
 D3.4 - Non-elastic restricted Secure SQL Engine 1

Non-elastic restricted Secure SQL

Engine

D3.4

Project reference no. 653884

February 2017

 D3.4 - Non-elastic restricted Secure SQL Engine 2

Document information

Scheduled delivery 01.03.2017
Actual delivery 01.03.2017
Version 1.0
Responsible Partner Cybernetica

Dissemination level

Public

Revision history

Date Editor Status Version Changes
14.09.2016 B. Portela, F. Maia Draft 0.1 ToC
20.12.2016 D. Bogdanov Draft 0.2 Added content
26.01.2017 K. Tarbe, V. Sokk, F. Maia Draft 0.3 First draft
09.02.2017 K. Tarbe, V. Sokk Draft 0.4 Final draft
28.02.2017 K. Tarbe Draft 1.0 Address the reviews

Contributors

Dan Bogdanov (CYBER)
Karl Tarbe (CYBER)
Ville Sokk (CYBER)
João Paulo (INESC TEC)
Francisco Maia (INESC TEC)
Bernardo Portela (INESC TEC)

Internal reviewers

F. Maia (INESC TEC)
Bruno Ferreira (Maxdata)
Paulo Sousa (Maxdata)

Acknowledgements

This project is partially funded by the European Commission Horizon 2020 work
programme under grant agreement no. 653884.

More information

Additional information and public deliverables of SafeCloud can be found at
http://www.safecloud-project.eu

http://www.safecloud-project.eu/

 D3.4 - Non-elastic restricted Secure SQL Engine 3

Glossary of acronyms

Acronym Definition
SQ3 Secure Queries layer Solution 3: Secure multi-cloud application server
SQL Structured Query Language

 D3.4 - Non-elastic restricted Secure SQL Engine 4

Table of contents

Document information... 2

Dissemination level ... 2

Revision history .. 2

Contributors .. 2

Internal reviewers ... 2

Acknowledgements ... 2

More information ... 2

Glossary of acronyms ... 3

Table of contents .. 4

1 Introduction ... 5

2 SQL over Encrypted NoSQL ... 5
2.1 Overview .. 5
2.2 Architecture and implemented features .. 6
2.3 Integration with use cases .. 7

3 SQL over Secure Multi-party Computation .. 8
3.1 Overview .. 8
3.2 Architecture ... 8
3.3 Current state ... 9
3.4 Setup and usage ...10

3.4.1 Setting up the Sharemind deployment .. 10
3.4.2 Deploying the Analytics Engine backend .. 10
3.4.3 Setting up the Client Query Server .. 10

4 Future work ... 11

 D3.4 - Non-elastic restricted Secure SQL Engine 5

1 Introduction

In the initial design, SafeCloud was proposing a single Secure SQL Engine component,
which is the main focus of the current deliverable. However, as plainly visible in the
previous deliverables D3.1, D3.2 and D4.1, we are now proposing three independent
solutions for secure SQL processing. These solutions target different trust models and
aim to offer a broader set of options for applications that want to run secure data
processing in the cloud.
If we analyse the three solutions proposed, two of them share a similar high-level
architecture while the third one is built independently following a radically different
approach. In particular, solutions 1 and 2 are built on top of a secure NoSQL database
and solution 3 is based on the Sharemind secure computing engine1.
Considering the dependence of solutions 1 and 2 in the Secure Key Value Store, which is
still in its initial release (described in deliverable D3.3), the integrated prototypes for
these solutions cannot be presented yet. Instead, they will be presented in detail in
deliverables D3.6 and D3.8. Nevertheless, we briefly address them under the SQL over
Encrypted NoSQL designation by describing their overall architecture and how the
integrate with the Secure NoSQL Store. This is the subject matter of Section 2.
Having said this, in this document we will focus on the preliminary prototype for
solution 3. This prototype represents the initial release of a non-elastic restricted secure
SQL engine based on multi-party computation techniques. The extent of the SQL
support, the implemented features as well as how to set up the prototype demonstrator
are described in Section 3. We conclude the deliverable with Section 4.

2 SQL over Encrypted NoSQL

2.1 Overview

The design of all SafeCloud secure processing solutions focus on clearly defining
concrete trust models and adjust each solution to adequately match them. For solutions
1 and 2 this meant defining two different sites: one site that is considered to be trusted
by the application, which means that data can be processed in clear in this site, and an
untrusted one where data must be protected either for storage or processing.
In the present discussion, we will group these solutions as they both rely on a Secure
Key Value Store. The main design decision is to have this store deployed on the
untrusted site (a cloud service provider) and offer different compromises between its
data protection and processing power according to different possible privacy preserving
techniques that our solutions support. Stronger privacy levels require more processing
power in the trusted site as data becomes opaquer to the untrusted site NoSQL store.
Conversely, if we lower the desired privacy level we will be able to equip the NoSQL
store with more powerful processing capabilities and, ultimately, achieve better system
performance and scalability since we can take better advantage of third-party untrusted
cloud infrastructures.
Following this design, we are able to separate data storage and processing in the cloud
provider from SQL query processing and transaction management. These are done in
the trusted site (typically where the client application is running) and leverage previous
work as described previously both on deliverables D3.1, D3.2, and on the SafeCloud
project proposal. In detail, previous research results led to the design of a query engine
that is able to parse SQL statements and translate them into NoSQL (HBase-like)

1 Sharemind - http://sharemind.cyber.ee/

http://sharemind.cyber.ee/

 D3.4 - Non-elastic restricted Secure SQL Engine 6

operations. In SafeCloud, we have developed the Secure Key Value Store (extensively
described in deliverables D3.3 and D3.5) to be compliant with this translator
component. As a consequence, in the coming months we will be able to integrate both
the query engine and the secure data store in order to provide SQL support also for
solutions 1 and 2 of the platform.

2.2 Architecture and implemented features

The architecture for solutions 1 and 2 is depicted in Figure 1 and Figure 2 respectively.
It is important to notice that it materializes the separation between NoSQL-like data
processing on the untrusted environments and the SQL parsing and processing in
trusted environments.

Figure 1: Solution 1 architecture

 D3.4 - Non-elastic restricted Secure SQL Engine 7

Figure 2: Solution 2 architecture

Presently, both solution 1 and 2 NoSQL Key Value Store components are functional and
ready for integration. These are the subject matter of deliverable D3.3. In detail, we have
a solution prototype instantiated with standard encryption CryptoWorkers, which is
modular and allows changing the privacy preserving technique being used in a
straightforward way. Moreover, a prototype for solution 2 NoSQL data store is running
with multi-party computation protocols allowing to tolerate a compromised cloud
provider. In order to attain the final version of the Secure Key Value Store prototype, the
former requires the implementation of additional CrytpoWorkers (different privacy
preserving techniques) while, for the case of the latter, full functionality is in place and
the work in progress is mainly focused on performance.

2.3 Integration with use cases

The main use cases for the secure queries layer of the SafeCloud platform are those
provided by Maxdata. These are SQL applications with specific privacy requirements.
The main concern with respect to the integration of our solutions with the use cases is
SQL compatibility and coverage. In particular, we need to guarantee that all SQL
operations the use case applications may require are effectively supported by our
platform. To this end we have run preliminary tests with initial versions of the use cases
and the platform software components. These tests, that we are continuously perfecting,
allow us to guarantee that the integration process will be manageable. Moreover, they
allow us to timely detect any issues that may arise with such integration.

 D3.4 - Non-elastic restricted Secure SQL Engine 8

3 SQL over Secure Multi-party Computation

3.1 Overview

This section describes the implementation of privacy-preserving SQL query engine that
executes all queries on cryptographically protected data using the Sharemind secure
computing engine2. The SafeCloud project has successfully developed a module that
translates SQL queries to be executed on the Sharemind computing engine, thus
enabling queries on encrypted data with protection against the data host.
Furthermore, our solution also provides output privacy, meaning that no query will
reveal an individual source record. Instead, the module provides various aggregations
over the data. This is especially relevant in the SafeCloud medical use case pioneered by
Maxdata, where confidential data is collected from several sources and no private record
should ever appear in the output of the query.

3.2 Architecture

We have not deviated from the general architecture proposed in D3.1 and more detailed
architecture described in D3.2 and D4.1. We have a client proxy which handles
translating the SQL operations and communication with the Sharemind deployment. The
architecture is shown on Figure 3.

Figure 3: Solution 3 architecture

Internally it made sense to refine the front end of Solution 3 even more. One concern is
handling SQL queries, another is to provide a machine interface for it, because the
machine interface is involved with data types and some complexity that is unrelated to
executing SQL queries. Therefore, we decided to develop two executables: one for
testing the SQL Query Client directly and another that emulates PostgreSQL server to
leverage existing drivers for PostgreSQL server and allow easy integration with existing
applications. These alternatives are depicted on Figure 4.

2 Sharemind - http://sharemind.cyber.ee/

http://sharemind.cyber.ee/

 D3.4 - Non-elastic restricted Secure SQL Engine 9

Figure 4: A closer view of Solution 3 frontend architecture deployment

The Client Querying Server (client proxy) must be in the trusted environment. The
Sharemind deployment must be hosted by three non-colluding parties. One possible
deployment can be seen on Figure 5.

Figure 5: Typical deployment of Solution 3

3.3 Current state

The Sharemind framework and the Sharemind Analytics Engine (SecreC) existed before
SafeCloud. SQ3 is a new frontend on top of Analytics Engine to support SQL. It is an

 D3.4 - Non-elastic restricted Secure SQL Engine 10

alternative user interface next to the Rmind3 frontend. The SQ3 Server consists of the
Sharemind Application Server with the Sharemind Analytics Engine installed.
SQ3 supports numeric data types and bounded length strings and most of the Data
Manipulation Language. More detailed information about current status of SQL support
is given in D3.5.

3.4 Setup and usage

Setting up SQ3 consists of a few larger steps.
1. Set up Sharemind.

2. Install Sharemind Analytics Engine backend into Sharemind cluster.

3. Set up the client application to use Client Querying Server for queries.

Right now, setting up SQ3 is a little more complicated than it could be, but in the future,
there will be tools to assist with steps 1 and 2. Each of the three steps is explained in the
following sections.

3.4.1 Setting up the Sharemind deployment

First you need to obtain a Sharemind licence and the binaries from
https://sharemind.cyber.ee. Then find the independent hosts and deploy the binaries on
them. Configure the Sharemind deployment. Detailed instructions for setting up the
Sharemind deployment come with the Sharemind binaries. Make sure that modules
mod_tabledb and mod_algorithms are enabled in the Sharemind configuration.

3.4.2 Deploying the Analytics Engine backend

First obtain the Sharemind Analytics Engine backend, which is a suite of SecreC scripts.
Then compile the Analytics Engine backend with the SecreC compiler4 and place the
resulting analytics-engine.sb file into the scripts directory of Sharemind Application
server (on all the computing parties).

3.4.3 Setting up the Client Query Server

Obtain the binaries. Make sure you have Sharemind controller configuration, which
corresponds to your Sharemind deployment in controller.cfg. Client Query Server comes
with two binaries: server-emu and sql-controller. The server-emu emulates PostgreSQL
server and can be used with PostgreSQL drivers for various languages. The sql-controller
executable is a simple user interface like psql is for PostgreSQL. Note that you can use
psql with the server-emu if you like. The controller.cfg file, public keys of the servers and
both keys of the controller must reside in the working directory when executing server-
emu or sql-controller. Before using the Client Query Server for the first time, one needs
to initialize the backend and that can be done by executing “sql-controller --initbackend”.

After the backend is initialized, one can use sql-controller directly or start server-emu.
The server-emu binary will listen on port 5432 for PostgreSQL wire protocol and can be
used with drivers for PostgreSQL server.

3 Rmind - https://eprint.iacr.org/2014/512.pdf
4 Comes with the Sharemind binaries, but can also be obtained from https://github.com/sharemind-
sdk/secrec.

https://sharemind.cyber.ee/
https://eprint.iacr.org/2014/512.pdf
https://github.com/sharemind-sdk/secrec
https://github.com/sharemind-sdk/secrec

 D3.4 - Non-elastic restricted Secure SQL Engine 11

We have a number of SQL commands stored in text files used for demo purposes. They
can be run with sql-controller FILES..., where FILES… is a list of files containing SQL
commands (usually files ending with .sql).

4 Future work

For solutions 1 and 2 of the Secure Queries layer of the SafeCloud project, the
integration with the SQL to NOSQL translating SQL Query Engine is in progress. For
solution 3, the emulation of PostgreSQL server could use some improvements like
coverage testing and validating with different drivers.

