
	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 1	

Secret-sharing and order-
preserving encryption based

private computation
D3.5

Project reference no. 653884

February 2017

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 2	

Document	information	
Scheduled	delivery	 	 01.03.2017	
Actual	delivery	 	 01.03.2017	
Version	 	 	 1.0	
Responsible	Partner	 	 Cybernetica	
	

Dissemination	level	
Public	
	

Revision	history	
Date	 Editor	 Status	 Version	 Changes	 	 	
14.09.2016	 B.	Portela	 Draft	 0.1	 ToC	
15.12.2016	 B.	Portela,	K.	Tarbe,	V.	Sokk	 Draft	 0.2	 Initial	draft	
20.12.2016	 D.	Bogdanov	 Draft	 0.3	 Revised	version	
25.01.2017	 B.	Portela,	F.	Maia,	J.	Paulo,	K.	Tarbe,	

R.	Pontes,	T.	Oliveira,	V.	Sokk	
Draft	 0.4	 Revised	version	

10.02.2017	 K.	Tarbe	 Draft	 0.5	 Final	Draft	
18.02.2017	 H.	Mercier	 Draft	 0.6	 UniNe	review	–	

secure	database	
server	

20.02.2017	 J.	Paulo	 Draft	 0.7	 INESC	TEC	review	
27.02.2017	 K.	Tarbe	 Draft	 0.8	 Incorporate	changes	

from	reviews	
01.03.2017	 J.	Paulo,	K.	Tarbe	 Final	 0.9	 Final	review.	
01.03.2017	 J.	Paulo	 Final	 1.0	 Small	fixes.	
	

Contributors	
Dan	Bogdanov	(CYBER)	
Karl	Tarbe	(CYBER)	
Ville	Sokk	(CYBER)	
João	Paulo	(INESC	TEC)	
Francisco	Maia	(INESC	TEC)	
Tiago	Oliveira	(INESC	TEC)	
Rogério	Pontes	(INESC	TEC)	
Bernardo	Portela	(INESC	TEC)	
	

Internal	reviewers	
J.	Paulo	(INESC	TEC)	
H.	Mercier	(UniNe)	
	

Acknowledgements	
This	 project	 is	 partially	 funded	 by	 the	 European	 Commission	 Horizon	 2020	 work	
programme	under	grant	agreement	no.	653884.	
	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 3	

More	information	
Additional	 information	 and	 public	 deliverables	 of	 SafeCloud	 can	 be	 found	 at	
http://www.safecloud-project.eu	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 4	

Glossary	of	acronyms	
	
Acronym	 Definition	
ABB	 Arithmetic	Black-Box	
AES	 Advanced	Encryption	Standard	
API	 Application	Programming	Interface	
DDL	 Data	Definition	Language	
DE	 Deterministic	Encryption	
DML	 Data	Manipulation	Language	
ECB	 Electronic	Codebook	
GCM	 Galois/Counter	Mode	
IND-CCA	 Indistinguishability	under	chosen	plaintext	attack	
JDBC	 Java	Database	Connectivity	
MPC	 Secure	Multi-Party	Computation	
OPE	 Order-preserving	Encryption	
PPT	 Probabilistic	Polynomial	Time	
SE	 Searchable	Encryption	
SHA	 Secure	Hash	Algorithm	
SQL	 Structured	Query	Language	
TTP	 Trusted	Third	Party	
WDOW	 Window	distance	one-wayness	
WOW	 Window	one-wayness	
YCSB	 Yahoo!	Cloud	Serving	Benchmark	

	 	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 5	

Table	of	contents	
Document	information	..	2	
Dissemination	level	..	2	
Revision	history	...	2	
Contributors	..	2	
Internal	reviewers	..	2	
Acknowledgements	...	2	
More	information	..	3	
Glossary	of	acronyms	...	4	
Table	of	contents	...	5	
List	of	Figures	..	6	
List	of	Tables	...	6	
Executive	summary	...	7	
1	 Introduction	...	8	
2	 Solution	1:	Secure	database	server	..	9	
2.1	 Privacy-preserving	techniques	..	9	
2.1.1	 Overview	..	10	
2.1.2	 Standard	encryption	...	10	
2.1.3	 Deterministic	encryption	..	11	
2.1.4	 Order-preserving	encryption	..	12	
2.1.5	 Searchable	encryption	...	13	

2.2	 Deployment	...	14	
2.3	 Security	guarantees	...	16	
2.3.1	 Standard	encryption	...	17	
2.3.2	 Deterministic	encryption	..	18	
2.3.3	 Order-preserving	encryption	..	19	
2.3.4	 Searchable	encryption	...	21	
2.3.5	 Discussion	..	22	

2.4	 Performance	analysis	..	22	
3	 Solution	2:	Secure	multi-cloud	database	server	..	23	
3.1	 Privacy-preserving	techniques	..	23	
3.1.1	 Additively	homomorphic	secret	sharing	...	24	
3.1.2	 Multi-party	computation	..	25	
3.1.3	 Database	API	instantiation	...	26	

3.2	 Deployment	...	27	
3.3	 Security	guarantees	...	28	
3.3.1	 Discussion	..	30	

3.4	 Performance	analysis	..	30	
4	 Solution	3:	Secure	multi-cloud	application	server	...	32	
4.1	 Privacy-preserving	techniques	..	32	
4.1.1	 Storage	and	query	interface	..	32	
4.1.2	 Supported	SQL	primitives	..	32	
4.1.3	 Chapters	explaining	the	algorithms	used	by	categories	...	34	

4.2	 Deployment	...	38	
4.3	 Security	guarantees	...	39	
4.4	 Performance	analysis	..	40	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 6	

5	 Conclusion	..	41	
6	 References	..	42	

	

	List	of	Figures	
Figure	1:	Secure	Queries	Solutions.	..	8	
Figure	2:	Abstract	Cryptobox	...	10	
Figure	3:	Put	operation	instantiation	for	standard	encryption	...	11	
Figure	4:		Get	operation	instantiation	for	standard	encryption	..	11	
Figure	5:	Scan	operation	instantiation	for	standard	encryption	..	11	
Figure	6:	Put	operation	instantiation	for	deterministic	encryption	..	12	
Figure	7:	Get	operation	instantiation	for	deterministic	encryption	..	12	
Figure	8:	Scan	operation	instantiation	for	deterministic	encryption	12	
Figure	9:	Put	operation	instantiation	for	order-preserving	encryption	12	
Figure	10:	Get	operation	instantiation	for	order-preserving	encryption	13	
Figure	11:	Scan	operation	instantiation	for	order-preserving	encryption	13	
Figure	12:	Put	operation	instantiation	for	searchable	encryption	..	13	
Figure	13:	Get	operation	instantiation	for	searchable	encryption	...	14	
Figure	14:	Scan	operation	instantiation	for	searchable	encryption	..	14	
Figure	15:	High	level	overview	of	Solution	1:	Secure	database	server	deployment	
scheme	..	15	
Figure	16:	Concrete	SafeCloud	deployment	for	Solution	1:	Secure	database	server	16	
Figure	17:	Adversarial	model	for	Solution	1:	Secure	database	server	17	
Figure	18:	Game	IND-CCA.	...	18	
Figure	19:	Game	PRIV.	...	18	
Figure	20:	Game	Wow.	..	20	
Figure	21:	Game	Wdow.	..	20	
Figure	22:	Comparison	of	Solution	1:	Secure	database	server	with	a	default	HBase	
deployment	...	23	
Figure	23:	Put	operation	instantiation	for	secret	sharing	and	MPC	..	26	
Figure	24:	Get	operation	instantiation	for	secret	sharing	and	MPC	..	26	
Figure	25:	Scan	operation	instantiation	for	secret	sharing	and	MPC	26	
Figure	26:	Concrete	SafeCloud	deployment	for	Solution	2:	Secure	multi-cloud	database	
server	..	27	
Figure	27:	Adversarial	model	for	Solution	2:	Secure	multi-cloud	database	server	29	
Figure	28:	Solution	3:	Secure	multi-cloud	application	Server	deployment	38	
	

List	of	Tables	
Table	1:	Solution	2:	Secure	multi-cloud	database	server	performance	30	
Table	2:	Solution	3:	Secure	multi-cloud	application	server	performance	40	
	
	
	
	
	
	
	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 7	

Executive	summary	
SafeCloud	 Secure	 Queries	 layer	 focuses	 on	 providing	 a	 set	 of	 software	 solutions	 that	
enable	secure	data	processing	in	three	different	setups.	Each	setup	considers	a	specific	
trust	 model	 and	 targets	 different	 application	 scenarios.	 In	 previous	 deliverables,	 we	
have	 described	 the	 design	 and	 architecture	 for	 each	 solution	 motivating	 our	 choices	
with	the	project’s	use	cases.		
	
In	this	report,	we	go	a	step	further	 in	detailing	the	SafeCloud	Secure	Queries	solutions	
that	were	previously	described	in	D3.1	and	D3.2.	Because	each	solution	targets	distinct	
workloads	 and	 infrastructural	 deployments,	 a	 different	 set	 of	 privacy-preserving	
techniques	is	suitable	for	each	one	of	them.	Moreover,	these	sets	of	techniques	provide	
different	 tradeoffs	 in	 terms	 of	 performance,	 security	 and	 functionality	 guarantees.	 In	
order	to	better	understand	these	tradeoffs	and	the	applicability	of	each	solution	in	the	
development	privacy	preserving	 applications,	we	discuss	 and	detail	 the	 cryptographic	
privacy-preserving	 techniques	 that	will	 be	 supporting	 each	 one	 of	 the	 Secure	Queries	
layer	solutions.	The	 integration	of	each	technique	 is	highly	dependent	on	the	assumed	
stakeholders,	deployment	and	security	guarantees,	which	are	discussed	along	the	text.		
	
Additionally,	we	provide	performance	results	obtained	from	a	preliminary	performance	
evaluation	 of	 each	 solution	 prototype.	 The	 results	 show	 that	 the	 integration	 of	 the	
different	 techniques	 is	 possible	 and	 show	preliminary	performance	numbers	 that	will	
serve	as	reference	for	future	implementations	and	optimizations.	
	
	 	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 8	

1 Introduction	
The	SafeCloud	secure	queries	architecture	has	three	solutions	as	shown	in	Figure	1:	
	

	
Figure	1:	Secure	Queries	Solutions.	

	
For	each	solution,	a	detailed	architecture	has	been	described	 in	previous	deliverables.	
Such	architecture	was	driven	by	the	goal	of	providing	a	comprehensive	set	of	solutions	
for	 secure	 data	 processing.	 Accordingly,	 different	 trust	 models	 are	 considered	 and	
different	guarantees	emerge	for	each	solution.	However,	in	order	to	be	able	to	integrate	
SafeCloud	 Secure	Queries	 solutions	 into	 practical	 applications,	 it	 becomes	 essential	 to	
better	 understand	 each	 one	 of	 the	 solutions	 and	 to	which	 scenarios	 are	 they	 actually	
suitable.		
	
In	this	deliverable,	we	provide	a	thorough	description	of	each	solution	focusing	on	the	
privacy	 preserving	 techniques	 used	 and	 their	 characteristics.	 We	 provide	 technical	
details	whenever	useful	and	also	focus	on	detailing	the	specific	characteristics	that	make	
each	solution	unique.	We	also	specify	the	caveats	of	each	privacy	preserving	technique	
with	 the	 goal	 of	 allowing	 to	 understand	 the	 different	 tradeoffs	 between	 privacy	 and	
performance	that	each	solution	offers.		
	
In	 the	 following	 sections,	 we	 present,	 for	 each	 of	 the	 three	 solutions,	 the	 following	
technical	details.	First,	we	discuss	the	cryptographic	privacy-preserving	techniques	for	
each	solution.	That	is,	what	kind	of	cryptographic	queries	does	the	solution	support	and	
what	 kind	 of	 technology	 this	 is	 achieved	 with.	 Second,	 we	 present	 the	 stakeholders,	
components	 and	 their	 deployment	 to	 make	 it	 clear	 where	 the	 privacy-preserving	
operations	 are	 being	 performed.	 Third,	 we	 explain	 the	 security	 guarantees	 of	 the	
techniques	 and	 direct	 the	 reader	 to	 sources	 with	 more	 detailed	 security	 arguments.	
Finally,	 we	 present	 preliminary	 performance	 results	 for	 secure	 queries	 using	 that	
solution.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 9	

2 Solution	1:	Secure	database	server	
2.1 Privacy-preserving	techniques	

The	 discussion	 of	 implementation-agnostic	 techniques	 in	 the	 SafeCloud	 framework	
starts	from	an	API	that	is	generic	enough	to	encompass	the	various	techniques	described	
in	the	literature	review	of	Deliverable	D3.2.	As	such,	we	will	be	presenting	cryptographic	
components	 composed	 of	 a	 trusted	 side	 and	 an	 untrusted	 side	 (for	 the	 Solution	 1:	
Secure	database	server	scenario,	 those	being	 the	client	 trusted	 infrastructure	side	and	
the	 cloud/third-party	 untrusted	 server	 side),	 that	 collaboratively	 comply	 with	 the	
various	 cryptographic	 primitives	 to	 be	 instantiated	 for	 the	 SafeCloud	 use	 cases.	More	
specifically,	the	general	NoSQL	operations	of	Put,	Get	and	Scan	will	be	translated	into	a	
sequence	of	cryptographic	operations	that	will	produce	the	expected	result.	This	allows	
for	 the	 end-user	 to	 interact	 with	 a	 standard	 SQL/NoSQL	 API,	 while	 the	 underlying	
cryptographic	mechanisms	enforce	security	guarantees	in	a	transparent	way.	
	
The	set	of	cryptographic	operations	will	be,	on	the	trusted	side,	putC,	getC,	getCDecode,	
scanC	 and	 scanCDecode,	 and	 on	 the	 untrusted	 side,	 putS,	 getS	 and	 scanS.	 Intuitively,	
these	 operations	 correspond	 to	 a	 trusted-side	 encoding	 cryptographic	 operation,	 an	
untrusted-side	processing	of	said	operation,	and	a	trusted-side	decoding	of	the	obtained	
result.	To	abstract	the	underlying	mechanisms	used	for	storage,	we	define	the	behaviour	
of	 untrusted-side	 operations	 to	 use	 an	 oracle	!"	for	 performing	 standard	 storage	
operations.		Details	follow:	
• putC(id,v)	 -	 this	 is	 the	 general	 operation	 for	 data	 encoding	 to	 be	 executed	 on	 a	

trusted	environment.	This	will	 take	 an	 identifier	 for	querying	#!	and	 some	value	$,	
and	produce	a	set	of	data	!	to	be	processed	on	the	untrusted	side.	

• putSdb(d)	 -	 this	 is	 the	 operation	 for	 data	 storage	 to	 be	performed	on	 an	untrusted	
environment.	This	has	oracle	 access	 to	 the	database,	 and	will	 perform	 (potentially	
several)	storage	operations	for	storing	data	!,	using	the	described	oracle	!".	

• getC(id)	-	this	is	the	trusted-side	operation	for	retrieving	some	identifier	#!.	This	will	
produce	 a	 token	%	to	 be	 interpreted	 remotely,	 according	 to	 the	 crypto	mechanism	
employed.	

• getSdb(t)	 -	 this	 is	 the	 untrusted-side	 operation	 that	 will	 receive	 a	 token	 and,	
accordingly,	 retrieve	 the	 associated	 stored	 data	 (using	 oracle	!")	 required	 to	
respond	to	the	associated	get	request.	

• getCDecode('(, . . . , '+)	-	 this	 is	 the	 trusted-side	 operation	 that	 will	 receive	 the	
encodings	from	a	getSdb	call,	and	decode	accordingly	to	produce	a	result	consistent	
with	the	originally	requested	get	operation.	

• scanC(#!(, #!-)	-	 this	 is	 the	 trusted-side	operation	 that	 receives	 two	 identifiers	#!(,	
#!-,	 and	 produces	 a	 token	%	to	 be	 interpreted	 remotely,	 according	 to	 the	 crypto	
mechanism	 employed.	 This	%	can	 be	 seen	 as	 an	 encoded	 query	 to	 be	 given	 to	 the	
underlying	 technique,	 which	 will	 produce	 all	 entries	 between	#!(,	 inclusively,	 and	
#!-,	exclusively.	

• scanSdb(t)	-	this	is	the	untrusted-side	operation	that	will	receive	a	scan	query	token	
and,	 accordingly,	 retrieve	 the	 associated	 stored	 data	 (using	 oracle	!")	 required	 to	
respond	to	the	associated	scan	request.	

• scanCDecode('(, . . . , '+)	-	 this	 is	 the	 trusted-side	 operation	 that	 will	 receive	 the	
encodings	from	a	scanSdb	call,	and	decode	accordingly	to	produce	a	result	consistent	
with	the	originally	requested	scan	operation.	

	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 10	

In	 particular,	 these	 operations	 allow	 for	 the	 execution	 of	 the	 standard	NoSQL	API	 for	
Put,	 Get	 and	 Scan,	 as	 can	 be	 seen	 on	 Figure	 2.	 Put	will	 straightforwardly	 require	 a	
trusted-side	 operation	 for	 encoding	 the	 data,	 and	 an	 untrusted-side	 operation	 for	
storing	 it.	 Get	 will	 encode	 the	 identifier	 on	 the	 client	 side,	 which	 will	 produce	 some	
token	%	to	be	 then	appropriately	queried	on	 the	untrusted	side.	The	 resulting	encoded	
value	 is	 then	 returned	 to	 the	 client,	which	will	 decode	 it	 to	 obtain	 the	 output	 for	 the	
original	request	$.	Finally,	Scan	will	take	a	pair	of	identifiers	and	compute	a	token	for	the	
operation	 on	 the	 trusted	 side,	which	will	 then	 be	 processed	 on	 the	 untrusted	 side	 to	
generate	several	encodings.	These	encodings	will	be	given	back	to	 the	 trusted	side	 for	
decoding,	which	will	produce	the	set	of	values	matching	the	result	for	the	original	Scan	
operation.	
	

	
Figure	2:	Abstract	Cryptobox	

	
By	following	this	abstraction,	we	achieve	a	cryptographic	component	API	that	is	not	only	
generic	 enough	 to	 enable	 usage	 of	 the	 techniques	 referred	 to	 in	 deliverable	D3.2,	 but	
that	is	also	compatible	with	the	deployment	of	other	protocols	that	were	originally	not	
considered	 in	 the	 project.	 For	 instance,	 the	 proposal	 of	 Intel’s	 SGX	 trusted	 hardware	
[Intel14]	 is	 a	 recent	novelty	 for	 security	 approaches,	 and	 the	 associated	 formalization	
consists	of	an	even	more	recent	set	of	theoretical	security	analysis	[BPSW16,	PST16].		
	
This	 general	 description	 of	 components	 and	 behaviour	 becomes	 more	 familiar	 when	
each	operation	is	instantiated	according	to	the	associated	cryptographic	technique.	We	
will	now	show	how	this	 is	done	 for	each	considered	 technique.	Afterwards,	 this	set	of	
components	will	be	shown	in	the	context	of	the	overall	Secure	Queries	architecture,	and	
the	specific	implementations	are	then	detailed.	
	

2.1.1 Overview	

In	 order	 to	 prevent	 information	 leakage	 related	 to	 the	 length	 of	 the	 identifier	#!	and	
value	$,	client	methods	may	require	access	to	the	maximum	possible	values	of	#!	and	$,	
defined	 as	/0123 ,	/014,	respectively.	 	 The	 maximum	 possible	 value	 of	 encrypted	#!,	
/01523 ,	 can	also	be	needed	 to	produce	a	 token	when	all	 elements	are	 to	be	 returned.	
Pad	 is	a	 function	that	applies	padding	to	a	given	argument	and	 it	 is	also	assumed	that	
decryption	methods	remove	padding,	if	present.	Initialization	vectors	are	denoted	by	67.	
Secret	key	is	denoted	by	89	and	public	key	by	:9.	If	89;	and	:92 	share	the	same	index	it	
means	 that	 they	 are	 a	 key-pair.	 	 Throughout	 the	 following	 sections	 different	
instantiations	will	be	presented.	
	
2.1.2 Standard	encryption	

This	 section	 describes	 how	 the	 Standard	 Encryption	 technique	 can	 be	 instantiated	
accordingly	to	the	previously	defined	API.	<='>?@	and	AB'>?@	are	instantiated	with	AES-
GCM.		
	

1 SQ1 - 3.1

Put(id, v):

d1, . . . , dn putC(id, v)
putSdb

(d1, . . . , dn)

Get(id):

t getC(id)
c1, . . . , cn getSdb

(t)
v getCDecode(id, c1, . . . , cn)

Scan(id1, id2):

t scanC(id1, id2)
c1, . . . , cn scanSdb

(t)
v1, . . . , vn scanCDecode(id1, id2, c1, . . . , cn)

putC(id, v):

(IVid, IVv) ({0, 1}l, {0, 1}l)
cid IVid||EncSTD(SK, IVid,Pad(MAXid, id))
cv IVv||EncSTD(SK, IVv,Pad(MAXv, v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

t (MINcid,MAXcid + 1)

Return t

getSdb
((t1, t2)):

Return Scandb(t1, t2)

getCDecode(id, (cid1 , cv1), . . . , (cidn , cvn)):

For i 2 [1 . . . n]:
If id = DecSTD(SK, cidi):

Return DecSTD(SK, cvi)
Return ?

1

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 11	

	
Figure	3:	Put	operation	instantiation	for	standard	encryption	

	
In	Figure	3,	putC	performs	the	encryption	of	#!	and	$	after	padding	is	applied.	It	returns	
a	tuple	!(that	contains	'23 	and	'4 .	Given	'23 	and	'4 ,	putSDB	invokes	a	standard	key-value	
storage	operation,	putDB,	to	perform	the	insertion.	
	
The	instantiation	of	getC,	getSDB	and	getCDecode	is	the	following:	
	

	
Figure	4:		Get	operation	instantiation	for	standard	encryption	

	
In	 Figure	4	 getC	 returns	 a	 tuple	 that	 contains	 the	 minimum	 and	maximum,	 plus	 one,	
possible	value	of	 the	ciphertext	space	 for	 identifier	#!.	getSDB	returns	all	elements	 that	
are	within	 that	 interval.	 getCDecode	decrypts	and	compares	each	one	of	 the	 retrieved	
identifiers	 with	#! .	 If	#! 	and	 decrypted	#! 	are	 equal,	 the	 correspondent	 value	 is	
decrypted	and	returned.	If	#!	is	not	present	in	the	retrieved	data	set,	getCDecode	returns	
an	empty	value.	
	
The	instantiation	of	scanC,	scanSDB	and	scanCDecode	is	the	following:	
	

	
Figure	5:	Scan	operation	instantiation	for	standard	encryption	

	
In	Figure	5,scanC	and	scanSDB	are	identical	to	getC	and	getSDB,	respectively.	scanCDecode	
performs	 the	 decryption	 of	 each	 one	 of	 the	 encrypted	 identifiers	 and	 checks	 if	 it	 is	
greater	or	equal	 than	#!(and	 less	 than	#!-.	 If	 it	 is,	 it	decrypts	 the	correspondent	value	
and	adds	the	identifier	#!i	and	value	$i	to	list	C.	Otherwise,	no	operation	is	performed.	C	
is	returned	at	the	end.	
	
2.1.3 Deterministic	encryption	

This	section	describes	how	the	Deterministic	Encryption	technique	can	be	instantiated	
according	 to	 the	 previously	 defined	API.	<='>?�	and	AB'>?@	are	 instantiated	with	AES-
GCM	and	D	with	SHA256	[RS07].	
	

1 SQ1 - 3.1

Put(id, v):

d1, . . . , dn putC(id, v)
putSdb

(d1, . . . , dn)

Get(id):

t getC(id)
c1, . . . , cn getSdb

(t)
v getCDecode(id, c1, . . . , cn)

Scan(id1, id2):

t scanC(id1, id2)
c1, . . . , cn scanSdb

(t)
v1, . . . , vn scanCDecode(id1, id2, c1, . . . , cn)

putC(id, v):

(IVid, IVv) ({0, 1}l, {0, 1}l)
cid IVid||EncSTD(SK, IVid,Pad(MAXid, id))
cv IVv||EncSTD(SK, IVv,Pad(MAXv, v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

t (MINcid,MAXcid + 1)

Return t

getSdb
((t1, t2)):

Return Scandb(t1, t2)

getCDecode(id, (cid1 , cv1), . . . , (cidn , cvn)):

For i 2 [1 . . . n]:
If id = DecSTD(SK, cidi):

Return DecSTD(SK, cvi)
Return ?

1

1 SQ1 - 3.1

Put(id, v):

d1, . . . , dn putC(id, v)
putSdb

(d1, . . . , dn)

Get(id):

t getC(id)
c1, . . . , cn getSdb

(t)
v getCDecode(id, c1, . . . , cn)

Scan(id1, id2):

t scanC(id1, id2)
c1, . . . , cn scanSdb

(t)
v1, . . . , vn scanCDecode(id1, id2, c1, . . . , cn)

putC(id, v):

(IVid, IVv) ({0, 1}l, {0, 1}l)
cid IVid||EncSTD(SK, IVid,Pad(MAXid, id))
cv IVv||EncSTD(SK, IVv,Pad(MAXv, v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

t (MINcid,MAXcid + 1)

Return t

getSdb
((t1, t2)):

Return Scandb(t1, t2)

getCDecode(id, (cid1 , cv1), . . . , (cidn , cvn)):

For i 2 [1 . . . n]:
If id = DecSTD(SK, cidi):

Return DecSTD(SK, cvi)
Return ?

1

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

(IVid, IVv) (H(SK1||id), {0, 1}l)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
cv IVv||EncSTD(SK2, IVv,Pad(MAXv, v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

IVid H(SK1||id)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
Return cid

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

Return DecSTD(SK2, cv1)

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

IV {0, 1}l
cid EncOPE(SK1, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

Return EncOPE(SK1, id)

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

(·, v) DecSTD(SK2, cv1)
Return v

scanC(id1, id2):

cid1 EncOPE(SK1, id1)
cid2 EncOPE(SK1, id2)
Return (cid1 , cid2)

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
L DecSTD(SK2, cvi) : L

Return L

putC(id, v):

IV {0, 1}l
cid EncSE(PK, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

2

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 12	

	
Figure	6:	Put	operation	instantiation	for	deterministic	encryption	

	
In	Figure	6,	putC	performs	the	encryption	of	#!	with	using	a	constant	initialization	vector	
6723 .	The	encryption	of	$	uses	a	random	initialization	vector.	 It	 then	returns	a	 tuple	!(
that	 contains	�23 	and	'4 .	 Given	'23 	and	'4 	putS	 uses	 a	 standard	 key-value	 storage	
operation,	putDB,	to	perform	the	insertion	operation.	
	
The	instantiation	of	getC,	getSDB	and	getCDecode	is	the	following:	
	

	
Figure	7:	Get	operation	instantiation	for	deterministic	encryption	

	
In	 Figure	7,	 getC	 returns	 a	 token	 that	 corresponds	 to	 the	 deterministic	 encryption	 of	
identifier	#! .	 getSDB	 simply	 calls	 getDB	 with	 token	% ,	 since	 equality	 is	 preserved.	
getCDecode	will	then	decrypt	and	return	the	correspondent	value.	
	
The	instantiation	of	scanC,	scanSDB	and	scanCDecode	is	the	following:	
	

	
Figure	8:	Scan	operation	instantiation	for	deterministic	encryption	

	
Since	only	equality	is	preserved	when	using	a	deterministic	encryption	scheme,	in	Figure	
8,	scanSDB	must	return	all	key-value	pairs	in	order	to	scanCDecode	decrypt	and	compare	
them	on	the	trusted	side.		
	
2.1.4 Order-preserving	encryption	

This	 section	 describes	 how	 the	 Order-preserving	 Encryption	 technique	 can	 be	
instantiated	 accordingly	 to	 the	 previously	 defined	API.	<='EFG 	is	 instantiated	with	 the	
technique	presented	in	[BCLO09].	
	

	
Figure	9:	Put	operation	instantiation	for	order-preserving	encryption	

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

(IVid, IVv) (H(SK1||id), {0, 1}l)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
cv IVv||EncSTD(SK2, IVv,Pad(MAXv, v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

IVid H(SK1||id)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
Return cid

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

Return DecSTD(SK2, cv1)

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

IV {0, 1}l
cid EncOPE(SK1, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

Return EncOPE(SK1, id)

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

(·, v) DecSTD(SK2, cv1)
Return v

scanC(id1, id2):

cid1 EncOPE(SK1, id1)
cid2 EncOPE(SK1, id2)
Return (cid1 , cid2)

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
L DecSTD(SK2, cvi) : L

Return L

putC(id, v):

IV {0, 1}l
cid EncSE(PK, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

2

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

(IVid, IVv) (H(SK1||id), {0, 1}l)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
cv IVv||EncSTD(SK2, IVv,Pad(MAXv, v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

IVid H(SK1||id)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
Return cid

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

Return DecSTD(SK2, cv1)

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

IV {0, 1}l
cid EncOPE(SK1, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

Return EncOPE(SK1, id)

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

(·, v) DecSTD(SK2, cv1)
Return v

scanC(id1, id2):

cid1 EncOPE(SK1, id1)
cid2 EncOPE(SK1, id2)
Return (cid1 , cid2)

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
L DecSTD(SK2, cvi) : L

Return L

putC(id, v):

IV {0, 1}l
cid EncSE(PK, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

2

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

(IVid, IVv) (H(SK1||id), {0, 1}l)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
cv IVv||EncSTD(SK2, IVv,Pad(MAXv, v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

IVid H(SK1||id)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
Return cid

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

Return DecSTD(SK2, cv1)

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

IV {0, 1}l
cid EncOPE(SK1, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

Return EncOPE(SK1, id)

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

(·, v) DecSTD(SK2, cv1)
Return v

scanC(id1, id2):

cid1 EncOPE(SK1, id1)
cid2 EncOPE(SK1, id2)
Return (cid1 , cid2)

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
L DecSTD(SK2, cvi) : L

Return L

putC(id, v):

IV {0, 1}l
cid EncSE(PK, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

2

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

(IVid, IVv) (H(SK1||id), {0, 1}l)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
cv IVv||EncSTD(SK2, IVv,Pad(MAXv, v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

IVid H(SK1||id)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
Return cid

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

Return DecSTD(SK2, cv1)

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

IV {0, 1}l
cid EncOPE(SK1, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

Return EncOPE(SK1, id)

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

(·, v) DecSTD(SK2, cv1)
Return v

scanC(id1, id2):

cid1 EncOPE(SK1, id1)
cid2 EncOPE(SK1, id2)
Return (cid1 , cid2)

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
L DecSTD(SK2, cvi) : L

Return L

putC(id, v):

IV {0, 1}l
cid EncSE(PK, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

2

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 13	

	
In	 Figure	 9,	 putC	 performs	 the	 order-preserving	 encryption	 of	#! 	and	 also	 of	#!	
concatenated	 with	$.	 The	 reason	 of	 why	#! 	is	 encrypted	 twice	 is	 because	 it	 is	
computationally	inefficient	to	decrypt	order-preserving	encrypted	values.	putC	returns	a	
tuple	!(that	contains	'23 	and	'4 .	Given	'23 	and	'4	putS	uses	a	standard	key-value	storage	
operation,	putDB,	to	perform	the	insertion	operation.	
	
	

	
Figure	10:	Get	operation	instantiation	for	order-preserving	encryption	

	
The	instantiation	of	getC,	getSDB	and	getCDecode	is	described	in	Figure	10.	GetC	returns	a	
token	that	corresponds	to	the	order-preserving	encryption	of	identifier	#!.	getSDB	simply	
calls	 getDB	with	 token	%,	 since	equality	 is	preserved.	 getCDecode	will	 then	decrypt	and	
return	the	correspondent	value.	
	
	

	
Figure	11:	Scan	operation	instantiation	for	order-preserving	encryption	

	
The	 instantiation	 of	 scanC,	 scanSDB	 and	 scanCDecode	 is	 depicted	 in	 Figure	11.	 ScanC	
returns	 an	 order-preserving	 encryption	 of	#!(and	#!-,	which	 allows	 scanSDB	 to	 return	
only	the	necessary	elements.	scanCDecode	decrypts	the	retrieved	elements.	
	

2.1.5 Searchable	encryption	

This	 section	 describes	 how	 the	 Searchable	 Encryption	 technique	 can	 be	 instantiated.	
<='>G ,	HB�IJKB=>G 	and	LMBNO>G 	can	be	 instantiated	using	 the	 techniques	described	 in	
[BW07].	
	

	
Figure	12:	Put	operation	instantiation	for	searchable	encryption	

	
In	Figure	12,putC	performs	the	encryption	of	#!	and	$	using	the	correspondent	methods.	
It	returns	a	tuple	!(that	contains	'23 	and	'4 .	Given	'23 	and	'4	putS	uses	a	standard	key-
value	storage	operation,	putDB,	to	perform	the	insertion	operation.	
	
The	instantiation	of	getC,	getSDB	and	getCDecode	is	the	following:	
	

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

(IVid, IVv) (H(SK1||id), {0, 1}l)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
cv IVv||EncSTD(SK2, IVv,Pad(MAXv, v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

IVid H(SK1||id)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
Return cid

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

Return DecSTD(SK2, cv1)

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

IV {0, 1}l
cid EncOPE(SK1, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

Return EncOPE(SK1, id)

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

(·, v) DecSTD(SK2, cv1)
Return v

scanC(id1, id2):

cid1 EncOPE(SK1, id1)
cid2 EncOPE(SK1, id2)
Return (cid1 , cid2)

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
L DecSTD(SK2, cvi) : L

Return L

putC(id, v):

IV {0, 1}l
cid EncSE(PK, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

2

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

(IVid, IVv) (H(SK1||id), {0, 1}l)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
cv IVv||EncSTD(SK2, IVv,Pad(MAXv, v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

IVid H(SK1||id)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
Return cid

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

Return DecSTD(SK2, cv1)

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

IV {0, 1}l
cid EncOPE(SK1, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

Return EncOPE(SK1, id)

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

(·, v) DecSTD(SK2, cv1)
Return v

scanC(id1, id2):

cid1 EncOPE(SK1, id1)
cid2 EncOPE(SK1, id2)
Return (cid1 , cid2)

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
L DecSTD(SK2, cvi) : L

Return L

putC(id, v):

IV {0, 1}l
cid EncSE(PK, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

2

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

(IVid, IVv) (H(SK1||id), {0, 1}l)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
cv IVv||EncSTD(SK2, IVv,Pad(MAXv, v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

IVid H(SK1||id)
cid IVid||EncSTD(SK2, IVid,Pad(MAXid, id))
Return cid

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

Return DecSTD(SK2, cv1)

scanC(id1, id2):

t (MINcid,MAXcid + 1)

Return t

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
If id1 (idi DecSTD(SK, cidi)) < id2:

L (idi,DecSTD(SK, cvi)) : L
Return L

putC(id, v):

IV {0, 1}l
cid EncOPE(SK1, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

getC(id):

Return EncOPE(SK1, id)

getSdb
(t):

Return Getdb(t)

getCDecode(id, cv1):

(·, v) DecSTD(SK2, cv1)
Return v

scanC(id1, id2):

cid1 EncOPE(SK1, id1)
cid2 EncOPE(SK1, id2)
Return (cid1 , cid2)

scanSdb
((t1, t2)):

Return Scandb(t1, t2)

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
L DecSTD(SK2, cvi) : L

Return L

putC(id, v):

IV {0, 1}l
cid EncSE(PK, id)
cv IV||EncSTD(SK2, IV,Pad(MAXid +MAXv, id||v))
Return (cid, cv)

putSdb
((cid, cv)):

Putdb(cid, cv)

2

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 14	

	
Figure	13:	Get	operation	instantiation	for	searchable	encryption	

	
In	 Figure	13,	 getC	 uses	HB=IJKB=>G 	to	 create	 a	 special	 search	 token	%23 	that	 contains	 a	
predicate	that	will	be	used	by	LMBNO>G 	to	check	if	a	given	ciphertext	corresponds	to	the	
requested	identifier	#!.	getCDecode	simply	decrypts	the	returned	value.	
	
	

	
Figure	14:	Scan	operation	instantiation	for	searchable	encryption	

	
In	Figure	14,	 scanC	 returns	a	 token	 that	basically	encodes	 the	predicates	>= #!(and	<
#!-,	 which	 allows	 scanSDB	 to	 return	 only	 the	 corresponding	 elements.	 scanCDecode	
decrypts	the	retrieved	elements.	
	

2.2 Deployment	

Any	 application	 that	 wants	 to	 integrate	 SafeCloud	 secure	 queries	 solutions	 has	 two	
distinct	APIs	available.	It	can	use	either	a	SQL	interface	or	a	NoSQL	one.	For	Solution	1:	
Secure	 database	 server	 in	 particular,	 SafeCloud	 will	 provide	 almost	 full	 SQL	
compatibility	 and	 a	 full	 HBase-like	 NoSQL	 interface.	 The	 extent	 of	 the	 restrictions	 on	
SQL	 compliance	 are	 out	 of	 the	 scope	 of	 the	 present	 deliverable.	 They	 are	 partially	
addressed	in	D3.4	and	will	also	be	extensively	addressed	in	future	deliverables.		
	
To	offer	a	SQL	and	NoSQL	integration	for	the	client	application,	SafeCloud	solutions	are	
deployed	 across	 two	 main	 sites	 (one	 trusted	 site	 and	 one	 untrusted	 site).	 Figure	15	
depicts	an	high	level	overview	of	such	deployment	scheme.		
	

getC(id):

tid GenTokenSE(SK, id)
Return tid

getSdb
(t):

For (cidi , cvi) 2 db:
If QuerySE(t, cidi) :

Return (cidi , cvi)
Return ?

getCDecode(id, cv1):

Return DecSTD(SK2, cv1)

scanC(id1, id2):

tid GenTokenSE(SK, (id1, id2))
Return tid

scanSdb
(t):

L []

For (cidi , cvi) 2 db:
If QuerySE(t, cidi):

L (cidi , cvi) : L
Return L

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
L DecSTD(SK2, cvi) : L

Return L

3

getC(id):

tid GenTokenSE(SK, id)
Return tid

getSdb
(t):

For (cidi , cvi) 2 db:
If QuerySE(t, cidi) :

Return (cidi , cvi)
Return ?

getCDecode(id, cv1):

Return DecSTD(SK2, cv1)

scanC(id1, id2):

tid GenTokenSE(SK, (id1, id2))
Return tid

scanSdb
(t):

L []

For (cidi , cvi) 2 db:
If QuerySE(t, cidi):

L (cidi , cvi) : L
Return L

scanCDecode(id1, id2, (cid1 , cv1), . . . , (cidn , cvn)):

L []

For i 2 [1 . . . n]:
L DecSTD(SK2, cvi) : L

Return L

3

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 15	

	
Figure	15:	High	level	overview	of	Solution	1:	Secure	database	server	deployment	scheme	
	
Concretely,	the	client	application	has	access	to	the	trusted	deployment	site	where	it	can	
issue	requests	to	the	desired	API	-	SQL	or	NoSQL.	When	the	application	is	using	the	SQL	
interface,	 a	 query	 processing	 component	 is	 used,	 which	 translates	 the	 application	
queries	into	NoSQL	ones.	If	not	the	application	can	directly	issue	NoSQL	request	to	the	
SafeCloud	system.		
	
Upon	the	reception	of	a	NoSQL	request	(put,	get	or	scan)	a	SafeCloud	CryptoWorker	will	
be	called	to	handle	it.	These	CryptoWorker	components	are	installed	in	the	same	site	as	
the	interface	handles	and	query	processing	components,	 i.e.,	all	 in	the	trusted	site.	The	
main	 job	of	 the	CryptoWorker	 is,	 according	 to	 its	 configuration,	 translate	 the	 received	
NoSQL	 operations	 into	 SafeCloud	 operations	 as	 described	 in	 Section	 2.1.	 These	
operations	 are	 putC,	 getC,	 getCDecode,	 scanC,	 scanCDecode,	 putS,	 getS	 and	 scanS.	
Depending	on	the	configured	technique,	each	CryptoWorker	will	issue	these	operations	
following	a	specific	workflow	that	allows	secure	data	processing	at	 the	untrusted	site.	
These	workflows	can	be	revisited	in	the	Section	2.1.	
	
Having	translated	NoSQL	operations	into	SafeCloud	workflow	operations,	the	untrusted	
site	CryptoWorkers	will	perform	the	converse	 task:	 they	handle	SafeCloud	operations,	
translating	 them	 to	 operations	 the	 NoSQL	 database	 can	 process.	 To	 achieve	 this	 two	
components	must	be	deployed	on	the	untrusted	site:	a	SafeCloud	CryptoWorker	and	a	
NoSQL	database.	 In	detail,	considering	the	SafeCloud	prototypes,	 this	means	having	an	
HBase	deployment.	Moreover,	 in	order	 to	 improve	 the	performance	of	 the	system	and	
leveraging	 specific	 characteristics	 of	 this	 database,	 SafeCloud	 CryptoWorkers	 are	
deployed	as	HBase	co-processors	thus	running	collocated	with	HBase	Region	Servers.		
	
In	 Figure	16	 we	 depict	 the	 concrete	 deployment	 of	 the	 SafeCloud	 Solution	 1:	 Secure	
database	server	system.	
	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 16	

	

	
Figure	16:	Concrete	SafeCloud	deployment	for	Solution	1:	Secure	database	server	

	
More	 details	 regarding	 this	 architecture	 refinement,	 including	 cryptographic	
components	 for	 NoSQL	 translation	 and	 how	 these	 are	 instantiated	 in	 the	 current	
prototype,	can	be	read	in	D3.3.	
	

2.3 Security	guarantees	

Deliverable	 D3.2	 presented	 a	 state-of-the-art	 analysis	 regarding	 privacy-preserving	
techniques	 that	 could	be	deployed	 for	 the	SafeCloud	 framework.	The	security	analysis	
and	 evaluation	 of	 such	 techniques	 and	 the	 feasibility	 of	 their	 implementations	 is	
inherently	 associated	with	 the	 power	 of	 the	 system’s	 adversary.	 To	 rigorously	 define	
such	 behaviour,	 the	 adversary	 is	 assumed	 to	 be	 a	 monolithic	 entity	 that	 may	 be	
corrupting	multiple	participants	and/or	eavesdropping	communication	channels,	which	
is	 a	 strictly	 stronger	 (and	 simpler)	 model	 than	 considering	multiple	 adversaries	 that	
might	act	in	a	coordinated	way.	Furthermore,	the	adversarial	power	considered	can	also	
be	specified	over	multiple	axis,	as	described	in	Deliverable	D3.2,	which	are	now	recalled:		
• The	adversary	can	be	active,	which	implies	an	arbitrary	behaviour	regardless	of	the	

expected	 protocol,	 covert,	 also	 acting	 arbitrarily	 but	 adverse	 to	 a	 meaningful	
possibility	of	getting	caught,	and	semi-honest,	following	the	specified	protocol	while	
attempting	to	obtain	additional	information	from	the	message	transcript	[AL07].	

• The	adversary	can	perform	corruptions	statically,	i.e.,	the	set	of	corrupt	participants	
is	 established	 prior	 to	 the	 protocol,	 and	 remains	 unchanged	 throughout,	 or	
adaptively,	 i.e.,	 corruptions	of	participants	 can	occur	during	 the	protocol,	 based	on	
data	gathered	by	the	adversary	during	its	execution	[DN14].	

• The	type	of	corruptions	can	also	vary	depending	on	the	considered	system.	Snapshot	
corruptions	 imply	 that	an	adversary	receives	a	snapshot	of	 the	entire	data	held	by	
the	 corrupt	 party,	 while	 persistent	 corruptions	 mean	 that	 an	 adversary	 is	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 17	

additionally	 capable	 of	 taking	 control	 of	 the	 corrupt	 party	 operations	 from	 the	
moment	of	corruption	onwards	[PBP16].	

	
For	 Solution	 1:	 Secure	 database	 server	 specifically,	 we	 consider	 an	 adversary	 that	
corrupts	 the	 untrusted	 deployment	 side.	 The	 corruption	 will	 always	 be	 static	 in	 this	
sense,	as	there	are	no	additional	untrusted	participants,	but	adversarial	power	and	type	
of	corruptions	can	still	depend	on	the	underlying	technique.	Given	the	API	presented	in	
Section	3.1,	we	can	now	specify	what	a	SafeCloud	adversary	can	see	in	the	context	of	our	
cryptographic	 implementations.	This	 is	 defined	 exactly	 as	 the	data	 sent	 to	 (and	 from)	
untrusted	 operations	 putS,	 getS	 and	 scanS,	 as	 well	 as	 the	 database	 in	 the	 untrusted	
environment,	 as	 depicted	 in	 Figure	17.	 Our	 security	 analysis	 for	 SafeCloud	 techniques	
will	 take	 these	 adversary	 definitions	 into	 consideration,	 and	 will	 be	 performed	 at	 a	
technique-by-technique	 basis.	 This	 will	 allow	 for	 a	 more	 detailed	 evaluation	 of	
adversarial	 assumptions,	 leakage,	 and	 security	 requirements	 assessment.	 Afterwards,	
we	reason	over	the	applicability	of	the	different	proposed	protocols	for	meeting	security	
criteria	required	from	real-world	solutions.	
	

	
Figure	17:	Adversarial	model	for	Solution	1:	Secure	database	server	

	
2.3.1 Standard	encryption	

By	 employing	 a	 standard	 encryption	 scheme,	 we	 are	 allowing	 for	 the	 adversary	 to	
persistently	corrupt	our	untrusted	deployment	in	an	active	way.	More	specifically,	we	are	
implementing	 scheme	 AES-GCM,	 which	 satisfies	 the	 standard	 security	 guarantees	
required	 for	 symmetric	 encryption	 schemes.	 More	 formally,	 our	 guarantees	 obtained	
from	 our	 implementation	 can	 be	 inferred	 from	 the	 fact	 that	 our	 scheme	S	provides	
security	under	chosen-ciphertext	attacks	(IND-CCA)	 [GM82]	against	some	Probabilistic	
Polynomial	Time	(PPT)	adversary	T,	as	detailed	in	Figure	18.	
	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 18	

The	 experiment	 behaves	 as	 follows.	 First,	 a	 key	 is	 generated,	 and	 a	 coin	 is	 flipped.	
Afterwards,	 the	 adversary	 is	 given	 the	 possibility	 of	 encrypting	 plaintexts	 and	
decrypting	 ciphertexts	 arbitrarily,	 towards	 producing	 two	 challenge	messages	m0	 and	
m1.	A	message	is	encrypted	according	to	the	secret	coin	flip,	and	the	resulting	ciphertext	
is	delivered	to	the	adversary.	The	adversary	wins	if	he	can	guess	the	plaintext	associated	
with	 the	 received	 ciphertext	 (the	 coin	 flip	 result),	 which	 implies	 that	 it	 was	 able	 to	
extract	 some	 information	about	 the	 received	 ciphertext	without	 ever	having	 access	 to	
the	secret	key.	Note	that,	despite	being	able	to	query	decryptions,	the	adversary	is	not	
supposed	to	decrypt	the	received	ciphertext	 '’	! = 	' .	
	

	
Figure	18:	Game	IND-CCA.	

	
Given	that	the	data	provided	to	PutS,	GetS	and	ScanS	consists	of	messages	produced	by	
Encrypt,	and	given	that	the	key	remains	on	the	trusted	side	at	all	times,	we	can	ensure	
that	our	adversary	will	not	be	able	to	infer	any	useful	information	from	the	ciphertexts	
received,	 under	 the	 classical	 security	 definitions.	 More	 specifically,	 we	 have	 that	 the	
advantage	 of	 adversary	 T 	against	 our	 SafeCloud	 deployment	 8IA<=' 	to	 infer	
information	from	received	inputs	is	upper	bounded	by	the	existence	some	adversary	T	
breaking	IND-CCA	on	our	scheme.		
	

2.3.2 Deterministic	encryption	

The	usage	of	deterministic	encryption	allows	 the	adversary	 to	persistently	 corrupt	our	
untrusted	deployment	in	an	active	way.	We	infer	the	security	guarantees	obtained	from	
the	specification	of	our	scheme,	detailed	 in	Section	3.1.	More	 formally,	we	present	 the	
security	properties	of	our	deterministic	scheme	W	under	ciphertext	indistinguishability	
for	 deterministic	 encryption	:X67	against	 some	PPT	 adversary	T,	 as	 detailed	 in	Figure	
19.	
	

	
Figure	19:	Game	PRIV.	

	
The	 experiment	 behaves	 as	 follows.	 First,	 a	 key	 is	 generated	 and	 a	 coin	 is	 flipped.	
Afterwards,	 the	 adversary	 is	 given	 the	 possibility	 of	 encrypting	 plaintexts	 and	

2 SQ1 - 3.3

game IND-CCA

S,A
:

k S.Gen(1

l
)

b {0, 1}
(m0,m1) AEnc,Dec

1 (1

l
)

c S.Encrypt(k,mb)

b0 AEnc,Dec
2 (c)

Return b = b0

Enc(m):

c S.Encrypt(k,m)

Return c

Dec(c0):

If c0 6= c:
Return S.Decrypt(k, c0)

Return ?

game PRIV

D,A
:

L []

k D.Gen(1

l
)

b {0, 1}
(m0,m1) AEnc,Dec

1 (1

l
)

c D.Encrypt(k,mb)

b0 AEnc,Dec
2 (c)

If (m0 2 L _m1 2 L):
Return F

Return b = b0

Enc(m):

L m : L
c D.Encrypt(k,m)

Return c

Dec(c0):

If c0 6= c:
Return D.Decrypt(k, c0)

Return ?

game Wow

O,A
(r, z):

k O.Gen(1

l
)

m1, . . . ,mz UGenM(z)
For i 2 [1 . . . z]:

ci O.Enc(k,mi)

(ml,mr) A1(c1, . . . , cz)
If ((mr �ml) mod M+ 1 r) ^ (9m 2 {m1, . . . ,mz} : m 2 [ml, . . . ,mr])

Return T
Return F

4

2 SQ1 - 3.3

game IND-CCA

S,A
:

k S.Gen(1

l
)

b {0, 1}
(m0,m1) AEnc,Dec

1 (1

l
)

c S.Encrypt(k,mb)

b0 AEnc,Dec
2 (c)

Return b = b0

Enc(m):

c S.Encrypt(k,m)

Return c

Dec(c0):

If c0 6= c:
Return S.Decrypt(k, c0)

Return ?

game PRIV

D,A
:

L []

k D.Gen(1

l
)

b {0, 1}
(m0,m1) AEnc,Dec

1 (1

l
)

c D.Encrypt(k,mb)

b0 AEnc,Dec
2 (c)

If (m0 2 L _m1 2 L):
Return F

Return b = b0

Enc(m):

L m : L
c D.Encrypt(k,m)

Return c

Dec(c0):

If c0 6= c:
Return D.Decrypt(k, c0)

Return ?

game Wow

O,A
(r, z):

k O.Gen(1

l
)

m1, . . . ,mz UGenM(z)
For i 2 [1 . . . z]:

ci O.Enc(k,mi)

(ml,mr) A1(c1, . . . , cz)
If ((mr �ml) mod M+ 1 r) ^ (9m 2 {m1, . . . ,mz} : m 2 [ml, . . . ,mr])

Return T
Return F

4

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 19	

decrypting	 ciphertexts	 arbitrarily,	 towards	 producing	 two	 challenge	messages	YZ	and	
Y(.	 The	 adversary	 wins	 if	 it	 guesses	 correctly	 the	 result	 of	 the	 coin	 flip,	 given	 the	
associated	 received	 ciphertext.	 Since	 the	 scheme	 implies	 a	 deterministic	 encryption	
scheme,	 the	adversary	 is	prevented	 from	querying	encryptions	of	any	of	 the	challenge	
messages	YZ	or	Y(.	
	
Observe	 that,	 contrary	 to	 the	 previous	 argument,	 we	 can	 no	 longer	 claim	 that	 the	
adversary	 is	 unable	 to	 infer	 any	 useful	 information	 from	 the	 ciphertexts.	 In	 fact,	 the	
adversary	will	be	able	to	know	exactly	which	duplicate	ciphertexts	exist	in	the	system,	
which	is	a	bad	event	in	experiment	:X67,	bound	by	excluding	(YZ ∈ C#\%	 ∨ 	Y(∈ C#\%)	
[BBO07].	 As	 such,	we	 have	 that	 the	 advantage	 of	T	against	 our	 SafeCloud	 deployment	
A<I<='	to	 infer	 information	 from	 non-duplicate	 inputs	 is	 upper-bounded	 by	 the	
existence	some	T	breaking	the	security	property	of	our	scheme.		
	

2.3.3 Order-preserving	encryption	

The	usage	of	 order-preserving	encryption	allows	 the	 adversary	 to	persistently	 corrupt	
our	untrusted	deployment	 in	a	semi-honest	way.	Order-preserving	encryption	schemes	
fundamentally	 leak	 information	regarding	distance	among	plaintexts.	As	such,	security	
of	 our	order-preserving	 encryption	 scheme	 follows	 the	 analysis	presented	 in	[BCO11],	
ensuring	 two	 general	 security	 properties	 in	 this	 context:	 window	 one-wayness,	 and	
window	distance	one-wayness.	We	now	present	the	security	definitions	referring	to	our	
scheme,	and	discuss	their	implications.	
	
Window	 one-wayness	 (WOW)	 evaluates	 the	 one-wayness	 of	 an	 order-preserving	
scheme,	 i.e.,	 if	 an	 adversary	 that	 is	 given	 a	 set	 of	 ciphertexts	 is	 capable	 of	 accurately	
guessing	an	 interval	within	one	of	 the	underlying	plaintext	 lies.	More	specifically,	 let	N	
define	 an	 interval	 size,	 and	 let	^	define	 the	 number	 of	 uniformly	 generated	 encrypted	
messages	 received	 by	 the	 adversary	T.	 We	 say	 that	 our	 order-preserving	 encryption	
scheme	_ 	satisfies	N, ^ -WOW	 if	 the	 probability	 for	 an	 adversary	T 	to	 produce	 a	
successful	result	is	negligible	for	some	value	`,	
	

:N[bJcE,d
e,f = 1] 	< `	

	
where	 the	security	experiment	 is	detailed	 in	Figure	20,	 and	behaves	as	 follows.	First,	a	
key	is	generated	and	a	set	of	^	messages	is	sampled	uniformly	from	the	message	space,	
which	will	then	be	encrypted	and	given	to	the	adversary.	The	adversary	wins	if	it	is	able	
to	 guess	 an	 interval	 over	 which	 some	 original	 plaintext	 message	 resides(∃Y ∈
{Y(, . . . , Yf} ∶ 		Y ∈ [Ym,Ye]),	 which	 implies	 the	 adversary	 was	 able	 to	 extract	 some	
information	from	the	set	of	received	ciphertexts.	
	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 20	

	
Figure	20:	Game	Wow.	

	
Window	 distance	 one-wayness	 (WDOW)	 evaluates	 the	 extent	 to	 which	 an	 order-
preserving	 encryption	 scheme	 is	 expected	 to	 leak	 the	 distance	 between	 underlying	
plaintexts.	More	specifically,	let	N	define	an	interval	size,	and	let	^	define	the	number	of	
uniformly	generated	encrypted	messages	received	by	the	adversary	T.	We	say	that	our	
order-preserving	 encryption	 scheme	_	satisfies	N, ^-WDOW	 if	 the	 probability	 for	 an	
adversary	T	to	produce	a	successful	result	is	negligible	for	some	value	`.	
	

:N[b!JcE,d
e,f = 1] 	< `	

	
The	security	experiment	is	detailed	in	Figure	21,	where	/	is	the	plaintext	message	space,	
behaving	 as	 follows.	 First,	 the	 key	 is	 generated,	 and	 a	 set	 of	^	messages	 is	 uniformly	
sampled	 from	 the	 message	 space,	 which	 will	 then	 be	 encrypted	 and	 given	 to	 the	
adversary.	 The	 adversary	wins	 if	 it	 is	 able	 to	 guess	 an	 interval	 separating	 two	 of	 the	
originally	 given	 plaintext	 messages (∃Y2,Yn ∈ {Y(, . . . , Yf} ∶ 		 |Y2 − Yn| ∈ [!(, !-]) ,	
which	implies	the	adversary	was	ample	to	extract	some	information	regarding	plaintext	
distance	from	the	set	of	received	ciphertexts.	
	

	
Figure	21:	Game	Wdow.	

	
Contrary	to	the	previous	definitions,	the	leakage	of	order-preserving	schemes	is	harder	
to	quantify,	since	one	cannot	easily	employ	classical	definitions	of	security.	 Informally,	
one	should	expect	 these	schemes	 to	 leak	some	non-negligible	amount	of	data	 for	real-
world	 adversaries	 on	 databases	 sufficiently	 large.	 This	 is	 a	 direct	 consequence	 of	 the	
lower-bounds	 established	 in	[BCO11],	 which	 are	 shown	 to	 be	 fundamentally	 the	 best	
possible	 for	 a	 scheme	 that	 enables	 order-preserving	 encryption.	 To	 illustrate	 these	

2 SQ1 - 3.3

game IND-CCA

S,A
:

k S.Gen(1

l
)

b {0, 1}
(m0,m1) AEnc,Dec

1 (1

l
)

c S.Encrypt(k,mb)

b0 AEnc,Dec
2 (c)

Return b = b0

Enc(m):

c S.Encrypt(k,m)

Return c

Dec(c0):

If c0 6= c:
Return S.Decrypt(k, c0)

Return ?

game PRIV

D,A
:

L []

k D.Gen(1

l
)

b {0, 1}
(m0,m1) AEnc,Dec

1 (1

l
)

c D.Encrypt(k,mb)

b0 AEnc,Dec
2 (c)

If (m0 2 L _m1 2 L):
Return F

Return b = b0

Enc(m):

L m : L
c D.Encrypt(k,m)

Return c

Dec(c0):

If c0 6= c:
Return D.Decrypt(k, c0)

Return ?

game Wow

O,A
(r, z):

k O.Gen(1

l
)

m1, . . . ,mz UGenM(z)
For i 2 [1 . . . z]:

ci O.Enc(k,mi)

(ml,mr) A1(c1, . . . , cz)
If ((mr �ml) mod M+ 1 r) ^ (9m 2 {m1, . . . ,mz} : m 2 [ml, . . . ,mr])

Return T
Return F

4

game Wdow

O,A
(r, z):

k O.Gen(1

l
)

m1, . . . ,mz UGenM(z)
For i 2 [1 . . . z]:

ci O.Enc(k,mi)

(d1, d2) A1(c1, . . . , cz)
If ((d1 � d2) + 1 r) ^ (9mi,mj 2 {m1, . . . ,mz} : |mi �mj | 2 [d1, . . . , d2])

Return T
Return F

5

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 21	

limitations,	 for	 an	 adversary	 guessing	 the	 exact	 value	 of	 the	 plaintext,	 we	 have	 an	
adversarial	advantage	defined	as	
	

0!$E,d
(,fqrsr <

9^
/ − ^ + 1

	

	
which	essentially	entails	 that	the	challenge	set	size	^	should	be	small	 in	comparison	to	
the	 plaintext	 message	 space	 size	/.	 Furthermore,	 and	 to	 prevent	 attacks	 where	
adversaries	have	additional	 information	regarding	the	context	of	stored	data	(e.g.	 they	
are	aware	 that	 some	hospital	dataset	 contains	 sensitive	 information	 regarding	patient	
age),	 one	 should	 also	 ensure	 that	 the	 set	 of	 data	 encrypted	 with	 order-preserving	
encryption	is	close	to	an	uniform	distribution,	so	as	to	avoid	potential	inference	attacks	
[NKW15],	 which	 are	 outside	 the	 scope	 of	 these	 definitions	 (the	 adversary	 receives	
uniformly	generated	plaintexts).	
	
2.3.4 Searchable	encryption	

The	usage	of	 searchable	 encryption	provides	 a	different	 level	 of	 security	depending	 if	
the	 semi-honest	adversary	performs	corruptions	persistently,	 or	 in	a	 snapshot	way.	For	
snapshot	corruptions,	schemes	for	searchable	encryption	provide	security	similar	to	the	
usage	of	 standard	encryption	 (following	 the	 IND-CCA	model),	 since	 the	adversary	will	
only	compute	over	an	encrypted	database,	disregarding	execution	queries.	For	persistent	
attackers,	leakage	will	be	dependent	on	operations	performed,	and	is	thus	parametrized	
by	the	operations	made	available	[HK14]:	putS	and	scanS,	in	this	case.	
	
As	 such,	 we	 define	 the	 overall	 leakage	 considering	 a	 set	 of	 leakage	 functions	Cvwx ,	
CyzxandC{5|+,	such	that	
	

Cyzx(#!, $) = (}B=(#!), 8X~Dx(#!))		
Cvwx(#!) 	= 	0~~:x(#!, #!)	

C{5|+(#!(, #!-) 	= 	0~~:x(#!(, #!-)	
	
where	#!	is	 the	 set	 of	 unique	 searchable	 keywords	 in	#!,	0~~:x(#!(, #!-)	is	 the	 access	
pattern	at	time	t	defined	as	the	set	of{6A(#2): #2 ∈ [#!(, #!-]},	and	8X~Dx(#!)is	the	set	of	
entries	for	all	searched	terms	until	time	t	that	also	appear	in	#!.	
	
The	quantification	of	leakage	towards	a	persistent	attacker	can	be	calculated	directly	by	
adding	the	leakage	of	9insertions,	/	gets	and	Ä	scans:	

C{Å{xwÇ = Cyzx(#!É, $É) + Cvwx(#!Ç) + C{5|+(#!+Ñ, #!+Ö)
Ü

+á(

Ü

Çá(

à

Éá(

	

	
Intuitively	 this	 implies	 that	 as	 the	 number	 of	 queries	 observed	 by	 the	 adversary	
increases,	the	security	of	a	searchable	encryption	will	become	more	and	more	similar	to	
the	 one	 provided	 by	 an	 order-preserving	 encryption	 scheme,	 as	 the	 adversary	 will	
eventually	have	access	patterns	0~~:x	for	all	searchable	keywords	on	the	database.		As	
such,	feasibility	of	searchable	encryption	schemes	is	dependent	on	two	main	criteria.	If	
the	 corruptions	 can	be	modelled	as	 snapshots,	 then	 the	 security	 is	 similar	 to	 standard	
encryption,	 while	 providing	 strictly	 better	 functional	 properties.	 Otherwise,	 our	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 22	

searchable	 encryption	 scheme	 presents	 a	 security	 middle-ground	 between	 standard	
encryption	and	order-preserving	encryption.	
	
2.3.5 Discussion	

The	 refinements	 of	 these	 security	 trade-offs	will	 allow	 SafeCloud	 solutions	 to	 remain	
secure	according	to	the	use	case	security	requirements	while	maximizing	efficiency.	For	
instance,	 if	 only	 equality	 computations	 are	 required,	 then	 employing	 Deterministic	
Encryption	 allows	us	 to	 have	 a	 system	with	 stronger	 security	 guarantees	 than	Order-
Preserving	 encryption.	 Furthermore,	 if	 the	 system	 considers	 only	 snapshot	 attackers,	
then	 employing	 Searchable	 Encryption	 schemes	 allows	 for	 ciphertext	
indistinguishability,	since	leakage	is	only	associated	with	access	patterns	from	putS,	getS	
and	scanS,	which	are	not	provided	to	this	specific	kind	of	adversary.	This	 level	of	 fine-
grained	 optimization	 will	 typically	 translate	 into	 an	 extension	 of	 the	 database	
description	 to	 be	 stored	 and	 managed	 to	 specify	 the	 security	 guarantees/operations	
required	of	each	data	type.	
	
By	 having	 these	 levels	 of	 security	 defined	 by	 the	 different	 underlying	 cryptographic	
components,	we	show	that	 the	guarantees	provided	by	 the	SafeCloud	 framework	have	
versatility	in	implementation.	This	is	a	crucial	characteristic	to	ensure,	since	the	project	
aims	 to	 provide	 solutions	 that	 go	 beyond	 the	 specified	 use	 cases,	 which	may	 require	
different	combinations	of	data	security	and	performance	requirements.	
	

2.4 Performance	analysis	

This	 section	 presents	 preliminary	 evaluation	 results	 that	 compare	 our	 current	
prototype,	 supporting	 deterministic	 encryption,	 with	 an	 original	 HBase	 deployment	
without	 any	 privacy-aware	 guarantees.	 The	 goal	 of	 this	 section	 is	 not	 to	 provide	 a	
complete	analysis	of	the	system	performance	but	to	show	that	our	design	and	prototype	
are	 able	 to	 perform	 secure	HBase	 queries	 over	 protected	 data,	 and	 to	 show	 a	 hint	 of	
what	 can	 be	 expected	 once	 the	 development	 of	 the	 solutions	 is	 more	 mature.	 The	
evaluation	 was	 performed	 with	 the	 YCSB	 benchmark	 [YCSB16].	 This	 widely	 used	
benchmark	provides	a	standard	method	to	compare	the	performance	of	different	NoSQL	
databases.	In	other	words,	Yahoo!	developed	this	benchmark	because	both	the	paradigm	
and	 the	 access	 pattern	 of	 such	 data	 stores	 are	 quite	 different	 from	 the	 ones	 used	 by	
traditional	benchmark	systems,	mostly	designed	for	relational	databases.	
					
The	YCSB	benchmark	starts	by	creating	a	defined	number	of	concurrent	clients	that	try	
to	 perform	 a	 set	 of	 operations	 according	 to	 a	 predefined	 workload.	 The	 type	 of	
operations	available	 include	Read,	Scan,	Delete	and	Update	operations.	The	evaluation	
discussed	 in	 this	 deliverable	 is	 made	 through	 a	 user	 specified	 workload	 where	 the	
number	of	records	of	the	NoSQL	database,	the	number	of	requests	and	the	frequency	of	
different	 of	 requests	 is	 parameterized.	 The	 requests	 follow	 a	 uniform	 distribution	 to	
choose	what	database	rows	are	accessed	during	the	duration	of	the	benchmark.		
	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 23	

	
Figure	22:	Comparison	of	Solution	1:	Secure	database	server	with	a	default	HBase	

deployment		
	
	

The	experiments	used	a	single	HBase	database	with	100	records.	The	machines	used	for	
the	evaluation	had	an	Intel		i3-2100	CPU	with	a	clock	rate	of	3.10GHz	and	8GB	of	main	
memory,	and	a	500GB	7200	RPM	hard	drive.	40%	of	the	requests	made	to	the	database	
were	 PUT	 requests,	 with	 the	 remaining	 request	 being	 30%	 Gets	 and	 30%	 evenly	
distributed	Scans.	Multiple	requests	were	sent	to	the	database	and,	for	each	request,	the	
latency	 of	 the	 operation	 was	 measured.	 Figure	22	 shows	 the	 results	 for	 three	 HBase	
operations:	 PUT,	 GET	 and	 SCAN.	 As	 observed,	 determinist	 encryption	 has	 a	 small	
performance	overhead	on	the	PUT	and	GET	requests,	since	the	only	extra	step	required	
is	ciphering	and	deciphering	plaintext	information.	However,	the	SCAN	operation	has	a	
significant	 impact.	 As	 explained	 in	 the	 previous	 sections,	 this	 overhead	 is	 due	 to	 the	
need	to	bring	every	record	to	the	trusted	deployment	and	search	for	the	requested	rows.	
These	results	are	only	preliminary	and	attempt	to	give	an	idea	of	the	current	status	of	
the	 solutions,	 thus	 further	 performance	 optimizations	 are	 still	 possible	 in	 order	 to	
reduce	 the	 observed	 overhead.	 For	 instance,	 caching	 and	 batching	 techniques	 for	
queries	done	to	the	untrusted	HBase	backend	will	allow	us	to	significantly	improve	the	
performance	of	our	current	prototype.	
	

3 Solution	2:	Secure	multi-cloud	database	server	
3.1 Privacy-preserving	techniques	

SafeCloud’s	Secure	multi-cloud	database	server	(solution	2)	targets	a	scenario	where	the	
untrusted	 deployment	 consists	 of	 three	 distinct	 entities	 and	 one	 of	 them	 can	 behave	
adversarially.	Such	scenario	contrasts	with	the	single	untrusted	deployment	of	solution	
1	and	represents	a	different	trust	model	where	data	is	required	not	to	be	in	the	control	
of	 a	 single	 entity.	 A	 multiple	 untrusted	 deployment	 scenario	 is	 justified	 when,	 for	
instance,	cloud	infrastructures	are	known	to	be	vulnerable	to	attacks	and	have	software	
backdoors	 that	make	 traditional	 data	 encryption	 insufficient.	 Advanced	 cryptographic	
techniques,	 such	 as	multi-party	 computation	 algorithms,	 are	 suitable	 in	 this	 scenario.	
Additionally,	 these	 techniques	 place	 solution	 2	 within	 a	 considerably	 different	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 24	

deployment	 scenario	 and	with	 vastly	 different	 performance	 and	 security	 implications,	
when	 compared	 to	 solution	 1.	 This	 allows	 for	 the	 SafeCloud	 Secure	 Queries	 layer	 to	
provide	 a	 wider	 range	 of	 solutions,	 so	 as	 to	 cater	 to	 a	 broader	 scope	 of	 real-world	
applications.	
	
The	architectures	of	the	Secure	database	server	(solution	1)	and	the	Secure	multi-cloud	
database	server	(solution	2)	share	a	lot	of	similarities	with	respect	to	trusted/untrusted	
components.	As	such,	and	 for	consistency	of	presentation,	 the	 techniques	employed	 in	
this	 section	 will	 also	 follow	 the	 API	 proposed	 in	 Section	 3.1.	 More	 specifically,	 this	
section	will	detail	the	basic	mechanisms	used	for	multi-party	computation,	describe	how	
these	can	be	deployed	within	the	SafeCloud	framework,	specify	the	security	guarantees	
obtained	from	applying	these	techniques,	and	provide	preliminary	results	with	respect	
to	the	implementations.	
	

3.1.1 Additively	homomorphic	secret	sharing	

As	described	previously,	in	solution	2,	we	consider	a	trust	model	where	data	cannot	be	
stored	in	a	single	entity.	This	change	takes	into	account	scenarios	where	encrypting	data	
and	 storing	 it	 in	 a	 single	 third-party	 untrusted	 deployment	 is	 not	 considered	 secure	
enough.	 This	 lack	 of	 trust	 in	 the	 single	 entity	 scenario	 comes	 from	 considering	 a	
stronger	adversary	that,	for	instance,	is	able	to	decrypt	data	stored	in	such	entity.		This	
is	addressed	through	secret	sharing	techniques.	Originally,	these	have	been	proposed	to	
protect	sensitive	data	such	as	an	encryption	key	while	not	diminishing	their	availability	
[Shamir79].	 If	 an	 encryption	 key	 was	 stored	 in	 a	 single	 location	 and	 then	 lost,	 the	
encrypted	data	with	that	key	would	also	be	lost.	However,	if	the	key	is	stored	in	multiple	
places,	 then	 risk	 of	 exposing	 it	 also	 increases.	 To	 address	 these	 two	 concerns,	 secret	
sharing	schemes	contain	two	types	of	entities,	a	dealer	and	players.	A	dealer	is	capable	
of	securely	dividing	a	secret	\	into	â	shares.	Each	share	is	then	stored	on	a	single	player.	
In	order	to	reconstruct	a	secret,	the	dealer	must	retrieve	a	subset	of	the	shares	from	the	
players.	Depending	on	the	secret	sharing	technique	used	to	generate	the	secrets,	some	
subsets	of	shares	can	not	be	used	to	reconstruct	the	secret.		The	secret	is	secure	as	long	
as	players	players	do	not	collude	to	exchange	shares.		
	
In	 our	 Secure	 multi-cloud	 database	 server,	 secrets	 are	 protected	 by	 an	 additively	
homomorphic	secret	sharing	scheme	described	by	Bogdanov	et	al.	[Bog13].	This	scheme	
has	 two	 important	 properties.	 First,	 the	 only	 subset	 of	 shares	 that	 can	 be	 used	 to	
reconstruct	 a	 secret	 is	 the	 complete	 set	 of	 shares.	 This	 first	 property	 ensures	 that	 a	
malicious	 entity	 can	 only	 	 have	 access	 to	 the	 private	 data,	 if	 it	 gains	 access	 to	 every	
share.	 The	 second	property	 is	 the	 creation	of	 a	Galois	 Field.	 	 Such	 a	 field	 is	 crucial	 to	
enable	 players	 to	 compute	 a	 given	 function	ä	over	 the	 shares	 without	 disclosing	 any	
information.		
	
The	secret	sharing	scheme	exports	two	functions	in	its	API,	a	ãåçéèêë(/0123, #!)	and	a	
íãçéèêë(/0123, \ℎîNB\)	function.	 	 Similar	 to	 the	 standard	 encryption	 described	 in	
section	3.1,	the	encrypt	and	decrypt	function	require	the	maximum	possible	value	of	an	
identifier	#!.	The	other	argument	of	the	ãåçéèêë	function	is	the	secret	#!	to	be	divided	
into	shares.	The	output	of	 the	ãåçéèêë	functions	 is	a	 token	holding	all	 the	shares.	The	
other	argument	to	íãçéèêë	function	is	the	token	containing	every	share	and	it	outputs	
the	 original	 secret.	 The	 number	 of	 shares	 in	 to	 which	 the	 secret	 must	 be	 divided	 is	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 25	

currently	bounded	to	three.	This	number	is	chosen	specifically	because	the	multi-party	
protocols	used	were	designed	for	three	parties.		
	
3.1.2 Multi-party	computation	

While	 secret	 sharing	 provides	 the	 foundation	 for	 data	 privacy	 by	 storing	 secrets	 in	
distinct	entities,	the	capacity	to	perform	the	computation	required	by	databases	is	given	
by	Multi-party	 computation	protocols.	 These	protocols	 empower	 the	parties	 (players)	
with	 the	 capacity	 to	 compute	 a	 function	 over	 the	 shares	 without	 disclosing	 any	
information.	 In	 order	 to	 do	 so,	 the	 parties	 must	 collaborate	 and	 share	 pieces	
ofinformation,	however	such	information	never	reveals	anything	about	the	original	data.	
In	 fact,	 the	 protocols	 described	 and	 used	 in	 this	 solution	 have	 been	 proved	 secure	
[Bog13].	The	only	entity	that	can	calculate	the	output	of	the	protocols	is	the	dealer,	and	
it	does	so	only	when	it	receives	the	output	of	the	protocol	from	each	party.	
	
Although	different	 computation	primitives	 are	possible	 in	 a	multi-party	 scenario,	 only	
two	 are	 relevant	 for	 the	 implementation	 of	 our	 solution	 2.	 These	 are	 a	 protocol	 that	
computes	the	equality	of	two	secrets	and	a	protocol	the	calculates	if	a	secret	is	greater	
or	 equal	 than	 another.	 Both	 of	 these	 protocols	 are	 actually	 built	 on	 top	 of	 other	
protocols,	however	they	provide	the	highest	level	of	abstraction	essential	to	the	queries	
of	a	NoSQL	database.	Both	protocolos	provide	a	similar	API	with	just	two	arguments:	
	
• equal(share1i,	share2i)	
• greaterOrEqual(share1i,	share2i)	
		
This	 API	 is	 exported	 by	 each	 computing	 party.	 Note	 that,	 each	 party	 stores	 multiple	
shares,	each	belonging	to	a	different	secret.	When	one	of	these	computations	is	needed	
for	a	certain	secret,	separate	requests	are	issued	to	each	of	the	parties.	Accordingly,	the	
subscript	#	on	the	shares	represents	the	computing	party	and	ranges	from	1	to	3.	Each	
party	will	perform	the	necessary	operations	on	their	respective	share	of	the	secret	and	
the	output	will	be	a	new	share.	The	combination	of	these	generated	shares	is	used	by	the	
dealer	to	figure	out	the	result	of	the	computation.		
	
Despite	the	multi-party	protocols	providing	only	two	basic	functions,		these	can	be	used	
to	 do	 the	 remaining	 order	 comparisons.	 	 For	 instance,	 a	 greaterThan	 function	 can	 be	
created	by	executing	the	greaterOrEqual	and	equal	protocol.	While	both	protocols	must	
be	executed	independently,	their	outputs	enables	the	dealer	to	understand	the	order	of	
the	secrets.	As	such,	the	API	can	be	extended	for	every	order	comparison.	
	
	
	
	
	
	
	
	
	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 26	

3.1.3 Database	API	instantiation	

This	section	focuses	on	instantiating	the	cryptographic	operations	on	secret	sharing	and	
multi-party	API’s	presented	in	the	previous	sections.	From	a	high	level	perspective,	the	
secret	 sharing	 API’s	 are	 used	 on	 the	 trusted	 side,	 while	 the	 multi-party	 API	 on	 the	
untrusted	party.	
	

	
Figure	23:	Put	operation	instantiation	for	secret	sharing	and	MPC	

	
In	Figure	23	,putC	applies	the	secret	sharing	Encrypt	function	to	the	identifier	#!	and	the	
standard	 encryption	 function	 to	 the	 value	$	as	 in	 the	 section	 2.1.	 The	 output	 of	 the	
function	putC	is	a	tuple	containing	an	array	of	shares	and	an	encrypted	value.	Once	these	
two	 values	 are	 obtained,	 the	 putSDB	 function	 can	 be	 issued	 to	 store	 a	 secret	 on	 each	
party.	 	 The	 execution	 of	 putSDB		 performs	 three	 put	 operations,	 one	 on	 each	 backend	
server.		
	

	
Figure	24:	Get	operation	instantiation	for	secret	sharing	and	MPC	

	
For	the	get	operation,	and	as	depicted	in	Figure	24,	a	call	for	getC	encrypts	an	identifier	
#!	into	three	shares.	Each	share	is	sent	to	the	respective	party	which	will	call	getSDB.	This	
function	receives	a	single	share,	\ℎîNB2 ,	and	executes	the	equal	protocol	on	every	record	
of	the	database.	The	output	of	this	function,	composed	by	the	set	of	records	that	satisfy	
the	 query,	 is	 sent	 to	 the	 trusted	 deployment.	 Having	 collected	 the	 output	 of	 the	
computation	of	each	computing	party,	the	trusted	domain	processes	such	output	in	the	
getCDecode	 function.	This	function,	goes	through	every	record	it	received	and	decrypts	
the	 output	 of	 the	 equal	 protocol.	 If	 such	output	 is	 the	 value	0	 that	means	 it	 is	 a	 valid	
record	and	the	corresponding	decrypted	value	is	returned.	
	

	
Figure	25:	Scan	operation	instantiation	for	secret	sharing	and	MPC	

	
In	Figure	25,	scanC	 function	is	similar	to	the	getC	 function,	but	accepts	two	input	values	
and	generates	 shares	 for	 each	one	of	 them.	A	 single	 share	 from	each	 secret	 is	 sent	 to	
each	 server	on	 the	untrusted	parties.	Every	 server	will	 execute	 the	 scanSDB	where	 the	
protocols	required	to	calculate	the	order	of	the	shares	are	executed.	While	lessThan	has	
not	been	presented	in	the	previous	section	it	can	be	constructed	from	the	existing	API.	
The	 resulting	 shares,	 the	 corresponding	 identifiers	 and	 values	 are	 sent	 to	 the	 trusted	

3 SQ2 - 4.1

putC(id, v):

shares Encrypt(MAXid, id)
cv EncSTD(SK,Pad(MAXv, v))
Return (shares, cv)

putSdb
((shares, cv)):

Putdb1 (shares[1], cv)
Putdb2 (shares[2], cv)
Putdb3 (shares[3], cv)

getC(id):

Return Encrypt(MAXid, id)

getSdb
(shares, (cid1 , vid1), .., (cidn , vidn)):

For i 2 [1..n]:
res sharei equal(sharei, cidi)

Return (Ci, Vi, res sharei)

getCDecode(s11, .., sjn, cv1), .., (cidn , cvn)):

For i 2 [1..n]:
If Decrypt(MAXid, si1, si2, si3)

Return Unpad(DecSTD(SK, cvi))
Return ?

scanC(id1, id2):

shares id1 Encrypt(MAXid1 , id)
shares id2 Encrypt(MAXid2 , id)
Return (id1, id2)

scanSdb
(share1, share2, (cid1 , vid1), .., (cidn , vidn)):

For i 2 [1..n]:
res sharei greaterOrEqual(share1i , cidi)

&& lessThan(share2i , cidi)
Return (Ci, Vi, res sharei)

scanCDecode(s11, .., sjn, cv1), .., (cidn , cvn)):

L []

For i 2 [1..n]:
If Decrypt(MAXid, si1, si2, si3)

Return Unpad(DecSTD(SK, cvi))
Return L

6

3 SQ2 - 4.1

putC(id, v):

shares Encrypt(MAXid, id)
cv EncSTD(SK,Pad(MAXv, v))
Return (shares, cv)

putSdb
((shares, cv)):

Putdb1 (shares[1], cv)
Putdb2 (shares[2], cv)
Putdb3 (shares[3], cv)

getC(id):

Return Encrypt(MAXid, id)

getSdb
(shares, (cid1 , vid1), .., (cidn , vidn)):

For i 2 [1..n]:
res sharei equal(sharei, cidi)

Return (Ci, Vi, res sharei)

getCDecode(s11, .., sjn, cv1), .., (cidn , cvn)):

For i 2 [1..n]:
If Decrypt(MAXid, si1, si2, si3)

Return Unpad(DecSTD(SK, cvi))
Return ?

scanC(id1, id2):

shares id1 Encrypt(MAXid1 , id)
shares id2 Encrypt(MAXid2 , id)
Return (id1, id2)

scanSdb
(share1, share2, (cid1 , vid1), .., (cidn , vidn)):

For i 2 [1..n]:
res sharei greaterOrEqual(share1i , cidi)

&& lessThan(share2i , cidi)
Return (Ci, Vi, res sharei)

scanCDecode(s11, .., sjn, cv1), .., (cidn , cvn)):

L []

For i 2 [1..n]:
If Decrypt(MAXid, si1, si2, si3)

Return Unpad(DecSTD(SK, cvi))
Return L

6

3 SQ2 - 4.1

putC(id, v):

shares Encrypt(MAXid, id)
cv EncSTD(SK,Pad(MAXv, v))
Return (shares, cv)

putSdb
((shares, cv)):

Putdb1 (shares[1], cv)
Putdb2 (shares[2], cv)
Putdb3 (shares[3], cv)

getC(id):

Return Encrypt(MAXid, id)

getSdb
(shares, (cid1 , vid1), .., (cidn , vidn)):

For i 2 [1..n]:
res sharei equal(sharei, cidi)

Return (Ci, Vi, res sharei)

getCDecode(s11, .., sjn, cv1), .., (cidn , cvn)):

For i 2 [1..n]:
If Decrypt(MAXid, si1, si2, si3)

Return Unpad(DecSTD(SK, cvi))
Return ?

scanC(id1, id2):

shares id1 Encrypt(MAXid1 , id)
shares id2 Encrypt(MAXid2 , id)
Return (id1, id2)

scanSdb
(share1, share2, (cid1 , vid1), .., (cidn , vidn)):

For i 2 [1..n]:
res sharei greaterOrEqual(share1i , cidi)

&& lessThan(share2i , cidi)
Return (Ci, Vi, res sharei)

scanCDecode(s11, .., sjn, cv1), .., (cidn , cvn)):

L []

For i 2 [1..n]:
If Decrypt(MAXid, si1, si2, si3)

Return Unpad(DecSTD(SK, cvi))
Return L

6

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 27	

domain.	 The	 trusted	 domain,	 completes	 the	 scan	 algorithm,	 by	 going	 through	 every	
record	and	decrypting	the	resulting	shares.	If	a	resulting	share	outputs	a	valid	result,	the	
row	identifier	and	values	are	decrypted	and	returned	back	to	the	client.		
	

3.2 Deployment	

The	deployment	scheme	 for	solution	2	 is	very	similar	of	 that	previously	presented	 for	
solution	 1.	 The	 significant	 difference	 between	 them	 is	 the	 fact	 that,	 for	 this	 solution,	
there	 are	 three	 HBase	 installations	 in	 three	 different	 untrusted	 sites.	 The	 other	
components	 remain	 the	 same	with	 the	 exception	 of	 the	 untrusted	 site	 cryptoworkers	
that	are	now	also	three.	The	concrete	deployement	scheme	for	this	solution	is	depicted	
in	Figure	26.		
	

	
Figure	26:	Concrete	SafeCloud	deployment	for	Solution	2:	Secure	multi-cloud	database	

server	
	
	
	
	
	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 28	

3.3 Security	guarantees	

The	 Secure	 multi-cloud	 database	 server	 considers	 the	 problem	 of	 securely	 executing	
code	 over	multiple	 untrusted	 participants,	 which	 is	 within	 the	 domain	 of	multi-party	
computation	(MPC).	Standard	definitions	of	MPC	involve	a	number	of	players	:(, . . . , :+in	
possession	of	inputs	ï(, . . . , ï+agree	to	compute	a	function	ñ(ï(, . . . , ï+) = (O(, . . . , O+),	so	
that	each	:2 	knows	O2 	and	 learns	nothing	additional	 that	could	not	be	deduced	from	its	
personal	input	and	output.		
	
Ideally,	 this	would	 be	 achievable	 by	 using	 a	 trusted	 third	 party	 (TTP),	 where	 each	:2 	
would	 send	 its	ï2 	to	 the	 TTP,	 and	 expect	 to	 receive	 the	 appropriate	O2 	which,	 by	 the	
definition	of	a	TTP,	would	meet	all	security	criteria.	Finding	such	a	trusted	participant	is	
unrealistic	 for	 real-world	 scenarios,	 however	 the	 notion	 of	 having	 a	 TTP	 is	 useful	 for	
modelling	the	security	of	MPC	protocols	in	general.	This	approach	is	commonly	used	for	
formalizing	 composable	 security	 proofs	 such	 as	 universal	 composability	 [Can01],	
reactive	 simulatability	 [PW00],	 abstract	 cryptography	 [MR11]	 or	 inexhaustible	Turing	
machines	[KT13].	
	
The	real-world	describes	the	behaviour	expected	from	an	actual	protocol	execution	for	
some	specified	number	of	participants.	The	 ideal	world	 is	a	 formal	specification	of	 the	
same	 protocol	 under	 the	 existence	 of	 a	 TTP:	 some	 ideal	 functionality	 executes	 the	
protocol	in	an	incorruptible	way,	while	a	simulator	fully	aware	of	corruptions	simulates	
towards	 the	 adversary	 a	 protocol	 view	 that	 should	 be	 indistinguishable	 from	 the	 one	
observed	on	a	real-world	scenario.	The	reasoning	is	that,	if	such	a	simulator	exists,	then	
a	 real-world	 adversary	 cannot	 possibly	 gain	 more	 information	 than	 what	 would	 be	
obtainable	in	the	idealized	version	of	the	protocol.	
	
Security	 analysis	 in	 this	 sense	 is	 also	 dependent	 on	 basic	 definitions	 for	 adversarial	
power	 presented	 in	 Deliverable	 D3.2	 and	 recalled	 in	 Section	 3.3	 of	 this	 document.	
Intuitively,	 it	 is	 easier	 to	present	a	MPC	protocol	 as	 secure	 (indistinguishable	 from	an	
idealized	 TTP)	 the	 more	 limited	 we	 consider	 our	 adversary	 to	 be.	 Feasibility	 of	
implementations	 is	 inherently	 associated	 with	 these	 assumptions,	 as	 security	 against	
very	 powerful	 adversaries	 implies	 extremely	 costly	 and	 complex	 protocols,	 while	
potentially	 not	 being	 representative	 of	 the	 realistic	malicious	 entities	 acting	 upon	 the	
system.	
	
By	 enabling	 the	 usage	 of	 multi-party	 computation,	 solution	 2	 leverages	 an	 execution	
model	with	multiple	 participants	 and	 distributed	 trust,	 towards	 expanding	 the	 trade-
offs	 offered	 to	 deployed	 solutions.	 More	 specifically,	 considers	 a	 scenario	 where	
untrusted	 computation	 is	 distributed	 over	 three	 participants,	 where	 at	 most	 one	 is	
adversarially	 controlled	 (see	 Figure	 27).	 This	 translates	 into	 a	 trust	 model	 for	 an	
adversary	 of	 threshold	 1.	 Furthermore,	 for	 the	 deployed	 algorithms	 referred	 to	 in	
Section	 4.1,	 we	 will	 also	 be	 considering	 a	 semi-honest	 adversary.	 As	 previously	
contextualized,	 these	 Solutions	 should	 be	 seen	 as	 alternative	 deployment	 scenarios	
considering	different	security/performance	requirements,	e.g.	if	semi-honest	adversaries	
are	 an	 inadequate	 assumption,	 then	 the	 Secure	database	 server	 (solution	1)	proposes	
alternative	mechanisms	under	stronger	adversarial	scenarios.	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 29	

	
Figure	27:	Adversarial	model	for	Solution	2:	Secure	multi-cloud	database	server	

	
Under	 these	 specifications,	 the	behaviour	displayed	by	applications	deployed	with	 the	
Secure	 multi-cloud	 database	 server	 (solution	 2)	 are	 indistinguishable	 from	 ideally	
executing	these	operations	in	a	trusted	party.	This	 is	achieved	from	the	security	of	the	
underlying	 Sharemind	 algorithms	 presented	 in	 Section	 4.1,	 where	 the	 view	 of	 the	
system	 is	 simulatable	 given	 only	 the	 view	 of	 the	 passive,	 adaptively	 corrupting	
participant	 [Bog14].	 More	 specifically,	 security	 of	 Sharemind	 is	 presented	 as	 an	
arithmetic	black-box	 (ABB)	 [DN14],	where	 several	 operations	 are	 shown	 to	be	 secure	
under	a	weaker	notion	of	input	privacy	security,	followed	by	a	stronger	operation	shown	
to	be	secure,	which	will	confer	indistinguishability	and	composability	to	the	whole	set	of	
operations.		
• Secure	 refers	 to	 the	 classical,	 stronger	 scenario,	 where	 some	 adversary	 A	 selects	

inputs	 to	 machine	 H	 and	 observes	 computation	 outputs	 written	 onto	 H,	 while	
comparing	the	view	that	is	shown	regarding	the	protocol.	This	will	be	either	the	real	
execution,	 having	 the	 messages	 exchanged	 between	 participants	 and	 the	 corrupt	
party	internal	state,	or	the	ideal	execution	having	the	same	data	being	presented	by	a	
simulator	that	is	only	given	the	input/output	of	the	corrupt	party.		

• Input	privacy	refers	to	operations	that	provide	a	weaker	notion	of	security,	where	an	
adversary	0	selects	 inputs	 and	 observes	 the	 system	 (including	 the	 state	 of	 the	
corrupt	participant),	but	is	not	able	to	verify	computation	outputs.	This	is	modelled	
by	 splitting	 the	 participants	 on	 both	 real	 and	 ideal	world	 into	 two	machines	D	 =
	D′	 ∪ 	Dô.	0	will	 then	 set	 the	 computation	 inputs	 onto	D′	and	 the	 outputs	 will	 be	
eventually	 written	 on	Dôwhich	 in	 this	 setting	 is	 disabled	 from	 interacting	 with	0.	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 30	

Similar	 to	 the	 previous	 notion	 of	 security,	0	will	 also	 observe	 either	 a	 real-world	
execution	of	the	protocol,	or	a	similar	view	as	presented	by	a	simulator	that	is	only	
given	the	input	of	the	corrupt	party.	

	
The	central	idea	of	this	model	is	that	intermediate	operations,	i.e.	all	of	them	except	the	
final	 one	 returning	 the	 result,	 do	 not	 have	 to	 provide	 the	 strongest	 level	 of	 security,	
provided	that	these	intermediate	results	are	not	presented	to	the	adversary.	This	builds	
upon	composability	results	that	show	that	a	set	of	input	private	protocols,	followed	by	a	
secure	 protocol	 constitutes	 a	 secure	 protocol	 in	 itself,	 according	 to	 the	 specified	
underlying	security	model.	
	
3.3.1 Discussion	

The	 security	 model	 of	 the	 Secure	 multi-cloud	 database	 server	 (solution	 2)	 and	 the	
protocols	 employed	 over	 it	 follow	 a	 different	 approach	 than	 the	 ones	 available	 in	 the	
Secure	database	server	(solution	1)	in	two	fundamental	ways.	On	one	hand,	performing	
computation	 over	 data	 in	 solution	 1	 inherently	 requires	 some	 relaxation	 of	 security	
guarantees,	as	can	be	observed	in	the	less	strict	security	models	presented	in	Section	2.3	
for	 techniques	 such	 as	 Deterministic	 encryption,	 Order-preserving	 encryption,	 or	
Searchable	 encryption.	 All	 of	 these	 consider	 different	 levels	 of	 security	 that	 partially	
reveal	properties	of	the	original	plaintexts.	Meanwhile,	multi-party	computation	present	
in	solution	2	enables	the	execution	of	arbitrary	functions	over	the	same	strong	security	
assurances.	On	the	other	hand,	all	solutions	deployed	over	MPC	algorithms	are	expected	
to	have	meaningful	computation	and	communication	costs,	which	is	expected	to	reduce	
throughput	of	operations.	Alternatively,	the	flexibility	of	solution	1	allows	for	specifying	
data	 protection	 techniques	 following	 performance	 considerations,	 which	 inherently	
increases	flexibility	in	fulfilling	system	performance	requirements.	
	

3.4 Performance	analysis	

This	section	presents	a	performance	analysis	of	Solution	2:	Secure	multi-cloud	database	
server	 in	 comparison	 to	 a	 baseline	 HBase	 deployment	 without	 privacy	 guarantees.	
Again,	YCSB	benchmark	was	used	with	similar	settings	to	the	experiments	described	in	
Section	2.4.	Results	are	shown	 in	Table	1	 and	show	the	 latency	of	HBase	operations	 in	
milliseconds.	

	

Operation	 HBase	 Secure	multi-cloud	database	server	

PUT	 7.9	 35.6	
GET	 3.4	 1493.4	
SCAN	 10.4	 20198.2	

Table	1:	Solution	2:	Secure	multi-cloud	database	server	performance	
	
The	 PUT	 operation	 is	 approximately	 4	 times	 slower	 than	 the	 one	 observed	 for	 the	
baseline	 HBase	 deployment.	 	 The	 decrease	 of	 performance	 is	 associated	 with	 the	
generation	 of	 three	 secrets	 and	with	 issuing	 three	 parallel	 operations	 to	 the	 different	
untrusted	 Hbase	 clusters.	 	 Moreover,	 this	 decrease	 in	 performance	 is	 even	 more	
noticeable	 in	 the	 GET	 and	 SCAN	 operations,	 as	 both	 operations	 require	 the	 HBase	
clusters	 to	 transverse	 every	 record	 of	 the	 database,	 to	 perform	multi-party	 protocols	
that	 involve	 computation	and	 the	 exchange	of	messages	 across	 clusters,	 and	 finally	 to	
send	 the	 results	 to	 the	 trusted	 deployment.	 Despite	 the	 execution	 of	 the	 operations	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 31	

being	similar,	 the	SCAN	operation	 is	slower,	as	 the	GrearOrEqual	protocol	used	 in	 this	
type	 of	 operations	 requires	 a	 higher	 number	 of	 computation	 rounds	 between	 the	
computing	 parties.	 In	 both	 cases,	 the	 overhead	 of	 the	 system	 appears	 from	 the	
communication	 rounds	 between	 the	 computing	 parties.	 	 It	 is	 expected	 for	 the	
performance	 to	decrease	with	a	 linear	growth	as	 the	number	of	 records	 stored	 in	 the	
database	increase.	Again,	by	resorting	to	caching	and	batching	optimizations	we	expect	
the	 performance	 to	 increase	 significantly	 and	 relief	 the	 current	 communication	
bottleneck.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 32	

4 Solution	3:	Secure	multi-cloud	application	server	
4.1 Privacy-preserving	techniques	

4.1.1 Storage	and	query	interface	

This	section	is	to	remind	the	reader	of	the	primitives	that	are	used	in	Solution	3:	Secure	
multi-cloud	 application	 server.	 The	 basic	 building	 blocks	 of	 Solution	 3	 are	 additive	
secret	sharing	and	multi-party	computation	over	those	shares.	We	are	standing	on	the	
shoulders	of	giants,	i.e.,	we	leverage	existing	work	and	build	on	top	of	that.	
	
Solution	3	differs	from	the	other	solutions	by	enabling	the	possibility	of	having	multiple	
local	domains,	where	not	all	of	them	are	trusted.	The	general	idea	for	this	scenario	is	to	
allow	multiple	client	entities	to	upload	their	sensitive	data	to	a	shared	database	that	can	
be	later	queried	over	by	potentially	untrusted	end-users,	i.e.,	we	have	many	data	owners	
and	 we	 protect	 the	 privacy	 of	 individual	 data	 owners	 by	 only	 allowing	 aggregation	
queries	over	the	data.	
	
We	use	the	Sharemind	MPC	framework	[Bog13],	which	provides	us	with	cryptographic	
protocols	 and	 tools	 for	 computing	 with	 secret-shared	 values.	 We	 utilize	 three	 party	
secret	sharing,	where	each	secret	value	is	shared	between	three	non-colluding	compute	
parties.	 Primitive	 operation	 between	 secret-shared	 values	 are	 provided	 by	 the	
framework,	 but	 larger	 operations	 and	 applications	 are	 implemented	 using	 a	 domain	
specific	language	called	SecreC	[BLR14].	In	SecreC,	private	and	public	data	is	separated	
on	 type	 system	 level	 and	 operations	with	 private	 data	 are	 automatically	 converted	 to	
invocations	of	cryptographic	protocols.	
	
The	Sharemind	framework	also	has	storage	capabilities.	To	be	more	specific,	there	is	a	
database	module	that	stores	tables.	Every	computing	party	has	access	to	only	its	shares	
of	the	secrets	and	therefore	can	store	only	its	shares.	The	database	module	can	work	as	
both	 row-oriented	 and	 column-oriented	 database,	 but	 in	 this	 solution	 we	 use	 only	
column-oriented	mode.	
	
We	have	an	extensive	suite	of	common	high	 level	operations	 for	dealing	with	the	data	
tables.	 The	 suite	 of	 high	 level	 operations	 is	 implemented	 in	 SecreC	 and	 was	 first	
designed	 and	 implemented	 as	 the	 backend	 of	 the	 statistical	 analysis	 tool	 Rmind	
[BKLS16].	Later	the	suite	of	operations	was	extracted	from	Rmind,	and	was	renamed	to	
Sharemind	 Analytics	 Engine.	 The	 Sharemind	 Analytics	 Engine	 contains	 operations	 for	
sorting,	aggregating,	joining	and	so	on.	
	
To	recap,	we	have	all	the	tools	needed	for	doing	secure	data	analytics	in	the	Sharemind	
framework.	SafeCloud	secure	queries	 layer	Solution	3	builds	a	SQL	 interface	on	 top	of	
the	operations	provided	by	the	Sharemind	Analytics	Engine.	

4.1.2 Supported	SQL	primitives	

It	should	be	noted	that	we	use	PostgreSQL	dialect	of	SQL	which	is	SQL	as	supported	by	
PostgreSQL.	We	also	support	some	PostgreSQL	specific	extensions	to	SQL.	For	example	
in	 PostgreSQL	 there	 are	 extension	 to	 DML	 called	 RETURNING	 which	 allow	 to	 return	
queries	over	the	affected	rows	from	INSERT,	UPDATE	and	DELETE	statements.	Also	in	
DELETE	and	UPDATE	you	can	use	 joins	with	USING	 list	or	FROM	 list	 to	 specify	which	
rows	to	operate	on.	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 33	

4.1.2.1 Data	Types	

We	support	some	exact	numeric	types,	they	are	various	bit	lengths	(8,	16,	32	and	64)	of	
INTEGER.	Unlike	PostgreSQL,	we	also	 support	 the	unsigned	variants	of	 INTEGER	with	
the	 name	 being	 uintX,	 where	 X	 is	 the	 number	 of	 bytes	 (1,2,4,8).	 Unsigned	 types	 are	
supported	by	the	Sharemind	Analytics	Engine	and	therefore	it	made	sense	to	add	them.	
We	also	support	approximate	numeric	types	float4	and	float8.	
From	 string	 types	 we	 only	 support	 bounded	 length	 strings,	 or	 in	 SQL	 terminology:	
varchar(n).	
At	the	moment	support	for	datetime	types	is	not	done,	but	could	be	emulated	by	using	
integers	and	suitable	conversions.	

4.1.2.2 Scalar	Expressions	

We	support	basic	binary	operations:	(+,	-,	*,	/,	and,	or,	=,	!=,	<,	<=,	>,	>=).	We	also	support	
the	unary	negation	(-).	We	also	support	aggregate	expressions:	(all,	any,	avg,	count,	max,	
min,	sum).	The	list	is	not	very	large,	and	we	are	definitely	missing	string	operations,	but	
they	are	easy	to	add	in	future	versions	of	Solution	3.	

4.1.2.3 DDL	-	Data	Definition	Language	

We	support	 a	 very	basic	part	 of	 the	DDL:	CREATE	TABLE	and	DROP	TABLE.	 For	new	
tables	 we	 support	 only	 one	 kind	 of	 column	 constraint,	 that	 is	 NON	 NULL.	 All	 other	
column	and	table	constraints	are	not	supported.	
This	means	that	there	are	many	things	missing	from	a	standard	relational	database.	For	
example	there	are	no	constraints	(other	than	non-null),	views,	foreign	keys	or	triggers.	
Support	for	them	is	not	planned.	
4.1.2.4 DML	-	Data	Manipulation	Language	

We	support	INSERT	with	the	RETURNING	clause.	We	do	not	support	default	values	and	
conflict	resolution	which	is	not	a	problem,	since	conflicts	are	impossible	because	we	do	
not	support	constraints	other	than	NON	NULL.	
DELETE	statements	are	supported	with	the	USING	list	and	the	RETURNING	clause.	
The	 UPDATE	 statement	 is	 supported,	 including	 both	 forms	 of	 SET	 syntax,	 the	
RETURNING	clause	and	FROM	list.	

4.1.2.4.1 Queries	
We	 support	 only	 regular	 select	 queries.	 We	 do	 not	 support	 WITH	 queries	 (Common	
Table	Expressions).		
We	 support	 combining	 queries	 with	 the	 UNION	 ALL	 and	 EXCEPT	 operations.	
INTERSECT	and	distinct	UNION	are	not	yet	implemented.	
We	do	not	support	removing	duplicate	rows	with	the	DISTINCT	keyword	of	SELECT.	
4.1.2.4.1.1 Joins	
We	support	full	outer,	 left	outer,	right	outer,	 inner	and	cross	joins.	However,	there	is	a	
limitation,	we	only	support	equi-joins.	Other	types	of	joins	can	be	emulated	by	the	user.	
For	an	example,	we	do	not	support	“SELECT	*	from	t1	join	t2	on	t1.a	<	t2.b;”,	but	we	do	
support	“SELECT	*	from	t1,	t2	WHERE	t1.a	<	t2.b;”.	The	result	sets	are	identical,	but	the	
performance	of	such	a	query	will	be	suboptimal,	because	of	 the	cross	 join,	 that	makes	
the	intermediate	table	(before	filtering)	very	large.	
We	support	joins	with	the	ON	expression,	USING	list	and	natural	join.	
	

4.1.2.4.1.2 Filtering	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 34	

We	 support	 the	 same	operations	 as	 in	 Scalar	Expressions.	This	means	 that	we	do	not	
currently	support	BETWEEN	operator.	As	mentioned	before,	we	do	not	support	string	
operations	and	functions,	 that	means	that	 the	WHERE	clause	can	not	contain	the	LIKE	
operator	and	other	pattern	matching	operators.	

4.1.2.4.1.3 Group	by	
We	 support	 GROUP	 BY	 and	 HAVING	 clauses.	 The	 aggregates	 that	 can	 be	 used	 were	
already	mentioned	in	the	Scalar	expressions	section,	but	for	easier	reference	we	will	list	
them	again	here:	(all,	any,	avg,	count,	max,	min,	sum).	For	the	HAVING	clause	we	have	
the	same	limitations	as	for	the	WHERE	clause.	
We	do	not	support	window	functions.	

4.1.2.4.1.4 Order	by	
We	support	sorting	based	on	multiple	columns.	We	also	can	sort	in	both	ascending	and	
descending	 order	 and	 the	 ordering	 of	 NULLs	 can	 be	 specified	with	NULLS	 FIRST	 and	
NULLS	LAST	directives.	

4.1.2.4.1.5 Limit	and	Offset	

We	currently	do	not	support	limiting	and	offsetting	the	result	table	rows.	These	will	be	
added	in	the	future.	
4.1.2.5 DCL	-	Data	Control	Language	

Not	supported	at	 the	moment.	We	might	support	 it,	when	we	have	 figured	out	how	to	
handle	access	policies.	
4.1.2.6 TCL	-	Transaction	Control	Language	

Not	supported	at	the	moment.	Instead	of	giving	an	explicit	error,	we	ignore	some	of	the	
commands.	Ignoring	is	needed	because	some	JDBC	drivers	always	use	transactions	even	
for	 SQL	 statements	 that	 have	 nothing	 to	 do	 with	 transactions	 or	 even	modifying	 the	
database.	For	an	example	a	simple	query	“SELECT	*	FROM	t1;”	is	peppered	with	“BEGIN”	
and	 “COMMIT”	 by	 the	 JDBC	 driver,	 thus	 becoming	 “BEGIN;	 SELECT	 *	 FORM	 t1;	
COMMIT;”.	
4.1.3 Chapters	explaining	the	algorithms	used	by	categories	

The	following	subsections	give	an	overview	of	the	algorithms	used	for	supporting	the	
database	operations.	
4.1.3.1 Join	

Database	 table	 join	 is	 an	operation	which	 concatenates	 rows	of	 two	 tables	 to	 create	a	
merged	table.	There	are	different	types	of	join	operations	according	to	the	criteria	used	
to	decide	which	rows	are	 included	 in	 the	output	 table.	We	support	 inner	 join,	 left	and	
right	outer	 joins,	 full	outer	 join	and	cross	 join.	The	rows	are	 joined	based	on	values	 in	
key	columns	of	the	two	input	tables.	Key	values	can	only	be	matched	by	equality	but	not	
other	 relations	 like	 greater	 than.	 This	 type	 of	 join	 is	 known	 as	 equi-join.	 A	 key	 can	
consist	of	multiple	columns.		
	
• Inner	join	computes	the	Cartesian	product	(cross	join)	of	the	input	tables	and	drops	

rows	where	the	key	values	are	not	equal.	 	
• Left	outer	join	creates	a	table	with	all	the	rows	from	the	first	input	table.	Rows	that	

have	a	matching	key	value	in	the	second	table	are	concatenated	with	the	row	from	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 35	

the	 second	 table.	Rows	 that	do	not	have	a	match	 in	 the	 second	 table	will	 be	given	
missing	values	for	the	fields	of	the	second	table.	

• Right	outer	join	is	like	a	left	outer	join	but	now	all	the	rows	from	the	right	table	are	
included	in	the	result.	

• Full	outer	join	includes	all	rows	from	both	tables	in	the	output.	Rows	with	matching	
keys	are	concatenated	and	the	rest	of	the	rows	are	given	missing	values	for	the	fields	
of	the	other	table.	

	 		 		 		 	
The	 cross	 join	 algorithm	 is	 straightforward	 and	 computes	 a	 cartesian	 product	 of	 the	
secret-shared	values	using	local	computations	only.	Each	row	of	the	first	table	is	added	
to	the	result	in	combination	with	each	row	from	the	second	table.	
	
The	other	types	of	joins	require	matching	values	of	the	key	columns	of	the	joined	tables.	
The	algorithm	is	described	in	[LTW13].	
	 		 		 		 	
• The	rows	of	both	input	tables	are	shuffled	[LWZ11]	using	a	random	permutation	â(.	

None	of	the	computing	parties	knows	the	permutation.	 	
• A	 random	 secret-shared	 Advanced	 Encryption	 Standard	 (AES)	 encryption	 key	\	is	

generated.	None	of	the	computing	parties	knows	the	key.	
• An	 implementation	 of	 AES	 operating	 on	 secret-shared	 values	 [LTW13]	 is	 used	 to	

encrypt	the	keys	of	both	tables	using	the	encryption	key	\.	Using	electronic	codebook	
mode	(ECB),	the	same	values	of	the	keys	will	have	the	same	ciphertext.	

• The	encrypted	key	column	values	will	be	declassified.	The	number	of	matching	rows	
is	 leaked	 but	 since	 the	 shuffle	 permutation	â(and	 AES	 encryption	 key	\	are	 not	
know,	 it	 cannot	 be	 determined	 which	 input	 key	 values	 correspond	 to	 which	
ciphertext.	

• The	public	ciphertexts	can	be	used	to	match	rows	of	the	two	tables	and	the	resulting	
table	can	be	constructed	from	the	shares	using	local	computations.	

• If	 a	 key	 value	 occurs	multiple	 times	 in	 a	 table,	 the	 output	 can	 be	 shuffled	 using	 a	
second	random	permutation	â-.	The	number	of	occurrences	of	a	key	can	leak	some	
information.	 For	 example,	 if	 an	 individual	 in	 a	 database	 has	 a	 particularly	 large	
number	 of	 entries,	 the	 number	 of	 occurrences	 of	 a	 key	 can	 be	 used	 to	 determine	
which	ciphertext	corresponds	to	the	individual.	

	
This	algorithm	works	for	a	single	key	column.	If	we	need	a	key	consisting	of	n	fields	then	
the	n	fields	can	be	hashed	into	a	single	value	and	we	can	use	the	same	algorithm.	We	use	
the	 Carter-Wegman	 keyed	 hash	 function	 [CW77]	 with	 a	 random	 secret-shared	 key	
because	 it	 is	 efficient	 in	 a	 secure	 multi-party	 computation	 setting.	 The	 hash	 function	
with	key	K	and	input	ï	is:	

ℎ(K, ï) = ï{K{+. . . +ï-K- + ï(K(
	

4.1.3.2 Group	by	

Group	by	allows	grouping	rows	by	a	key	and	aggregating	groups	(rows	with	the	same	
key)	using	a	function	such	as	mean.	The	result	of	a	group	by	operation	is	a	table	with	a	
row	 per	 key	 value	 where	 the	 fields	 are	 group	 aggregates.	 We	 support	 multiple	 key	
columns	 and	 the	 sum,	 mean,	 all,	 any,	 count,	 maximum	 and	 minimum	 functions.	 The	
group	by	algorithm	is	described	in	[BKK+16]	and	is	similar	to	the	join	algorithm.	
	
• The	rows	of	the	input	table	are	shuffled	using	a	random	permutation.	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 36	

• The	key	column	is	encrypted	using	AES	with	a	random	secret-shared	key.	
• The	encrypted	key	column	values	are	declassified.	
• Each	party	now	knows	which	 rows	have	 equal	 key	 values	 (i.e.	 belong	 to	 the	 same	

group)	and	we	can	apply	 standard	privacy	preserving	algorithms	on	 the	groups	 to	
compute	the	aggregates.	

• If	 a	 key	 value	 occurs	multiple	 times	 in	 a	 table,	 the	 output	 can	 be	 shuffled	 using	 a	
second	random	permutation	as	in	the	case	of	the	JOIN	operation.	

	
The	group	by	algorithm	leaks	the	sizes	of	the	groups	but	does	not	leak	any	value	in	the	
input	 table	or	 the	aggregated	 table	since	no	party	knows	the	permutations	or	 the	AES	
key	and	the	aggregates	are	computed	using	composable	privacy	preserving	algorithms.	
	
If	a	key	consists	of	multiple	columns	we	can	again	use	the	Carter-Wegman	hash	function.	
	

4.1.3.3 Sorting	

We	support	 sorting	database	 tables,	 i.e.	 reordering	 the	 rows	based	on	 the	ordering	of	
some	 columns	 in	 the	 table.	 This	 is	 implemented	 using	 oblivious	 sorting	 algorithms	
which	are	described	in	[BLT14].	
	
Any	 sorting	 algorithm	 which	 is	 based	 on	 comparisons	 can	 be	 used	 obliviously	 if	 the	
input	is	shuffled	with	a	random	permutation	and	the	results	of	the	private	comparisons	
are	declassified	[HKI+13].	The	declassified	values	can	be	used	for	reordering	the	shares	
locally.	This	will	 leak	 the	number	of	 equal	 values	but	 this	 can	be	avoided	by	adding	a	
position	 index	 to	 the	 values	which	 also	makes	 the	 algorithm	stable	 and	 in	 the	 case	of	
quicksort,	avoids	the	worst	case	quadratic	complexity	since	no	elements	are	equal.	
	
Multiple	oblivious	sorting	algorithms	are	described	 in	 [BLT14]	such	as	oblivious	radix	
sort	 and	sorting	using	 sorting	networks	which	are	graphs	of	 compare	and	swap	gates	
where	the	control	flow	is	fixed,	i.e.	the	comparisons	depend	on	the	size	of	the	input	but	
not	the	values.	The	algorithms	have	been	implemented	on	Sharemind	and	are	evaluated	
in	 the	 article.	 We	 will	 describe	 oblivious	 quicksort	 since	 it	 was	 deemed	 the	 most	
efficient.	
	
To	 recap,	 the	 standard	 quicksort	 algorithm	 consists	 of	 recursive	 calls	 to	 the	 partition	
function	which	reorders	the	array	into	elements	less	than	a	pivot	element	and	elements	
greater	than	the	pivot.	The	partition	function	is	then	recursively	called	on	the	subarrays	
until	the	subarrays	have	size	one	or	zero.	On	a	high	level	the	oblivious	algorithm	works	
as	follows:	
	
• Shuffle	the	input	vector	using	a	random	permutation.	
• Follow	the	standard	quicksort	algorithm.	

a. Perform	comparisons	using	the	less	than	or	equal	protocol.	
b. Declassify	the	results	of	the	comparisons.	
c. Locally	reorder	shares	of	array	elements	when	partitioning.	

	
In	Sharemind,	we	can	do	arithmetic	with	vectors	by	applying	the	operator	pointwise.	A	
pointwise	 multiplication	 of	 n	 element	 vectors	 is	 more	 efficient	 than	 n	 scalar	
multiplications	 because	 it	 requires	 only	 one	 invocation	 of	 the	multiplication	 protocol	
instead	 of	 n	 invocations.	 To	 optimise	 quicksort	 we	 can	 collect	 the	 operands	 of	 the	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 37	

comparisons	 on	 the	 same	 level	 of	 the	 call	 tree	 into	 vectors	ö	and	õ	and	 do	 a	 single	
vectorised	comparison.	
	
In	 the	optimised	oblivious	quicksort	algorithm,	we	maintain	a	queue	of	subarrays	that	
need	 to	 be	 partitioned.	 Operands	 of	 comparisons	 in	 the	 partition	 function	 for	 each	
subarray	 in	 the	 queue	 are	 collected	 into	 vectors	ö	and	õ.	 The	 result	 of	ö	 ≤ 	õ	is	
declassified	 and	 used	 to	 locally	 swap	 shares	 of	 elements	 in	 the	 subarrays.	 If	 the	
subarrays	resulting	from	the	partitioning	need	to	be	partitioned	further,	they	are	added	
to	the	queue.	This	means	that	all	 the	comparisons	needed	 in	partitioning	are	collected	
into	 rounds	 of	 comparisons	 and	 comparisons	 of	 a	 round	 are	 executed	 using	 a	 single	
protocol	invocation.	The	total	number	of	invocations	of	the	less	than	or	equal	protocol	is	
reduced	significantly	compared	to	the	straightforward	implementation.	
	
4.1.3.4 Deleting	rows	

The	application	supports	deleting	table	rows	based	on	a	condition.	We	first	compute	the	
filtered	 table	 leaving	 rows	 that	match	 the	condition.	To	do	 this,	we	obliviously	 shuffle	
the	rows	including	values	of	the	condition,	declassify	the	shuffled	condition	and	remove	
rows	that	do	not	match	the	condition.	This	will	leak	the	number	of	rows	that	match	the	
deleting	 condition.	 This	 filtered	 table	 is	 needed	 for	 the	 RETURNING	 clause	 that	 is	
supported	by	many	SQL	implementations.	
	
Next	we	compute	the	set	difference	between	the	original	table	and	the	table	of	rows	that	
match	 the	 condition.	 The	 set	 difference	 algorithm	 is	 again	 similar	 to	 the	 table	 join	
algorithm:	
• Shuffle	the	input	tables	using	random	permutations.	
• Compute	Carter-Wegman	hashes	of	each	row	of	each	table	using	 the	same	random	

key.	
• Encrypt	the	hashes	with	the	same	random	AES	key.	
• Declassify	the	ciphertexts.	
• Add	a	public	boolean	column	ùãûë	to	each	table	which	indicates	if	the	row	is	from	the	

first	table.	This	column	is	constantly	true	for	the	first	table	and	constantly	false	for	
the	second	table.	

• Concatenate	the	two	tables	and	sort	by	the	public	ciphertext.	
• Now,	 by	 traversing	 the	 public	 cryptograms,	 the	 same	 cryptograms	will	 be	 located	

consecutively.	 If	 a	 group	 contains	 false	 values	 in	 the	ùãûë	column,	 then	 these	 rows	
will	not	be	 included	 in	 the	output	because	one	of	 them	 is	 from	the	second	 table.	 If	
every	 row	 in	 a	 group	 has	 the	 value	 true	 in	 the	ùãûë	column	 then	 this	 row	 only	
occurred	in	the	first	table	and	is	included	in	the	output.	

• Drop	the	ùãûë	column	from	the	resulting	table	and	shuffle	the	rows	using	a	random	
permutation.	

	
Finally,	the	original	table	is	replaced	by	the	output	of	the	set	difference	operation.	
	
4.1.3.5 Updating	values	

SQL	allows	updating	columns	of	database	tables.	 In	 the	simplest	case,	every	value	of	a	
column	 is	 set	 to	 a	 new	 value	 using	 a	 vector-valued	 expression.	 Supporting	 this	 is	
straightforward	 because	 we	 already	 support	 arithmetic.	 SQL	 also	 allows	 to	 update	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 38	

values	 only	 in	 rows	 that	 match	 a	 certain	 condition.	 The	 algorithm	 for	 this	 case	 is	 as	
follows:	
• Compute	the	filter	condition.	
• Compute	 new	 column	 values	 as	 if	 there	 was	 no	 condition.	 New	 values	 are	 also	

computed	in	positions	where	the	condition	is	false.	
• Use	 an	 oblivious	 choice	 to	 update	 the	 column	 value	 to	 the	 new	 value	 in	 positions	

where	the	condition	is	true.	
Oblivious	 choice	 is	 a	 method	 for	 computing	 the	 expression	 if	'	then	î	else	"	without	
leaking	ç,	ö	or	õ.	If	the	underlying	secure	multi-party	computation	technology	supports	
multiplication	and	addition,	this	can	be	computed	with	the	expression:	

çö + (1 − ç)õ	
where	ç	has	been	converted	to	a	numeric	vector	of	zeroes	and	ones.	
	

4.2 Deployment	

In	principle,	the	deployment	has	not	changed	from	what	was	proposed	in	the	D3.2	and	it	
is	depicted	on	Figure	28.	

	
Figure	28:	Solution	3:	Secure	multi-cloud	application	Server	deployment	

	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 39	

In	detail,	there	are	two	binaries	that	are	used	for	the	client	proxy.	The	first	is	called	sql-
controller	and	it	provides	a	text-based	user	interface	and	the	other	is	called	server-emu	
and	it	emulates	a	PostgreSQL	server,	so	one	can	use	existing	PostgreSQL	drivers	to	talk	
to	the	Solution	3:	Secure	multi-cloud	application	server.	
	

4.3 Security	guarantees	

We	 built	 our	 solution	 on	 top	 of	 the	 Sharemind	 Application	 server	 which	 uses	
homomorphic	 secret	 sharing.	 The	 standard	 Sharemind	 security	 guarantees	 apply.	
Section	 3.3	 already	 addresses	 the	 security	 properties	 of	 the	 underlying	 Sharemind	
protocols,	 therefore	we	do	not	duplicate	 them	here.	 Instead,	we	 talk	 about	 the	higher	
level	concepts.	
	
Some	 information	 is	 leaked	 in	operations	 for	more	 efficient	protocols.	 For	 example	 in	
JOIN,	the	number	of	matching	rows	is	leaked,	but	it	cannot	be	determined	which	of	the	
input	keys	correspond	to	which	count.	In	GROUP	BY	(aggregation)	we	leak	the	sizes	of	
groups,	 but	 no	 values.	 In	most	 cases	 these	 leaks	 are	 not	 important	 and	we	 chose	 the	
extra	performance	against	sealing	those	information	leaks.	
	
There	are	still	some	problems	left	to	address.	For	example,	if	you	calculate	the	average	
height	 of	 a	 person	 in	 different	 age	 groups	 and	 the	 oldest	 person	 is	 alone	 in	 the	 110+	
group,	her	height	would	leak.	We	counter	this	by	not	returning	results	when	a	group	has	
less	 than	 k	 rows.	 However,	 if	 you	 can	 construct	 queries	 on	 two	 different	 groups	 that	
have	a	single	individual	in	their	intersection	then	the	difference	of	the	query	results	will	
leak	 that	 individual's	 value.	 Protection	 against	 this	 is	 not	 enforced,	 but	 provided	with	
auditing.	We	are	looking	into	better	ways	to	provide	more	fine	grained	access	policies.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 40	

4.4 Performance	analysis	

The	system	was	benchmarked	on	a	cluster	with	three	machines	with	dedicated	10	Gb/s	
links.	The	machines	have	Intel	Xeon	E5-2640	v3	processors	and	128	GB	of	memory.	The	
running	times	of	different	SQL	statements	(averaged	over	10	runs)	are	given	in	Table	2.	
	
Operation	 Mean	 time	

(s)	
Standard	
deviation	

Test	setup	

Inner	join	 44.66	 2.01	 Two	tables.	100000	rows,	10	columns	each.	
Delete	 26.34	 0.19	 100000	 rows,	 10	 columns.	 50000	 rows	 for	

which	 the	 WHERE	 condition	 (id	 >	 50000)	
holds	will	be	deleted.	

Order	by	 40.07	 0.73	 100000	 rows,	 10	 columns.	 Sorted	 by	 two	
columns.	

Group	by	 3.42	 0.1	 100000	 rows,	 2	 columns.	 One	 is	 used	 for	
grouping	and	the	other	is	averaged	per	group.	
There	are	10000	groups.	

Update	 3.29	 0.15	 100000	 rows,	 10	 columns.	 5	 columns	 are	
updated	 with	 the	 identity	 function	 in	
positions	where	a	WHERE	filter	with	a	single	
comparison	operation	is	true	(id	>	50000).	

Insert	 66.58	 0.19	 100	 inserts	 into	 an	 empty	 table	 with	 5	
columns.	The	inserts	are	executed	one	by	one	
instead	of	a	single	insert	with	100	rows.	

Select	 (with	
filter)	

0.82	 0.04	 100000	 rows,	10	 columns.	The	WHERE	 filter	
has	a	single	comparison	(id	>	50000).	

Table	2:	Solution	3:	Secure	multi-cloud	application	server	performance	
	
All	of	the	test	tables	had	64-bit	integer	columns.	The	INSERT	test	had	nullable	columns,	
the	others	did	not.	The	client	application	was	on	the	same	local	area	network	as	the	test	
cluster.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 41	

5 Conclusion	
This	 report	 focused	 on	 the	 integration	 of	 different	 privacy	 techniques	 in	 SafeCloud	
Secure	 Queries	 solutions.	 As	 stated	 in	 the	 text,	 each	 solution	 may	 leverage	 specific	
privacy-aware	 techniques	 to	 explore	 distinct	 tradeoffs	 between	 security,	 performance	
and	 database	 functionalities.	 The	 set	 of	 techniques	 that	 can	 be	 integrated	 with	 each	
solution	 depends	 on	 the	 specific	 stakeholders,	 deployment	 and	 security	 models	
expected	for	that	solution.	
	
Our	 preliminary	 results	 show	 that	 the	 current	 prototypes	 can	 indeed	 support	 the	
different	privacy-preserving	techniques,	discussed	along	this	deliverable,	and	serve	as	a	
first	baseline	for	further	implementations	and	optimizations	of	each	solution.		 	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 42	

6 References	
	
[AL07]	 Aumann,	 Yonatan,	 and	 Yehuda	 Lindell.	 "Security	 against	 covert	 adversaries:	
Efficient	 protocols	 for	 realistic	 adversaries."	 Theory	 of	 Cryptography	 Conference.	
Springer	Berlin	Heidelberg,	2007.	
	
[BBO07]	 Bellare,	 Mihir,	 Alexandra	 Boldyreva,	 and	 Adam	 O’Neill.	 "Deterministic	 and	
efficiently	searchable	encryption."	Annual	International	Cryptology	Conference.	Springer	
Berlin	Heidelberg,	2007.	
	
[BCLO09]	Alexandra	Boldyreva,	Nathan	Chenette,	Younho	Lee,	and	Adam	O’neill.	"Order-
preserving	 symmetric	 encryption."	 In	 Annual	 International	 Conference	 on	 the	 Theory	
and	Applications	of	Cryptographic	Techniques,	pp.	224-241.	Springer	Berlin	Heidelberg,	
2009.	
	
[BCO11]	Boldyreva,	Alexandra,	Nathan	Chenette,	 and	Adam	O’Neill.	 "Order-preserving	
encryption	 revisited:	 Improved	 security	 analysis	 and	 alternative	 solutions."	 Annual	
Cryptology	Conference.	Springer	Berlin	Heidelberg,	2011.	
	
[BPSW16]	M.	Barbosa,	B.	Portela,	G.	Scerri,	and	B.	Warinschi.	Foundations	of	hardware-
based	attested	computation	and	application	to	SGX.	 In	EuroS&P,	pages	245–260.	 IEEE,	
2016.	
	
[BKK+16]	Dan	Bogdanov,	Liina	Kamm,	Baldur	Kubo,	Reimo	Rebane,	Ville	Sokk,	and	Riivo	
Talviste.	 Students	 and	 Taxes:	 a	 Privacy-Preserving	 Study	 Using	 Secure	 Computation.	
PoPETs,	2016(3):117135,	2016.	
	
[BKLS16]	 Dan	 Bogdanov,	 Liina	 Kamm,	 Sven	 Laur,	 and	 Ville	 Sokk.	 Rmind:	 a	 tool	 for	
cryptographically	 secure	 statistical	 analysis.	 IEEE	 Transactions	 on	 Dependable	 and	
Secure	Computing,	PP(99):1–1,	2016.	
	
[BLR14]	 Dan	 Bogdanov,	 Peeter	 Laud,	 and	 Jaak	 Randmets.	 Domain-polymorphic	
programming	of	privacy-preserving	applications.	In	Proceedings	of	the	Ninth	Workshop	
on	 Programming	 Languages	 and	 Analysis	 for	 Security,	 PLAS’14,	 pages	 53–65.	 ACM,	
2014.	
	
[BLT14]	Dan	Bogdanov,	Sven	Laur,	and	Riivo	Talviste.	A	Practical	Analysis	of	Oblivious	
Sorting	 Algorithms	 for	 Secure	 Multi-party	 Computation.	 In	 Proceedings	 of	 the	 19th	
Nordic	 Conference	 on	 Secure	 IT	 Systems,	NordSec	2014,	 volume	8788	of	 LNCS,	 pages	
59–74.	Springer,	2014.	
	
[Bog13]	Dan	Bogdanov.	Sharemind:	programmable	secure	computations	with	practical	
applications.	PhD	thesis,	University	of	Tartu,	2013.	
	
[Bog14]	 Bogdanov,	 Dan,	 et	 al.	 "From	 input	 private	 to	 universally	 composable	 secure	
multi-party	 computation	 primitives."	 Computer	Security	Foundations	Symposium	(CSF),	
2014	IEEE	27th.	IEEE,	2014.	
	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 43	

[BW07]	 Dan	 Boneh,	 and	 Brent	 Waters.	 "Conjunctive,	 subset,	 and	 range	 queries	 on	
encrypted	data."	Theory	of	Cryptography	Conference.	Springer	Berlin	Heidelberg,	2007.	
	
[Can01]	Canetti,	Ran.	"Universally	composable	security:	A	new	paradigm	for	
cryptographic	protocols."	Foundations	of	Computer	Science,	2001.	Proceedings.	42nd	IEEE	
Symposium	on.	IEEE,	2001.	
	
[CW79]	 Larry	 Carter	 and	 Mark	 N.	 Wegman.	 Universal	 Classes	 of	 Hash	 Functions.	 J.	
Comput.	Syst.	Sci.,	18(2):143–154,	1979.	
	
[DN14]	 Damgård,	 Ivan,	 and	 Jesper	 Buus	 Nielsen.	 "Universally	 composable	 efficient	
multiparty	computation	from	threshold	homomorphic	encryption."	Annual	International	
Cryptology	Conference.	Springer	Berlin	Heidelberg,	2003.	
	
[DN14]	Damgård,	Ivan,	and	Jesper	Buus	Nielsen.	"Adaptive	versus	static	security	in	the	
UC	 model."	 International	 Conference	 on	 Provable	 Security.	 Springer	 International	
Publishing,	2014.	
	
[GM82]	 Goldwasser,	 Shafi,	 and	 Silvio	 Micali.	 "Probabilistic	 encryption	 &	 how	 to	 play	
mental	 poker	 keeping	 secret	 all	 partial	 information."	 Proceedings	 of	 the	 fourteenth	
annual	ACM	symposium	on	Theory	of	computing.	ACM,	1982.	
	
[HK14]	Hahn,	Florian,	and	Florian	Kerschbaum.	"Searchable	encryption	with	secure	and	
efficient	 updates."	 Proceedings	 of	 the	 2014	 ACM	 SIGSAC	 Conference	 on	 Computer	 and	
Communications	Security.	ACM,	2014.	
	
[HKI+13]	Koki	Hamada,	Ryo	Kikuchi,	Dai	 Ikarashi,	 Koji	 Chida,	 and	Katsumi	Takahashi.	
Practically	 Efficient	 Multi-party	 Sorting	 Protocols	 from	 Comparison	 Sort	 Algorithms,	
pages	202–216.	Springer	Berlin	Heidelberg,	Berlin,	Heidelberg,	2013.	
	
[Intel14]	 Intel.	 Software	 Guard	 Extensions	 Programming	 Reference,	 2014.	
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf.	
	
[KT13]	Küsters,	Ralf,	and	Max	Tuengerthal.	 "The	 IITM	Model:	a	Simple	and	Expressive	
Model	for	Universal	Composability."	IACR	Cryptology	ePrint	Archive	2013	(2013):	25.	
	
[LTW13]	Sven	Laur,	Riivo	Talviste,	and	Jan	Willemson.	From	Oblivious	AES	to	Efficient	
and	 Secure	 Database	 Join	 in	 the	 Multiparty	 Setting.	 In	 Applied	 Cryptography	 and	
Network	Security,	volume	7954	of	LNCS,	pages	84–101.	Springer,	2013.	
	
[LWZ11]	 Sven	 Laur,	 Jan	 Willemson,	 and	 Bingsheng	 Zhang.	 Round-Efficient	 Oblivious	
Database	 Manipulation.	 In	 Proceedings	 of	 the	 14th	 International	 Conference	 on	
Information	Security.	ISC’11,	pages	262–277,	2011.	
	
[MR11]	 Maurer,	 Ueli,	 and	 Renato	 Renner.	 "Abstract	 cryptography."	 In	 Innovations	 in	
Computer	Science.	2011.	
	
[NKW15]	Naveed,	Muhammad,	Seny	Kamara,	and	Charles	V.	Wright.	"Inference	attacks	
on	 property-preserving	 encrypted	 databases."	 Proceedings	 of	 the	 22nd	 ACM	 SIGSAC	
Conference	on	Computer	and	Communications	Security.	ACM,	2015.	

	 D3.5	-	Secret-sharing	and	OPE	base	private	computation	 44	

	
[PW00]	 Pfitzmann,	 Birgit,	 and	 Michael	 Waidner.	 "Composition	 and	 integrity	
preservation	 of	 secure	 reactive	 systems."	 Proceedings	 of	 the	 7th	 ACM	 conference	 on	
Computer	and	communications	security.	ACM,	2000.	
	
[RS07]	 Rogaway,	 P.,	 and	 T.	 Shrimpton.	 "Deterministic	 Authenticated-Encryption."	
Advances	in	Cryptology–EUROCRYPT.	Vol.	6.	2007.	
	
[Shamir79]	Adi	Shamir.	1979.	How	to	share	a	secret.	Commun.	ACM	22,	11	(November	
1979),	612-613.	DOI=http://dx.doi.org/10.1145/359168.359176		 	
	
[PBP16]	 Poddar,	 Rishabh,	 Tobias	 Boelter,	 and	 Raluca	 Ada	 Popa.	 Arx:	 A	 Strongly	
Encrypted	 Database	 System.	 Cryptology	 ePrint	 Archive,	 Report	 2016/591,	 2016.	
http://eprint.iacr.org/2016/591.	
	
[PST16]	R.	Pass,	E.	Shi,	and	F.	Tramer.	Formal	abstractions	for	attested	execution	secure	
processors.	 Cryptology	 ePrint	 Archive,	 Report	 2016/1027,	 2016.	
http://eprint.iacr.org/2016/1027.	
	
[YCSB16]	 YCSB	 benchmark	 repository	 (2016).	
(https://github.com/brianfrankcooper/YCSB)	

