,	 a	 detailed	 architecture,	 the	prototypes	 and	 the	different	
sets	 of	 supported	 privacy-preserving	 techniques	 have	 been	 described	 in	 previous	
deliverables	D3.1	to	D3.5.	The	different	architectures	and	privacy-preserving	techniques	
used	 in	 each	 solution	 assume	 different	 trust	models	 and,	 as	 a	 consequence,	 different	
privacy	guarantees	emerge	for	each	solution.		
	
All	processing	solutions	are	designed	to	be	deployable	in	distributed	infrastructures	and	
to	support	thousands	to	millions	of	clients.	For	this,	each	design	must	be	able	to	scale	up	
in	 terms	 of	 resources	 (servers,	 disks,	 etc)	 as	 the	 number	 of	 clients	 increases.	 This	
property	 is	 crucial	 to	 maintain	 the	 desired	 quality	 of	 service	 (performance,	
dependability).		
	
Another	important	property	to	be	contemplated	in	the	SafeCloud	processing	stack	is	the	
ability	to	decrease	the	computational	resources	as	the	load	in	the	system	decreases.	For	
most	applications,	there	are	off-peak	periods	where	the	load	in	the	system	is	expected	to	
be	 smaller.	 Reducing	 the	 computational	 resources	 being	 used	 while	 maintaining	 the	
desired	quality	of	service	allows	a	more	cost-efficient	approach.		
	
This	 ability	 to	 scale-up	 and	 down	 computational	 resources	 according	 to	 the	 load	 of	
applications	is	a	fundamental	characteristic	of	cloud	services	that	will	be	contemplated	
in	the	SafeCloud	project[AFG+10].	In	this	deliverable,	we	provide	a	thorough	description	
on	 how	 elasticity	 is	 provided	 for	 each	 SafeCloud	 processing	 solution.	 We	 provide	 an	
independent	 analysis	 for	 each	 architecture	 and	 design,	 both	 in	 terms	 of	 how	 the	
different	 components	 handle	 elasticity	 and	 on	 the	 impact	 of	 the	 supported	 privacy-
preserving	techniques.	
	
In	the	following	sections,	we	start	by	presenting	an	overview	of	how	elasticity	is	handled	
in	state-of-the-art	SQL	and	NoSQL	databases	and	 then,	 for	each	of	 the	 three	SafeCloud	
processing	 solutions,	 the	 following	 technical	 details	 are	 discussed.	 First,	we	 recap	 the	
architecture	of	the	solution,	which	has	already	been	detailed	in	previous	deliverables,	to	
present	 the	 main	 components	 that	 will	 need	 to	 handle	 elasticity.	 Then,	 for	 each	
component,	we	 explain	 how	 data	 partitioning	 and	 resource	 allocation	 can	 be	 done	 to	
support	a	 fully	elastic	solution.	This	analysis	also	contemplates	the	 impact	 in	elasticity	
for	the	privacy-preserving	techniques	supported	by	that	specific	solution.	
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2 Context	
Cloud	services	are	now	widely	adopted	due	to	their	pay-as-you-go	model	which	allows	
enterprises	to	only	allocate	and	pay	for	the	resources	needed	by	their	applications	as	the	
number	of	clients	increases	or	decreases	[AFG+10,	GB12].	For	achieving	an	efficient	pay-
as-you-go	model,	the	elasticity	of	cloud	services	is	fundamental.	By	elasticity,	we	mean	
the	ability	to	grow	and	shrink	resources	according	to	the	needs	of	the	applications	using	
these	 distributed	 services.	 In	 a	 cloud	 scenario,	 allocating	 more	 resources	 for	 an	
application	requires	launching	more	cloud	server	instances	and	balance	the	application	
load	 between	 both	 the	 new	 servers	 and	 the	 previous	 ones.	 On	 the	 one	 hand,	 when	
applications	 are	 using	 more	 resources	 than	 needed,	 with	 respect	 to	 the	 expected	
quality-of-service,	 some	 resources	 can	 be	 released.	 For	 this	 case,	 the	 workload	 being	
served	by	 the	allocated	cloud	servers	must	now	be	migrated	 to	 the	remaining	servers	
seamlessly.		
	
On	the	other	hand,	the	removal	of	servers	from	the	cloud	service	may	also	happen	due	to	
failures.	In	this	case,	if	a	specific	server	fails,	data	belonging	to	the	applications	must	not	
be	 lost	 and	 the	 application	workload	must	 still	 be	 served	with	 the	 desired	 quality-of-
service	 guarantees.	Then,	 if	 needed,	 additional	 servers	 can	be	 launched	 to	 replace	 the	
failed	ones.		
	
Current	 SQL	 solutions	provide	 cluster-based	 approaches	 for	 dealing	with	 the	 addition	
and	removal	of	servers	[WPS+00,MYSQL17].	Servers	in	the	same	cluster	are	replicated	
either	 with	 synchronous	 or	 asynchronous	 replication	 to	 ensure	 fault-tolerance,	 while	
sharding	can	be	applied	to	partition	the	database	tables	and	improve	the	scalability	of	
SQL	 deployments.	 However,	 the	 sharding	 process	 in	 traditional	 SQL	 databases	 is	 a	
complex	 task	 as	 the	 relational	model	 is	 heavily	 based	on	 establishing	 relations	 across	
tables,	which	makes	it	harder	to	split	tables	in	different	servers	while	still	guaranteeing	
the	 desired	 Availability,	 Consistency,	 Isolation	 and	 Durability	 (ACID)	 requirements.	
Similarly,	database	 replication	 requires	 complex	 and	 costly	 synchronization	
mechanisms.	 Thus,	 impairing	 the	 cluster	 ability	 to	 scale	 up	 from	 setups	 with	 tens	 to	
hundreds	of	servers.		
	
On	 the	 other	 hand,	 NoSQL	 databases	 provide	 a	 simpler	 schema	 and	 API	 that	 allows	
improving	 the	 ability	 to	 scale	 up	 and	 down	 by	 relaxing	 the	 strong	 data	 consistency	
provided	 in	 SQL	 solutions	 [HHL+11].	 For	 these	 NoSQL	 solutions,	 tables	 can	 easily	 be	
sharded	 and	 replicated	 across	 different	 servers,	making	 the	 scale	 up	 and	 scale	 down	
operations	easier	to	implement	and	maintain.	
	
The	 HBase	 system,	 which	 is	 the	 NoSQL	 database	 used	 in	 SafeCloud	 secure	 queries	
solutions	 1	 and	 2,	 provides	 a	 good	 example	 on	 how	 elasticity	 is	 handled	 in	 NoSQL	
solutions.	 Next,	 we	 detail	 how	 this	 system	 handles	 the	 partitioning	 of	 data	 and	 the	
addition	 and	 removal	 of	 nodes.	 This	 description	 is	 also	 important	 to	 understand	 how	
SafeCloud	secure	queries	solutions	1	and	2	will	provide	these	desired	guarantees.	
	

2.1 HBase	

Apache	 HBase	 is	 a	 distributed,	 scalable	 and	 open-source	 non-relational	 database	
[APACHE17a].	Inspired	by	Google's	BigTable	[CDG+08],	it	can	be	thought	of	as	a	multi-
dimensional	sorted	map	or	table.	The	map	is	indexed	by	a	tuple	composed	by	row	key,	
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column	name	and	timestamp,	which	is	used	as	a	key	for	a	given	value,	as	illustrated	in	
Figure	3.	
	

	
Figure	3:	HBase	map	structure.	

	
Row	 keys	might	 be	 associated	with	 an	 unbounded	 and	 dynamic	 number	 of	 qualifiers	
(columns)	grouped	into	column	families	(groups	of	columns).	As	an	example,	in	a	HBase	
table	storing	information	of	a	given	company’s	employees,	“employee”	may	be	a	column	
family	 and	 the	 employee’s	 “name”,	 “age”,	 “salary”	 can	 be	 distinct	 column	 qualifiers	
grouped	 by	 that	 column	 family.	 Each	 qualifier	 is	 then	 identified	 by	 concatenating	 its	
column	 family's	name	and	qualifier	byte	 array,	 i.e.,	 family:qualifier.	A	number	of	 rows	
form	a	table,	and	each	row	may	specify	a	distinct	number	of	column	families.	Both	the	
row	key	and	the	associated	values	are	arbitrary	not-interpreted	arrays	of	bytes.	Data	is	
maintained	 in	a	 lexicographic	order	 first	by	row	key,	 second	by	column’s	 family	name	
followed	by	qualifier	and,	in	descendent	order,	by	timestamp.	
	

	
Figure	4:	HBase	logical	table	view.	

	
A	logical	view	of	an	HBase	table	is	presented	in	Figure	4.	In	this	view,	each	cell	(value)	is	
the	intersection	of	a	row	key	and	a	column	qualifier	(cq).	Additionally,	timestamps	(ts)	
may	be	used	to	have	a	multi-dimensional	table,	since	it	means	that	several	versions	may	
exist	simultaneously.	From	this	point	onwards,	we	will	use	the	term	“row"	to	denote	a	
single	row	according	to	this	logical	view.	Typically,	column	families	(cf)	are	well-defined	
and	must	 be	 created	 before	 data	 can	 be	 stored.	 In	 contrast,	 qualifiers	 are	 created	 in	
runtime	by	inserting	new	key-value	pairs.	
	



	 D3.6	-	Elastic	privacy-preserving	storage	and	computation		 9	

2.1.1 HBase	API	

HBase	exposes	a	set	of	operations	for	data	access	that	is	quite	similar	to	the	one	used	in	
other	key-value	data	 stores.	This	 interface	 is	provided	by	 the	HBase	client	component	
and	encompasses	the	following	operations:	

• GET	-	Get	key-value	pairs	of	a	given	row,	identified	by	row	key;	
• PUT	-	Insert	or	update	a	key-value	pair	for	an	existing	or	a	new	row;	
• SCAN	-	Get	all	key-value	pairs	for	a	specific	range	of	rows;	
• DELETE	-	Remove	one	or	more	key-value	pairs	belonging	to	one	or	more	rows;	

	
Note	 that,	 for	GET	 and	PUT	 requests,	 it	 is	 only	 possible	 to	 retrieve	 or	 update	 specific	
column	qualifiers	 if	 the	 requests	 specify	both	 the	 row	key,	 column	 family	 and	 column	
qualifier	being	targeted.	Additionally,	HBase	provides	filter	operations	for	both	GET	and	
SCAN	 requests.	 Namely,	 it	 is	 possible	 to	 request	 several	 key-value	 pairs	 with	 a	 scan	
request	and	then	filter	only	the	key-values	where	a	specific	column	has	a	certain	value.	
As	 an	 example,	 if	 a	 company	 stores	 in	 HBase	 information	 about	 its	 employees,	 it	 is	
possible	to	query	all	employees	with	identification	numbers	(row	key)	between	number	
100	and	1000,	and	then	filter	the	request	to	only	retrieve	the	entries	for	employees	that	
were	born	in	1986	(considering	that	age	is	a	column	qualifier).	
	

2.1.2 HBase	Architecture	

Figure	5	depicts	the	HBase	architecture	and	main	components.	
	

	
Figure	5:	HBase	Architecture.	

	
An	HBase	client	component	is	provided,	so	that	applications	using	HBase	on	the	client-
side	 are	 able	 to	 perform	 queries,	 following	 the	 HBase	 API,	 to	 the	 HBase	 backend	
(combination	 of	 HBase	Masters	 and	 Region	 Servers).	 Succinctly	 explained,	 the	 HBase	
client	contacts	the	Master	component	to	know	what	Region	Servers	are	responsible	for	
storing	 the	 rows	 for	 a	 specific	 request,	 and	 then	 the	 client	 issues	 the	 request	 to	 the	
appropriate	Region	Servers,	which,	in	turn,	reply	to	the	client	with	the	query	results.	
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The	 HBase	 Master	 is	 responsible	 for	 redirecting	 HBase	 client	 requests	 to	 the	
appropriate	Region	Servers,	where	the	keys	being	stored/retrieved	are	kept.	The	HBase	
Master	may	 be	 deployed	 in	 a	 primary/secondary	 replication	mode	 to	 ensure	 a	 fault-
tolerant	design	via	redundancy.	
Rows	in	a	table	are	partitioned	horizontally	and	each	partition	is	called	a	Region.	After	
partition,	 resulting	 regions	 can	 be	 distributed	 across	 several	 nodes	 named	
RegionServers	 that	are	 responsible	 for	 serving	one	or	more	regions.	All	 columns	and	
values	 of	 a	 given	 key	 (row)	 are	 available	 in	 the	 same	Region	 Server.	 Regions	 Servers	
store	 and	 retrieve	 Regions’	 data	 from	 the	 Hadoop	 Distributed	 File	 System	 (HDFS)	
[APACHE17b].	This	is	a	distributed	file	system	deployable	on	top	of	multiple	servers	in	
order	 to	 provide	 a	 fault-tolerant	 design.	 Ideally,	 each	 Region	 Server	 is	 hosted	 in	 the	
same	machine	with	 the	HDFS	data	node	serving	 the	data	 for	 the	Regions	belonging	 to	
that	 Region	 Server.	 This	 option	 promotes	 data	 locality	 and	 allows	 Regions	 Servers	 to	
have	a	more	efficient	access	to	their	data.	
	

2.1.3 HBase	Elasticity	

The	horizontal	partition	of	rows	in	HBase,	each	partition	being	an	independent	Region,	
allows	 to	 easily	 migrate	 a	 region	 across	 different	 RegionServers	 (usually	 located	 in	
different	 servers).	 This	 way,	 the	 HBase	 system	 can	 easily	 scale	 up	 by	 adding	 new	
RegionServers	and	moving	regions	of	existing	RegionServers	to	the	new	machines.	
Furthermore,	if	the	size	of	a	Region	(i.e,	number	of	rows)	grows	above	a	given	threshold,	
the	 Region	 can	 be	 split	 in	 two,	 while	 one	 of	 the	 Regions	 can	 be	 assigned	 to	 other	
RegionServer	to	improve	load	balancing	and	improve	the	database	performance.	This	is	
an	automatic	mechanism	supported	in	current	versions	of	HBase.	
	
In	 the	 case	 of	 server	 failures	 or	 intentional	 node	 removal,	 to	 reduce	 the	 number	 of	
resources	 (servers)	 for	 a	 specific	 HBase	 deployment,	 the	 regions	 being	 served	 by	 the	
removed	servers	will	be	migrated	to	other	available	RegionServers.	This	assignment	is	
done	 by	 the	 HBase	 Master	 component,	 which	 can	 be	 replicated	 for	 fault-tolerance	
purposes.	In	fact,	the	HBase	Master	component	is	aware	of	this	migration	of	Regions	and	
redirects	the	client	requests	for	the	keys	in	those	regions	to	the	new	RegionServer(s).	
	
Note	 that	 the	 actual	 data	 being	 served	 by	 the	 HBase	 cluster	 is	 stored	 in	 HDFS,	 a	
distributed	 and	 fault-tolerant	 file	 system.	 By	 choosing	 the	 appropriate	 degree	 of	 data	
replication,	one	ensures	 that	when	servers	 fail,	 the	data	of	 all	 regions	 is	 still	 available	
and	persisted.	However,	when	Regions	are	migrated	due	to	scale	up	or	down	concerns,	
the	 locality	 of	 data	 between	 the	 Data	 Node	 and	 Region	 Server	 running	 in	 the	 same	
server	is	 lost.	For	ensuring	that	data	locality	 is	restored,	HBase	supports	a	compaction	
operation	that	allows	rewriting	the	content	of	a	Region	to	HDFS	in	order	to	ensure	that	
the	DataNode	co-located	with	 the	RegionServer	 responsible	 for	 that	Region	 is	 the	one	
holding	a	copy	of	the	data.	This	is	a	costly	operation	that	may	only	run	periodically	due	
to	its	noticeable	overhead	in	the	performance	of	requests	to	the	HBase	cluster.	
	

2.1.4 HBase	and	SafeCloud’s	Secure	Queries	Solutions	

Solution	 1	 and	 2	 depend	 on	 a	 HBase	 NoSQL	 backend	 and	 will	 use	 the	 elasticity	
mechanisms	already	provided	by	HBase	to	support	the	elasticity	and	system	dynamism	
(entrance	and	leaving	of	nodes)	required	by	these	components.	As	detailed	in	Section	4,	
Solution	2	resorts	to	multi-party	protocols,	depending	on	three	different	HBase	clusters,	
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which	 requires	 additional	 mechanisms	 to	 allow	 the	 desired	 elasticity	 and	 dynamism	
properties.		
	
The	other	main	component	present	in	the	architecture	of	these	two	solutions	is	the	SQL	
query	processing.	As	we	will	show	in	the	next	sections,	this	is	a	stateless	component	that	
can	easily	be	launched	or	removed	from	servers	without	affecting	the	proper	behaviour	
of	 the	 corresponding	 secure	 SQL	 stack.	 Solution	 3	 does	 not	 use	 HBase	 and	 therefore	
cannot	use	the	elasticity	and	dynamism	provided	by	HBase.	
	
Next,	we	describe	 in	more	detail,	 for	 each	 solution,	 how	elasticity	 is	 achieved	and	 the	
impact	 that	 each	 architecture	 and	 the	 chosen	 privacy-preserving	 techniques	 have	 in	
achieving	this	goal.	
	

3 Secure	Database	Server	
3.1 Architecture	and	Workflow	

Any	 application	 that	 wants	 to	 integrate	 SafeCloud	 secure	 queries	 solutions	 has	 two	
distinct	APIs	available.	It	can	use	either	a	SQL	interface	or	a	NoSQL	one.	For	solution	1	in	
particular	(secure	database	server),	SafeCloud	will	provide	full	SQL	compatibility,	for	the	
processing	use-cases	of	Work	Package	5,	and	a	HBase-like	NoSQL	interface.		
	

	
Figure	6:	Concrete	SafeCloud	deployment	for	Solution	1.	

	
	
To	offer	a	SQL	and	NoSQL	integration	for	the	client	application,	SafeCloud	solutions	are	
deployed	 across	 two	main	 sites	 (one	 trusted	 site	 and	 one	 untrusted)	 as	 explained	 in	
previous	 deliverables.	 Figure	 6	 depicts	 a	 high-level	 overview	 of	 such	 deployment	
scheme.		
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Concretely,	the	client	application	has	access	to	the	trusted	deployment	site	where	it	can	
issue	requests	to	the	desired	API	-	SQL	or	NoSQL.	For	the	case	the	application	is	using	
the	SQL	interface,	a	query	processing	component	translates	the	application	queries	into	
NoSQL	ones.		
	
In	SafeCloud	Secure	Queries	solutions	1	and	2,	transactional	support	can	be	achieved	by	
integrating	 the	 existing	 open-source	project	OMID	 [APACHE17c,	BHK+17]	with	HBase	
and	the	query	processing	component.	In	fact,	the	OMID	system	is	already	tightly	coupled	
with	 HBase,	 extending	 it	 with	 support	 for	 transactions.	 This	 means	 that	 the	 query	
processing	component	must	translate	SQL	requests,	with	transactional	semantic,	to	the	
appropriate	 transactional	 NoSQL	 requests.	 The	 first	 requirement	 (transactional	 SQL	
translation)	 is	 already	met	by	 the	 current	version	of	 the	query	processing	 component	
and	 the	 second	 requirement	 (transactional	 NoSQL	 support)	 will	 be	 supported	 by	
integrating	OMID	with	solution	1.		
	
After	 the	 translation	 step,	 upon	 the	 reception	 of	 a	 NoSQL	 request	 a	 SafeCloud	
CryptoWorker	will	 be	 called	 to	handle	 it	 [MPP+17].	These	CryptoWorker	 components	
are	installed	in	the	same	trusted	site	as	the	query	processing	component.	The	main	job	
of	 the	 CryptoWorker	 is,	 according	 to	 its	 configuration,	 translate	 the	 received	 NoSQL	
operations	into	privacy-preserving	requests	that	will	be	processed	on	a	single	untrusted	
site,	 where	 an	 HBase	 cluster	 is	 deployed.	 As	 some	 cryptographic	 techniques	 require	
both	computation	at	the	trusted	and	untrusted	site	(e.g.	searchable	encryption	schemes)	
an	 untrusted	 site	 CryptoWorker	will	 translate	messages	 sent	 by	 the	 CryptoWorker	 at	
the	 trusted	 site	 into	 NoSQL	 operations	 that	 the	 HBase	 backend	 can	 process.	 In	
particular,	 in	order	to	 improve	the	performance	of	 the	system	and	to	 leverage	specific	
characteristics	of	HBase,	SafeCloud	CryptoWorkers	are	deployed	at	the	untrusted	site	as	
HBase	 co-processors.	 Thus,	 they	 are	 running	 collocated	 with	 HBase	 Region	 Servers	
[APACHE12].	 For	 other	 techniques,	 such	 as	 Standard,	 Deterministic	 and	 Order-
preserving	encryption,	computation	 is	only	required	at	 the	 trusted	site	CryptoWorker.	
These	techniques	preserve	the	computational	requirements	of	the	data	being	protected	
which	allows	the	HBase	backend	to	perform	the	needed	computation	over	private	data.	
	
More	 details	 regarding	 this	 architecture	 refinement	 including	 cryptographic	
components	 for	 NoSQL	 translation,	 and	 how	 these	 are	 instantiated	 in	 the	 current	
prototype	are	available	in	deliverables	D3.3	and	D3.5.	
	

3.2 Data	Partitioning	

In	order	to	have	an	elastic	design	our	solution	must	support	efficient	data	partitioning.	
The	 first	 important	 aspect	 of	 this	 design	 is	 that	 data	 is	 only	 being	 persisted	 at	 the	
untrusted	 NoSQL	 (HBase)	 backend.	 Both	 the	 query	 processing	 and	 trusted	
CryptoWorker	components	are	stateless	(with	the	exception	of	some	configuration	files	
that	 can	easily	be	 replicated	across	different	 servers	 running	 these	 components).	This	
means	that	data	partitioning	is	only	needed	at	the	HBase	database.	For	this	solution,	the	
supported	privacy-preserving	 techniques	 (further	discussed	 in	D3.5)	do	not	 affect	 the	
partitioning	scheme	used	in	the	original	HBase	system.	This	way,	data	partitioning	(i.e.,	
Region	 splitting	and	merging)	 is	managed	by	 the	HBase	 component	without	 requiring	
any	modification.	
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3.3 Elasticity	

The	 same	 way	 data	 partitioning	 is	 managed	 by	 HBase	 without	 any	 modifications,	
providing	elasticity	 in	 this	solution	also	solely	depends	on	 the	elasticity	capabilities	of	
the	 HBase	 deployment	 itself.	 In	 more	 detail,	 since	 the	 entire	 trusted	 deployment	 is	
composed	 of	 stateless	 servers	 (Distributed	 Query	 Engine,	 Transactional	 Components	
and	HBase	client	components),	elasticity	at	this	level	is	easily	handled	without	any	need	
for	 online	 external	 coordination	 software,	 data	 migration	 or	 system	 reconfiguration.	
Different	 instances	 of	 these	 components	 can	 be	 launched	 or	 removed	 without	 any	
impact	 in	 the	 correct	 functioning	 of	 Solution	 1.	 However,	 three	 bootstrapping	
mechanisms	must	be	taken	into	account.	First,	static	configuration	files	needed	by	these	
components	must	be	made	available	across	the	machines	where	these	are	deployed.	For	
this,	either	the	configurations	are	replicated	in	each	server	or	stored	in	a	service	such	as	
Zookeeper	 [APACHE17d].	 Second,	 client	 applications	 must	 have	 a	 discovery	 service	
available	 in	order	to	 locate	Query	processing	nodes	available	to	process	requests.	This	
can	easily	be	achieved	with	a	load	balancing	component.	Third,	different	CryptoWorkers	
must	 have	 access	 to	 a	 cryptographic	 key	 repository	 where	 encryption	 keys	 for	
protecting	 data	 are	 available.	 This	 requirement	 is	 important	 so	 that	 different	
CryptoWorkers	are	able	 to	encode	and	decode	common	data.	This	key	repository	may	
be	 made	 available	 by	 the	 applications	 using	 the	 database	 as,	 in	 many	 cases,	 the	
management	 of	 cryptographic	 keys	 is	 application-specific.	 The	 SafeCloud	 platform’s	
modular	design	allows	the	integration	with	several	key	management	services.		
	
The	database’s	dataset	is	entirely	stored	on	the	untrusted	site.	This	requires	additional	
care	 in	 order	 to	 provide	 elasticity	 due	 to	 the	 need	 to	 ensure	 data	 persistency	 and	
availability.	However,	as	mentioned	before,	we	can	leverage	elasticity	mechanisms	that	
HBase	already	provides.	In	fact,	adding	or	removing	nodes	in	an	HBase	system	not	only	
is	possible	but	it	also	guarantees	that	data	is	automatically	partitioned	and	migrated	to	
accommodate	 such	 change.	 This	 automation	 is	 also	 available	 for	 fault	 tolerance.	
Whenever	a	server	fails,	HBase	ensures	the	necessary	migration	of	data	Regions	in	order	
to	 continue	 serving	 requests.	 Adding	 nodes	 to	 replace	 the	 failed	 ones	 must	 be	 done	
manually	but	automatic	external	systems	exist	(e.g.	MeT)	[CMM+13].	These	mechanisms	
of	HBase	resort	to	HDFS	data	replication	thus	making	the	adequate	configuration	of	this	
component	important.			
	
Finally,	 the	 OMID	 transactional	 component	 resorts	 to	 the	 HBase	 cluster	 to	 store	
metadata,	 that	 does	 not	 have	 any	 sensitive	 information,	 which	 allows	 this	 system	 to	
scale	up	and	down	by	leveraging	the	original	HBase	capabilities.	The	OMID	component	
issuing	the	certification	of	transactions	is	the	only	centralized	component	but,	as	shown	
in	 previous	 work,	 it	 is	 able	 to	 scale	 for	 a	 large	 number	 of	 transactions	 and,	 in	 this	
project,	to	provide	the	needed	transactional	throughput[BHK+17].		
	

3.4 Discussion	

As	mentioned	previously,	Solution	1	relies	on	the	elasticity	of	the	different	components	
to	provide	 a	 fully	 elastic	 solution.	The	privacy-preserving	 techniques	do	not	 have	 any	
impact	in	the	elasticity	of	any	of	these	components,	which	is	not	true	for	Solution	2,	and	
again	 shows	 the	 advantage	 of	 providing	 different	 solutions	with	 different	 tradeoffs	 in	
terms	of	performance,	security	and	now,	elasticity.		
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While	the	query	processing	and	CryptoWorker	components	are	stateless	and	can	easily	
scale	up	or	down,	the	HBase	database	already	has	 in-place	mechanisms	to	be	scalable.	
Furthermore,	 much	 research	 work	 has	 been	 done	 lately	 to	 improve	 the	 elasticity	 of	
HBase	and	allow	it	to	scale-up	and	down	automatically	[CMM+13].	Such	work	could	be	
incorporated	in	this	solution	as	future	work.	
	
Finally,	it	is	important	to	note	that	dividing	the	architecture	into	all	these	components	is	
important	to	have	a	design	where	it	is	possible	to	launch,	independently,	more	instances	
of	the	components	that	are	a	bottleneck	for	the	performance	of	client	applications.	Such	
is	not	possible	in	monolithic	database	designs	where	all	components	are	tightly	coupled	
and	cannot	scale-up	or	down	independently.	
	

4 Secure	Multi-Cloud	Database	Server	
	

4.1 Architecture	

Similar	 to	 Solution	 1,	 this	 solution	 also	 relies	 on	 a	 secure	 NoSQL	 backend	 (HBase).	
However,	 as	 pointed	 in	 Figure	 7,	 Solution	 2	 considers	 multiple	 untrusted	 domains.	
Consequently,	 a	 single	 HBase	 deployment	 is	 no	 longer	 sufficient,	 as	 each	 untrusted	
domain	must	be	treated	as	a	completely	independent	entity.	Nevertheless,	the	high-level	
approach	taken	is	similar	to	the	one	previously	described	for	Solution	1,	i.e.,	it	has	a	SQL	
query	processing	component	with	transactional	support,	which	can	be	provided	through	
the	integration	with	OMID,	and	we	do	not	modify	HBase	itself	but	rather	externally	add	
the	necessary	behavior	via	the	appropriate	embedded	mechanisms	(coprocessors).	
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Figure	7:	Concrete	SafeCloud	deployment	for	Solution	2.	

	
	
For	 the	 particular	 case	 of	 Solution	 2,	 we	 consider	 three	 independent	 untrusted	 sites	
(infrastructures),	 each	 with	 a	 separate	 HBase	 deployment	 (cluster).	 The	 added	
behaviour	empowers	each	HBase	cluster	to	provide	secure	operations	following	multi-
party	 computation	 algorithms	 [PMP+16].	 Moreover,	 this	 entails	 the	 requirement	 for	
communication	 capabilities	 between	 the	 different	 entities	 since	 this	 is	 a	 fundamental	
necessity	for	general	multi-party	protocols.	
	
A	client-side	CryptoWorker,	at	 the	trusted	site,	 is	 instantiated	and	configured	with	the	
appropriate	 multi-party	 computation	 parameters.	 In	 this	 solution,	 untrusted	 site	
CryptoWorkers	 (one	 per	 HBase	 RegionServer)	 take	 part	 in	 the	 process,	 and	 are	 now	
responsible	 for	 request	 processing	 and	 engage	 in	 a	 specific	 workflow	 to	 be	 able	 to	
address	 the	data	processing	 requests	 from	 the	NoSQL	client.	 In	particular,	 they	 follow	
multi-party	 computation	 protocols	 that	 require	 communication	 between	 the	 three	
CryptoWorkers	deployed	in	the	three	different	untrusted	sites.		
	
Briefly,	 a	 PUT	 operation	 requires	 dividing	 the	 data	 to	 be	 stored,	 at	 the	 trusted-site	
CryptoWorker,	into	three	secrets.	Each	secret	is	stored	on	a	different	HBase	cluster	and,	
independently	it	does	not	reveal	any	sensitive	information	from	the	original	data.	Then	a	
GET	operation	for	getting	a	specific	value	is	encoded	into	three	different	operations	to	
be	 issued	 to	 the	 three	 independent	 backends.	 When	 a	 backend-side	 CryptoWorker	
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identifies	such	request	as	a	multi-party	computation	request,	it	starts	the	specific	set	of	
procedures	 to	process	 it.	This	 typically	 includes	querying	 the	 local	HBase	 instance	 for	
data,	 communicating	with	 other	 backend-side	CryptoWorkers	 and,	 finally,	 replying	 to	
the	 trusted	 site.	 The	 client-side	 CryptoWorker	 processes	 the	 answers	 and	 translates	
them	into	a	plain	data	reply	to	the	client	application.	
The	 computation	 and	 communication	 steps	 necessary	 for	 this	workflow	 are	 thorough	
and	 subtle,	 since	 they	 depend	 on	 the	 underlying	 complex	 cryptographic	 mechanisms	
that	 allow	 for	 general	 secure	 computation	 of	 functionalities	 over	 several	 participants.	
For	a	more	in-depth	overview	of	MPC	protocol	details,	please	refer	to	deliverable	D3.5.		
	

4.2 Data	Partitioning	

As	in	Solution	1,	the	query	processing	and	trusted-site	CryptoWorkers	are	stateless	so,	
data	partitioning	is	handled	at	the	untrusted	HBase	sites.	Internally,	each	HBase	cluster	
is	able	to	partition	data	into	different	Regions	that	are	then	assigned	to	specific	Region	
Servers.	However,	 this	data	partitioning	 is	done	 independently	 and	 in	 a	non-mirrored	
fashion	across	the	different	HBase	clusters	(parties).		
	
In	 order	 to	 run	 the	multi-party	 protocols	 for	 a	 secret	 (row)	 spread	 in	 three	 different	
HBase	clusters,	 it	 is	necessary	 that	 the	 three	RegionServers	responsible	 for	 the	region	
with	that	specific	row	are	aware	and	can	communicate	with	each	other.	As	data	partition	
in	the	different	clusters	is	not	deterministic,	the	information	regarding	the	regions	and	
the	 range	 of	 rows	 stored	 in	 the	 RegionServers	 of	 each	 HBase	 cluster	 must	 be	 made	
available	 in	 a	 discovery	 service.	 This	 way,	 when	 the	 untrusted	 site	 CryptoWorker	
(coprocessor	 of	 a	 given	 RegionServer)	 performs	 the	 needed	multi-party	 computation	
protocol	 for	 its	 secret,	 it	must	 resort	 to	 this	 discovery	 service	 to	 know	which	 are	 the	
CryptoWorkers	(coprocessors	of	other	RegionServers	in	the	other	HBase	clusters)	that	it	
must	 contact	 to	 exchange	 the	 results	 of	 the	 computation.	 In	 the	 context	 of	 SafeCloud,	
such	a	component	was	implemented.	
	
Yet	another	challenge	that	arises	with	multi-party	protocols	is	that	operations	are	now	
sent	to	three	different	HBase	clusters	that	may	perform	them	in	different	orders.	For	a	
single	client,	requests	can	easily	be	ordered	but	when	supporting	multiple	clients,	 this	
may	be	an	 issue.	As	an	example,	 if	 a	PUT	request	and	a	SCAN	request	 reach	 the	 three	
clusters	in	different	timings,	the	result	of	the	computation	may	not	be	coherent	as	some	
HBase	clusters	have	access	to	secrets	that	are	still	not	stored	in	the	other	clusters.		
	
We	solve	this	challenge	by	leveraging	the	transactional	properties	provided	by	OMID.	As	
a	consequence,	and	in	contrast	with	solution	1,	any	access	to	the	NoSQL	API	in	solution	2	
must	be	transactional.	Additionally,	the	HBase	client	was	modified	in	order	to	consider	
an	operation	completed	only	when	completed	in	the	three	sites.	
	

4.3 Elasticity	

As	in	Solution	1,	the	query	processing	and	CriptoWorkers	are	stateless	and	can	easily	be	
deployed	 to	 new	 servers	 or	 removed	 from	 existing	 servers.	 Again,	 these	 components	
should	ideally	be	collocated	in	the	same	server	and	the	clients	of	the	SQL	solution	must	
be	aware	of	the	available	query	processing	endpoints.	The	OMID	component	is	deployed	
in	a	similar	fashion	to	Solution	1.	The	main	difference,	in	the	trusted	site,	between	this	
and	 the	previous	solution	 is	 that	OMID’s	metadata	can	be	written	 to	any	of	 the	HBase	
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clusters	 as	 it	 does	 not	 disclose	 any	 sensitive	 information.	 With	 this	 integration,	 it	 is	
possible	 to	 have	 an	 elastic	 version	 of	 the	 components	 deployed	 at	 the	 trusted	 site	
similarly	to	what	was	previously	described	for	Solution	1.	
	
For	 the	 untrusted	 site,	 each	 HBase	 cluster	 handles	 elasticity	 independently	while	 the	
discovery	 service	 mentioned	 in	 the	 previous	 section	 is	 used	 to	 enable	 the	
communication	 between	 untrusted	 CryptoWorkers	 (HBase	 coprocessors).	 This	
discovery	 system	 can	 be	 deployed	 entirely	 in-memory	 to	 achieve	 high-performance	
since	it	stores	a	small	amount	of	information	(in	the	order	of	MBs).	Also,	failures	of	this	
component	 can	 be	 tolerated	 since	 stored	 information	 is	 not	 critical	 and	 can	 be	 easily	
recovered	from	HBase’s	Master	node.		
	
Finally,	it	is	important	to	note	that	the	number	of	parties,	in	this	case	3,	is	a	restriction	of	
the	multi-party	protocol	itself.	This	means	that	in	our	current	design	it	is	not	possible	to	
increase	or	decrease	the	number	of	HBase	clusters	(parties).	
	

4.4 Discussion	

Multi-party	 protocols	 have	 intrinsic	 details	 that	 affect	 the	 elasticity	 of	 solution	 2.	
Namely,	 a	 discovery	 service	 for	 enabling	 the	 communication	 between	 parties,	 and	
transactional	or,	at	least,	ordering	support	for	NoSQL	queries	from	distributed	clients	or	
components	 (trusted	 site	 CryptoWorkers)	 to	 ensure	 that	 concurrent	
write/update/delete	and	get/scan	queries	are	executed	consistently	across	the	different	
parties	and	the	results	also	consistently	returned	to	the	client.	However,	in	the	context	
of	SafeCloud	these	challenges	were	 tackled	resorting	 to	 the	 implementation	of	specific	
software	components	or	already	existing	software	such	as	OMID.	The	resulting	system	is	
expected	to	scale	graciously	and	achieve	the	performance	 levels	required	by	the	Work	
Package	5	use-cases.	Furthermore,	 these	components	also	contemplate	a	 fault-tolerant	
design	that	does	not	compromise	system’s	correctness	when	they	fail.		
	
Similar	to	what	was	described	in	solution	1,	extensive	research	work	has	been	focusing	
on	 improving	 the	 elasticity	 of	HBase	 and	 allow	 it	 to	 scale-up	 and	down	 automatically	
[CMM+16].	 Such	 work	 could	 be	 incorporated	 in	 this	 solution,	 for	 each	 independent	
HBase	cluster,	as	 future	work.	As	 in	Solution	1,	dividing	 the	architecture	 into	all	 these	
components	is	important	to	have	a	design	where	it	is	possible	to	launch,	independently,	
more	 instances	 of	 the	 components	 that	 are	 a	 bottleneck	 for	 the	performance	of	 client	
applications.	Such	is	not	possible	in	monolithic	database	designs	where	all	components	
are	tightly	coupled	and	cannot	scale-up	or	down	independently.	
	

5 Secure	Multi-Cloud	Application	Server	
5.1 Architecture	

Secure	Multi-Cloud	 Application	 Server	 provides	 a	 limited	 SQL	 interface,	 that	 protects	
different	data	owners	from	each	other,	while	still	allowing	to	have	their	data	in	a	shared	
database,	where	analytic	queries	can	be	run.	
	
It	 consists	 of	 a	 Sharemind	 deployment	 on	 untrusted	 cloud	 service	 providers	 and	 a	
number	of	SQL	frontends,	which	are	deployed	in	the	trusted	premises	of	the	data	owner	
or	 the	 analytic.	 SQL	 frontend	 handles	 plaintext	 data	 and	 it	 has	 to	 be	 on	 trusted	
infrastructure.	
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Figure	8:	Secure	Multi-Cloud	Application	Server	architecture	with	deployment	info.	

	
As	 can	 be	 seen	 from	 Figure	 8,	 Sharemind	 deployment	 consists	 of	 three	 Sharemind	
Application	Servers	hosted	on	non-colluding	 service	providers.	 Sharemind	Application	
Server	 is	 modular,	 and	 it	 can	 have	 several	 database	 backends	 for	 storing	 the	 secret-
shared	 data.	 For	 an	 example,	 we	 could	 implement	 an	 HBase	 backend	 to	 leverage	 the	
elasticity	of	HBase.	
	
On	 the	other	hand,	as	 in	Solution	2,	 the	elasticity	of	 the	backend	database	(for	storing	
secret	shares)	would	not	transfer	directly	into	the	elasticity	of	the	whole	solution.	
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5.2 Data	Partitioning	

Efficient	 data	 partitioning	 is	 needed	 for	 supporting	 elasticity.	 In	 our	 solution,	 the	
handling	of	partitioning	is	handed	over	to	the	distributed	backend	database,	that	stores	
the	secret	shares.	Our	SQL	frontend	and	the	rest	of	the	Sharemind	Application	Server	are	
mostly	stateless.	So,	these	components	are	not	concerned	with	data	partitioning.	
	

5.3 Elasticity	

The	 data	 should	 be	 stored	 on	 a	 distributed	 database	 backend.	 More	 precisely,	 each	
Sharemind	Application	Server	will	need	a	separate	cluster	for	the	backend	database.	We	
assume	that	the	backend	database	is	elastic.	
	
Since	 our	 solution	does	not	 promise	 transaction	 safety,	 handling	 of	 concurrent	writes	
and	 reads	 must	 be	 handled	 by	 the	 application.	 Therefore,	 we	 just	 launch	 multiple	
Sharemind	deployments,	that	use	the	same	distributed	database	backend.	For	insertion	
of	 data,	 there	 is	 no	 need	 to	 synchronize	 anything,	 the	 same	 for	 read-only	 workload.	
Therefore,	 if	 we	 have	 a	 scalable	 database	 backend,	 we	 can	 run	 additional	 Sharemind	
deployments	on	top	of	it.	
	
The	 only	 component	 not	 mentioned	 is	 the	 SQL	 frontend.	 Many	 instances	 of	 the	 SQL	
frontend	can	 connect	 to	one	Sharemind	deployment.	Therefore,	 the	SQL	 frontend	also	
can	 be	 scaled	 independently	 of	 the	 rest	 of	 the	 components.	 Thus,	 it	 will	 not	 cause	 a	
bottleneck	in	the	system.	The	load	balancing,	 i.e.,	 the	act	of	choosing	which	Sharemind	
deployment	the	SQL	frontend	connects	to,	is	left	for	the	application.	
	
Handling	 the	elasticity	 is	not	automated	and	 in	 large	part	 is	up	 to	 the	application	 that	
uses	the	Secure	Multi-Cloud	Application	Server.	Adding	and	removing	of	resources	is	left	
entirely	up	 to	 the	application.	However,	automated	tools	can	be	built	on	 top	of	Secure	
Multi-Cloud	Application	Server.	
	

5.4 Discussion	

Solution	3:	Secure	Multi-Cloud	Application	Server	can	work	 in	an	elastic	setting,	but	 it	
lacks	the	mechanism	for	supporting	elasticity	out	of	the	box.	Implementing	elasticity	on	
top	 of	 it	 is	 dependent	 on	 the	 actual	 use	 case,	 because	 depending	 on	 the	 specific	
deployment	scenario,	various	trade-offs	can	be	made.	
	
Cybernetica	 has	 done	 some	 experiments	 in	 a	 “map-reduce”	 setting,	 where	 multiple	
Sharemind	deployments	were	used	in	parallel	[BJS+16].	
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6 Conclusion	
To	sum	up,	 this	document	 shows	 that	 each	of	 the	SafeCloud	Secure	Queries’	 solutions	
was	designed	to	support	elastic	and	fault-tolerant	deployments.	Solutions	1	and	2	have	
common	architectures	and	most	components	(Query	processing,	Transactional	module,	
Trusted	 Site	 CryptoWorker)	 are	 stateless	 or	 are	 thought	 to	 inherently	 be	 elastic	 and	
resilient.	 The	 mains	 difference	 regarding	 these	 two	 solutions	 is	 in	 the	 privacy-
preserving	 techniques	 being	 used	 and	 in	 the	 untrusted	 NoSQL	 (HBase)	 backend	
deployment.	As	discussed	 in	 the	document,	 Solution	1	 can	 fully	 leverage	 the	 elasticity	
and	 fault-tolerant	 characteristics	 of	 HBase.	 On	 the	 other	 hand,	 Solution	 2	 resorts	 to	
multi-party	 protocols	 that	 strictly	 require	 three	 independent	 NoSQL	 (HBase)	 cluster	
deployments	and	an	in-place	communication	protocol	across	these.	These	assumptions	
require	additional	components,	such	as	a	discovery	service,	to	ensure	that	the	solution	
remains	 elastic	 while	 ensuring	 the	 consistency	 guarantees	 expected	 by	 applications	
using	 the	 database.	 Moreover,	 although	 each	 HBase	 cluster	 is	 elastic	 and	 tolerates	
failures,	 the	multi-party	 protocol	 requires	 three	 clusters	 thus	 restricting	 the	 elasticity	
and	 increasing	 the	 complexity	 of	 having	 a	 fault-tolerant	 solution	 in	 a	 cluster-wide	
fashion.	Finally,	although	it	is	out	of	the	scope	of	the	project,	for	both	solutions,	is	it	still	
possible	 to	 further	 improve	 NoSQL	 elasticity	 to	 be	 fully	 automatic	 by	 integrating	
previous	work	in	this	field.	
	
For	 solution	 3	 the	 elasticity	 is	 not	 actually	 built	 into	 the	 system,	 but	 the	 solution	 is	
modular	and	elasticity	can	be	built	on	top	of	solution	3.	Since	solution	3	uses	MPC	same	
as	solution	2,	similar	restrictions	apply:	the	number	of	clusters	is	fixed	to	3.	
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