
	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 1	

Non-elastic Secure Key Value Store
D3.3

Project reference No. 653884

February 2016

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 2	

Document	information	
Scheduled	delivery	 	 01.03.2017	
Actual	delivery	 	 01.03.2017	
Version	 	 	 1.0	
Responsible	Partner	 	 INESC	TEC	
	

Dissemination	level	
Public	
	

Revision	history	
Date	 Editor	 Status	 Version	 Changes	 	 	
10.12.2016	 João	Paulo	 Draft	 0.1	 ToC	
12.01.2017	 Francisco	Maia	 Draft	 0.2	 First	Draft	
20.01.2017	 Bernardo	Portela,	

Rogério	Pontes	
Revision	 0.3	 Revision	

30.01.2017	 João	Paulo	 Draft	 0.4	 Final	Draft	
12.02.2017	 Miguel	Correia	 Review	 0.5	 Review	from	INESC	ID	
20.02.2017	 Karl	Tarbe	 Review	 0.6	 Review	from	CYBERNETICA	
27.02.2017	 João	Paulo	 Final	 1.0	 Final	Version	
	

Contributors	
João	Paulo	(INESC	TEC)	
Francisco	Maia	(INESC	TEC)	
Rogério	Pontes	(INESC	TEC)	
Bernardo	Portela	(INESC	TEC)	
	

Internal	reviewers	
	
Miguel	Correia	(INESC	ID)	
Karl	Tarbe	(CYBERNETICA)	
Ville	Sokk	(CYBERNETICA)	
	

Acknowledgements	
This	 project	 is	 partially	 funded	 by	 the	 European	 Commission	 Horizon	 2020	 work	
programme	under	grant	agreement	No.	653884.	
	

More	information	
Additional	 information	 and	 public	 deliverables	 of	 SafeCloud	 can	 be	 found	 at	
http://www.safecloud-project.eu	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 3	

Glossary	of	acronyms	
	
Acronym	 Definition	
IV	 Initialization	Vector	
MPC	 Multiparty	Computation	
OPE	 Order-preserving	Encryption	

	 	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 4	

Table	of	contents	
Document	information	..	2	
Dissemination	level	..	2	
Revision	history	...	2	
Contributors	..	2	
Internal	reviewers	..	2	
Acknowledgements	...	2	
More	information	..	2	
Glossary	of	acronyms	...	3	
Table	of	contents	...	4	
Executive	summary	...	6	
1	 Introduction	...	7	
2	 Background	..	10	
2.1	 Apache	HBase	...	10	

2.1.1	 HBase	Architecture	...	11	
2.1.2	 HBase	API	..	12	
2.1.3	 HBase	Coprocessors	..	12	

3	 Secure	Key	Value	Store	Architecture	...	14	
4	 Solution	1:	Secure	processing	in	a	single	untrusted	domain	..	17	
4.1	 Overview	...	17	
4.2	 Architecture	..	17	
4.3	 Prototype	..	19	
4.3.1	 Setup	and	Usage	..	20	

5	 Solution	2:	Secure	processing	in	multiple	untrusted	domains	...	22	
5.1	 Overview	...	22	
5.2	 Architecture	..	22	
5.3	 Prototype	..	24	
5.3.1	 Setup	and	Usage	..	24	

6	 Conclusion	..	27	
7	 References	..	28	
	
	
	
	
	
	
	
	
	
	
	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 5	

List	of	Figures		
Figure	1	-	The	SafeCloud	framework.	..	6	
Figure	2	-	Secure	processing	overall	architecture.	...	7	
Figure	3	-	Secure	processing	solution	1	architecture.	..	8	
Figure	4	-	Secure	processing	Solution	2	architecture.	..	9	
Figure	5	-	HBase	map	structure.	..	10	
Figure	6	-	HBase	logical	table	view.	...	10	
Figure	7	-	HBase	Architecture.	...	11	
Figure	8	-	Solutions	1	and	2	architectural	components.	...	14	
Figure	9	-	CryptoWorkers	in	the	trusted	site.	...	15	
Figure	10	-	CryptoWorkers	in	the	untrusted	site.	...	16	
Figure	11	-	Solution	1	prototype	architecture.	...	18	
Figure	12	-	HBase	deployment	configuration.	..	20	
Figure	13	-	YSCB	deployment	configuration.	...	21	
Figure	14	-	Solution	2	prototype	architecture.	...	23	
Figure	15	-	HBase	deployment	configuration	...	25	
Figure	16	-	YCSB	deployment	configuration	..	25	
	
	
	
	 	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 6	

Executive	summary	
The	framework	proposed	by	SafeCloud	consists	of	three	layers:	secure	communication,	
secure	 storage,	 and	 secure	 queries.	 Secure	 communication	 provides	 schemes	 for	 the	
establishment	 of	 channels	 amongst	 protocol	 participants	 employing	 technologies	 for	
tamper-resistant	 channels,	 ensuring	 confidentiality	 and	 availability.	 Secure	 storage	
provides	 techniques	 for	 reliable	 storage,	 such	 as	 long-term	 confidentiality,	 protection	
against	 file	 corruption	 or	 data	 deletion.	 Finally,	 secure	 queries	 provide	 cryptographic	
constructions	from	the	database	storage	layer	to	the	end-user	processing	requests.	The	
overarching	idea	is	to	allow	system	developers	to	use	the	techniques	provided	by	these	
three	 layers	 in	 order	 to	 achieve	 application-specific	 deployments.	 These	 deployments	
should	 surpass	 the	 state-of-the-art	 of	 existing	 tools	 with	 respect	 to	 functionality,	
performance	 and	 security.	We	 recall	 Figure	 1,	 from	 the	 general	 SafeCloud	 framework	
description.	
	

	
Figure	1	-	The	SafeCloud	framework.	

This	deliverable	presents	the	first	prototypes	of	the	SafeCloud’s	Secure	Key	Value	Store	
component.	 This	 is	 a	 fundamental	 component	 for	 the	 secure	 queries	 layer	 solution	
proposed	 in	WP3.	 In	 fact,	 the	 SQL	 engine	 for	 the	 first	 two	processing	 solutions,	 to	 be	
leveraged	 in	 WP3,	 will	 resort	 to	 these	 Key	 Value	 Store	 solutions	 to	 provide	 secure	
processing	capabilities	for	applications	using	SQL	databases.		
	
The	 document	 discusses	 the	 implementations	 of	 two	 NoSQL	 prototypes	 developed	 to	
allow	computation	on	 top	of	 single	and	multiple	untrusted	 third-party	 infrastructures.	
The	 proposed	 architectures	 and	 implementations	 are	 modular,	 which	 facilitates	 the	
integration	of	multiple	cryptographic	techniques	in	our	solutions.	In	this	deliverable,	we	
present	 a	 concrete	 example	 for	 how	 deterministic	 encryption	 techniques	 and	 multi-
party	computation	via	secret	sharing	can	be	employed	in	our	prototypes.	
	
Finally,	 we	 also	 detail	 how	 the	 prototype	 can	 be	 deployed	 and	we	 show	 preliminary	
evaluation	results.	

Solution: Vulnerability-tolerant	channels Protected	channels Route-aware	channels

Gives:
Tolerance	to	vulnerabilities

	in	components

Decreased	risk	of	fake	certificates;	
resistance	to	port	scans	and	enumeration	

of	network	infrastructure

Improved	confidentiality	with	warnings	
about	route	hijacking	and	making	harder	

access	to	communication

API: Extended	secure	socket	API Extended	secure	socket	API Extended	secure	socket	API

Provided	by: INESC-ID,	TUM INESC-ID,	TUM INESC-ID,	TUM

Solution: Secure	block	storage Secure	data	archive Secure	file	system

Gives:
Block	storage	on	individual	data	centers	
with	fine	control	over	data	placement

Entangled	immutable	data	storage	
for	protection	against	tampering	

and	censorship

Distributed	secure	file	storage	leveraging	
the	secure	block	storage

API: Key/value REST	(S3	or	similar) POSIX-like

Provided	by: UniNE,	INESC	TEC UniNE,	INESC	TEC UniNE,	INESC-ID

Solution: Secure	processing	in	a	
single	untrusted	domain

Secure	processing	in	
multiple	untrusted	domains

Secure	processing	in	multiple	untrusted	
domains	with	untrusted	clients

Gives:
Privacy	of	data	

against	the	server	
Privacy	of	data	

against	non-colluding	servers
Privacy	of	data	

against	non-colluding	servers	and	clients

API: SQL SQL SQL

Provided	by: INESC	TEC INESC	TEC,	Cyber Cyber

 SafeCloud architecture

Se
cu
re

st
or
ag
e

St
at
e	
of
	th
e	
ar
t:

En
cr
yp
te
d	
st
or
ag
e

St
at
e	
of
	th
e	
ar
t:

Cr
yp
tD
B

Se
cu
re

qu
er
ie
s

Se
cu
re
	

co
m
m
un
ic
at
io
n

St
at
e	
of
	th
e	
ar
t:

TL
S	
se
cu
re
	ch
an
ne
ls

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 7	

1 Introduction	
The	 SafeCloud	 project	 structure	 considers	 three	 main	 layers:	 secure	 communication,	
secure	storage,	and	secure	queries	(or	secure	data	processing).	Secure	communication	
provides	 schemes	 for	 the	 establishment	 of	 channels	 amongst	 protocol	 participants	
employing	 technologies	 for	 tamper-resistant	 channels,	 ensuring	 confidentiality	 and	
availability.	Secure	storage	provides	 techniques	 for	 reliable	storage,	 such	as	 long-term	
confidentiality,	 protection	 against	 file	 corruption,	 censorship	 or	 data	 deletion.	 Finally,	
secure	queries	provide	cryptographic	constructions	from	the	database	storage	layer	to	
the	 end-user	 data	 processing	 requests.	 The	 overarching	 idea	 is	 to	 allow	 system	
developers	to	combine	the	techniques	provided	by	these	three	layers	in	order	to	achieve	
application-specific	 deployments.	 These	 deployments	 should	 surpass	 the	 state-of-the-
art	of	existing	tools	with	respect	to	functionality,	performance	and	security.	
	
In	this	document,	we	will	focus	on	the	secure	data	processing	layer	and,	in	particular,	on	
one	of	 the	key	components	that	are	used	to	 implement	this	 layer	solutions,	 the	Secure	
Key	Value	Store.	Recalling	the	secure	data	processing	layer	architecture	and	description,	
three	 concrete	 solutions	 were	 proposed	 in	 the	 context	 of	 the	 project,	 all	 of	 them	
following	the	overall	architecture	depicted	in	Figure	2.	
	

	
Figure	2	-	Secure	processing	overall	architecture.	

	
As	 observable,	 the	 architecture	 identifies	 two	 distinct	 environments	 where	 software	
components	will	 be	 deployed:	 a	 trusted	 and	 an	 untrusted	 one.	 In	 both	 environments,	
storage	 and	 processing	 components	 can	 be	 deployed.	 Depending	 on	 the	 type	 of	
components	chosen	and	the	configuration	of	the	environments,	three	different	solutions	
emerge:	
	

• Solution	1:	Secure	database	server	
• Solution	2:	Secure	multi-cloud	database	server	
• Solution	3:	Secure	multi-cloud	application	server	

	
Each	one	of	the	solutions	follows	slightly	different	architecture	designs.	Solution	1	and	
Solution	 2	 aim	 at	 offering	 full	 SQL	 language	 support	 but	 require	 that	 most	 query	
processing	 is	 made	 on	 the	 trusted	 environment.	 Solution	 3	 focuses	 on	 different	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 8	

workloads	and	use	cases	offering	secure	query	processing	mostly	done	on	the	untrusted	
environments	but	with	limited	SQL	support.	Moreover,	solutions	1	and	2	more	distinctly	
separate	the	type	of	processing	done	in	the	trusted	and	untrusted	sites.	In	fact,	delving	
further	in	the	concrete	architecture	for	the	different	solutions,	there	is	a	common	design	
feature	in	Solution	1	and	2.	Both	solutions	rely	on	a	key	value	store	(NoSQL	data	storage	
system)	component	that	 is	separate	from	the	query	processing	components	(Figures	3	
and	4).	Throughout	this	document,	our	focus	will	be	the	key	value	store	components	of	
Solution	1	and	Solution	2,	describing	how	this	component	 is	 instantiated	 in	a	concrete	
implementation,	and	how	it	can	be	set	up	and	used.	

	
Figure	3	-	Secure	processing	solution	1	architecture.	

	
It	is	important	to	notice	that,	as	explained	in	deliverable	D3.1,	our	implementation	of	the	
secure	key	value	components	of	Solutions	1	and	2	relies	on	Apache	HBase	[APACHE16a],	
which	 is	considered	one	of	 the	most	mature	NoSQL	databases	available	 in	 the	market.	
This	 decision	 was	 based	 both	 on	 the	 feasibility	 of	 solutions	 deployed	 over	 such	 a	
widespread	technology,	as	well	as	on	the	high	level	of	experience	and	expertise	held	by	
the	SafeCloud’s	partners	with	this	system.	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 9	

	
Figure	4	-	Secure	processing	Solution	2	architecture.	

	
	
The	 remainder	of	 the	document	 is	 structured	as	 follows.	We	begin	by	providing	some	
background	 on	 Apache	 HBase	 in	 Section	 2.	 In	 Section	 3	 we	 describe	 the	 high-level	
approach	 towards	 providing	 a	 secure	 key	 value	 store	 relying	 on	 HBase.	 We	 then	
instantiate	 that	approach	 to	Solution	1	 in	Section	4	and	 to	Solution	2	 in	Section	5.	We	
conclude	the	document	providing	some	remarks	regarding	the	work	developed	thus	far,	
and	 the	 future	 development	 required	 to	 successfully	 achieve	 SafeCloud’s	 proposed	
objectives.	
	
	
	
	
	
	
	
	
	
	
	
	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 10	

2 Background	
2.1 Apache	HBase	
Apache	 HBase	 is	 a	 distributed,	 scalable	 and	 open-source	 non-relational	 database	
[APACHE16a].	Inspired	by	Google's	BigTable,	it	can	be	thought	of	as	a	multi-dimensional	
sorted	map	or	table.	The	map	is	indexed	by	a	tuple	composed	by	row	key,	column	name	
and	timestamp,	which	is	used	as	a	key	for	a	given	value,	as	illustrated	in	Figure	5.		
	

	
Figure	5	-	HBase	map	structure.	

	
	
Row	 keys	might	 be	 associated	with	 an	 unbounded	 and	 dynamic	 number	 of	 qualifiers	
(columns)	grouped	into	column	families	(groups	of	columns).	As	an	example,	in	a	HBase	
table	storing	information	of	a	given	company’s	employees,	“employee”	may	be	a	column	
family	 and	 the	 employee’s	 “name”,	 “age”,	 “salary”	 can	 be	 distinct	 column	 qualifiers	
grouped	 by	 that	 column	 family.	 Each	 qualifier	 is	 then	 identified	 by	 concatenating	 its	
column	 family's	name	and	qualifier	byte	 array,	 i.e.,	 family:qualifier.	A	number	of	 rows	
form	a	table,	and	each	row	may	specify	a	distinct	number	of	column	families.	Both	the	
row	key	and	the	associated	values	are	arbitrary	not-interpreted	arrays	of	bytes.	Data	is	
maintained	 in	a	 lexicographic	order	 first	by	row	key,	 second	by	column’s	 family	name	
followed	by	qualifier	and,	in	descendent	order,	by	timestamp.	

	
Figure	6	-	HBase	logical	table	view.	

	
A	logical	view	of	an	HBase	table	is	presented	in	Figure	6.	In	this	view,	each	cell	(value)	is	
the	intersection	of	a	row	key	and	a	column	qualifier	(cq).	Additionally,	timestamps	(ts)	
may	be	used	to	have	a	multi-dimensional	table,	since	it	means	that	several	versions	may	
exist	simultaneously.	From	this	point	onwards,	we	will	use	the	term	“row"	to	denote	a	
single	row		according	to	this	logical	view.	Typically,	column	families	(cf)	are	well-defined	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 11	

and	must	 be	 created	 before	 data	 can	 be	 stored.	 In	 contrast,	 qualifiers	 are	 created	 in	
runtime	by	inserting	new	key-value	pairs.		

2.1.1 HBase	Architecture

Figure	7	depicts	the	HBase	architecture	and	main	components.		
	

	
Figure	7	-	HBase	Architecture.

	
	
An	HBase	client	component	is	provided,	so	that	applications	using	HBase	on	the	client-
side	 are	 able	 to	 perform	 queries,	 following	 the	 HBase	 API,	 to	 the	 HBase	 backend	
(combination	 of	 HBase	Masters	 and	 Region	 Servers).	 Succinctly	 explained,	 the	 HBase	
client	contacts	the	Master	component	to	know	what	Region	Servers	are	responsible	for	
storing	 the	 rows	 for	 a	 specific	 request,	 and	 then	 the	 client	 issues	 the	 request	 to	 the	
appropriate	Region	Servers,	which,	in	turn,	reply	to	the	client	with	the	query	results.	
	
The	 HBase	 Master	 is	 responsible	 for	 redirecting	 HBase	 client	 requests	 to	 the	
appropriate	Region	Servers,	where	the	keys	being	stored/retrieved	are	kept.	The	HBase	
Master	may	 be	 deployed	 in	 a	 primary/secondary	 replication	mode	 to	 ensure	 a	 fault-
tolerant	design	via	redundancy.		
	
Rows	in	a	table	are	partitioned	horizontally	and	each	partition	is	called	a	Region.	After	
partition,	 resulting	 regions	 can	 be	 distributed	 across	 several	 nodes	 named	
RegionServers	 that	are	 responsible	 for	 serving	one	or	more	regions.	All	 columns	and	
values	 of	 a	 given	 key	 (row)	 are	 available	 in	 the	 same	Region	 Server.	 Regions	 Servers	
store	 and	 retrieve	 Regions’	 data	 from	 the	 Hadoop	 Distributed	 File	 System	 (HDFS)	
[APACHE16b].	Ideally,	each	Region	Server	is	hosted	in	the	same	machine	with	the	HDFS	
data	node	serving	the	data	for	the	Regions	belonging	to	that	Region	Server.	This	option	

HBase
Region Server

HBase Client

HBase
Region Server

Region 1 Region 3

Region 4Region 2

Master
HBase Master

HDFS

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 12	

promotes	 data	 locality	 and	 allows	 Regions	 Servers	 to	 have	 a	more	 efficient	 access	 to	
their	data.	
	
2.1.2 HBase	API	

HBase	exposes	a	set	of	operations	for	data	access	that	is	quite	similar	to	the	one	used	in	
other	key-value	data	stores.	This	 interface	 is	provided	by	 the	HBase	client	 component	
and	encompasses	the	following	operations:	
	

• GET	-	Get	key-value	pairs	of	a	given	row,	identified	by	row	key;	
• PUT	-	Insert	or	update	a	key-value	pair	for	an	existing	or	a	new	row;	
• SCAN	-	Get	all	key-value	pairs	for	a	specific	range	of	rows;	
• DELETE	-	Remove	one	or	more	key-value	pairs	belonging	to	one	or	more	rows;	

	
Note	 that,	 for	GET	 and	PUT	 requests,	 it	 is	 only	 possible	 to	 retrieve	 or	 update	 specific	
column	qualifiers	 if	 the	 requests	 specify	both	 the	 row	key,	 column	 family	 and	 column	
qualifier	being	targeted.	Additionally,	HBase	provides	filter	operations	for	both	GET	and	
SCAN	 requests.	 Namely,	 it	 is	 possible	 to	 request	 several	 key-value	 pairs	 with	 a	 scan	
request	and	then	filter	only	the	key-values	where	a	specific	column	has	a	certain	value.	
As	 an	 example,	 if	 a	 company	 stores	 in	 HBase	 information	 about	 its	 employees,	 it	 is	
possible	to	query	all	employees	with	identification	numbers	(row	key)	between	number	
100	and	1000,	and	then	filter	the	request	to	only	retrieve	the	entries	for	employees	that	
were	born	in	1986	(considering	that	age	is	a	column	qualifier).	
	

2.1.3 HBase	Coprocessors	

The	computation	done	at	the	HBase	Backend	can	be	extended	with	novel	functionalities,	
without	 modifying	 HBase	 core	 implementation,	 by	 using	 the	 HBase	 coprocessors	
mechanism.	 These	 can	 be	 seen	 as	 plugins	 that	 are	 implemented	 and	 added	 to	 HBase	
backend	components	that	allow	extending	the	computation	done	when	NoSQL	queries	
are	performed	[APACHE12].	
	
Two	 types	 of	 coprocessors	 are	 available:	 observers	 and	 endpoints.	 Observer	
coprocessors	bind	a	piece	of	code	to	system	events.	For	instance,	it	may	be	used	to	add	
access	 control	 when	 a	 client	 requests	 a	 GET	 operation.	 Furthermore,	 endpoint	
coprocessors	 can	 also	 extend	 the	 client-server	 protocol	 communication	 and	 thus,	
arbitrary	code	execution	is	allowed	through	Remote	Procedure	Calls	(RPC).	This	kind	of	
coprocessors	is	similar	to	stored	procedures	of	traditional	relational	databases.		
	
For	some	of	the	SafeCloud	solutions,	observer	and	endpoint	coprocessors	are	essential	
because	 additional	 computation	 must	 be	 done	 at	 the	 HBase	 Backend.	 For	 instance,	
multi-party	computation	protocols	(MPC)	require	performing	computation	over	secrets	
stored	at	the	HBase	backend	[PMP+16].	As	further	explained	in	Deliverables	3.1,	3.2	and	
3.5,	this	computation	is	essential	for	supporting	GET	and	SCAN	requests	when	row	ids	
are	 protected	 (private).	 Moreover,	 MPC	 requires	 computing	 over	 stored	 secrets	 and	
exchanging	 the	 computation	 results	 with	 other	 parties	 (HBase	 clusters),	 which	 also	
needs	to	resort	to	coprocessors.	To	sum	up,	when	a	GET	request	is	issued	by	the	client,	
coprocessors	will	be	the	key	components	for	performing	the	additional	computation	and	
exchange	 results	 across	parties	before	 replying	 to	 the	 client.	 Finally,	 coprocessors	 are	
also	 required	 for	 other	 SafeCloud	 solutions	 that	 require	 maintaining	 some	 sort	 of	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 13	

indexes	at	the	HBase	backend	in	order	to	do	computation	over	private	data.	The	access	
to	 the	 index	 and	 the	 computation	 done	 when	 a	 HBase	 request	 is	 done	 also	 requires	
coprocessors	 [PRZ+11].	 Without	 this	 mechanism	 we	 would	 have	 to	 change	 the	 core	
implementation	of	HBase	backend	components,	which	would	 increase	significantly	the	
implementation	and	maintenance	costs	of	our	solution.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 14	

3 Secure	Key	Value	Store	Architecture	
In	 order	 to	 provide	 usable	 and	manageable	 solutions	we	designed	 our	 deployment	 in	
such	 a	 way	 that	 completely	 avoids	 changing	 the	 Apache	 HBase	 core	 implementation.	
This	allows	our	system	to	be	compatible	with	evolving	versions	of	HBase	and	allows	its	
own	development	to	be	independent	of	HBase	releases	or	roadmap.	Additionally,	it	also	
renders	 the	process	of	 changing	 the	underlying	 system	 from	HBase	 to	another	NoSQL	
store	easier.	To	achieve	this	design	we	base	our	approach	in	software	components	that	
can	be	placed	in	the	middle	of	the	normal	HBase	workflow	and	that	actively	modify	such	
workload	 transparently	 from	the	perspective	of	 the	client	application	and	 from	HBase	
itself.	These	components	are	deployed	both	in	the	untrusted	and	the	trusted	sites,	and	
are	named	CryptoWorkers.	
	

	
Figure	8	-	Solutions	1	and	2	architectural	components.	

	
In	Figure	8	we	depict	the	organization	of	the	different	components	that	are	used	for	the	
secure	key	value	stores	used	in	Solution	1	and	Solution	2	of	the	secure	data	processing	
layer	 of	 the	 SafeCloud	 project.	 It	 is	 important	 to	 notice	 that,	 for	 Solution	 2,	 the	
components	of	the	untrusted	deployment	are	instantiated	multiple	times	to	account	for	
the	multiple	untrusted	domains	that	are	considered	in	such	solution.	These	details	will	
be	 addressed	 in	 subsequent	 sections.	 For	 now,	 we	 briefly	 describe	 how	 the	
CryptoWorkers	work.		
	
From	a	high-level	perspective,	CryptoWorkers	are	responsible	for	two	tasks:	

• Trusted	 site:	 CryptoWorkers	 transform	 plain	 NoSQL	 operations	 into	 secure	
NoSQL	operations	according	to	the	requested	privacy	technique.	

• Untrusted	site:	CryptoWorkers	add	extra	behavior	to	allow	data	processing	over	
encrypted	data.	Depending	on	the	privacy	technique	 in	use	 this	can	require	 the	
addition	of	extra	communication	steps.	

	
It	 is	 important	 to	 notice	 that,	 in	 our	 prototype,	 HBase	 is	 the	 NoSQL	 database	 and	
CryptoWorkers	 currently	 take	 advantage	 of	 its	 specific	 characteristics	 such	 as	
coprocessors.	 However,	 the	 software	 itself	 does	 not	 depend	 on	 HBase,	 making	 our	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 15	

design	 extensible	 and	 compatible	 with	 other	 NoSQL	 databases.	 This	 HBase-agnostic	
approach	 is	 what	 allows	 for	 general	 cryptographic	 mechanisms	 to	 overlay	 the	 data	
storage	 and	 management	 in	 a	 close	 to	 black-box	 way,	 which	 can,	 afterwards,	 be	
instantiated	 and	 optimized	 according	 to	 the	 specific	 circumstances	 in	which	 they	 are	
deployed,	 e.g.	 in	 our	 case	 employing	 co-processors	 for	 performing	 general	 remote	
computations.	
	
In	Section	2	we	have	detailed	the	HBase	system	interface	that	is	composed	of	three	main	
operations:	 PUT,	 GET	 and	 SCAN.	 The	 basic	 functionality	 of	 the	 CryptoWorker	 is	 to	
translate	those	requests	into	secure	requests.	Secure	requests	are	encoded	according	to	
some	 associated	 cryptographic	 technique,	 so	 that	when	 they	 are	 transmitted	 to	 some	
untrusted	 (potentially	adversarial)	environment,	 the	 required	security	guarantees	will	
hold.	 For	 instance,	 for	 a	 certain	 GET	 operation	 issued	 in	 the	 trusted	 deployment,	 the	
CryptoWorker	will	 issue	one	or	more	concrete	HBase	operations	(via	the	HBase	Client	
library)	to	the	HBase	backend	running	on	the	untrusted	deployment	(Figure	9).	That	set	
of	operations	will	ensure	 that	 such	GET	 is	made	with	specific	data	privacy	guarantees	
according	to	the	CryptoWorker	configuration,	which	specifies	the	protocol	encoding	the	
data.		
	

	
Figure	9	-	CryptoWorkers	in	the	trusted	site.	

	
	
	
Each	 CryptoWorker	 on	 the	 trusted	 deployment	 is	 responsible	 for	 a	 specific	workflow	
that	allows	the	translation	of	plain	requests	to	secure	requests	and	their	corresponding	
replies	with	respect	to	a	specific	cryptographic	technique	or	set	of	techniques.	In	order	
to	 manage	 the	 workflow,	 each	 cryptographic	 technique	 employs	 a	 set	 of	 operations.	
These	 operations	 will	 take	 care	 of	 overlaying	 requests	 in	 a	 secure	 fashion,	 involving	
three	general	sequential	operations:	a	client-side	encode,	a	server-side	operation,	and	a	
client-side	decode.	For	example,	 to	perform	a	GET,	our	prototype	executes	getC	on	the	
client,	getS	on	 the	server,	and	 then	getCDecode,	 to	retrieve	 the	original	 request	result.	
Each	cryptobox	offers	a	set	of	cryptographic	implementations	that	are	useful	 in	certain	
privacy	workflows.	For	example,	in	order	to	provide	standard	encryption	over	HBase	it	
is	necessary	that	the	content	of	plain	requests	is	encrypted	using,	for	instance,	AES-GCM.	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 16	

Consequently,	 a	 SafeCloud	 Standard	 Encryption	 cryptobox	 is	 made	 accessible	 by	
CryptoWorkers.	Different	cryptoboxes	provided	are	depicted	in	Figures	9	and	10.	
	

	
Figure	10	-	CryptoWorkers	in	the	untrusted	site.	

	
	
Similarly,	 in	 the	 untrusted	 domain,	 CryptoWorker	 co-processors	 provide	 additional	
behavior	 that	 allows	 the	 system	 to	 reply	 according	 to	 the	 data	 privacy	 level	 required	
(Figure	 6).	 For	 example,	 techniques	 such	 as	 multi-party	 computation	 CryptoWorkers	
provide	additional	computation	over	encoded	data	and	communication	steps	that	must	
be	added	to	the	untrusted	NoSQL	backend	in	order	to	comply	with	the	protocols.	Note	
that	 these	 operations	 will	 be	 performed	 in	 possibly	 corrupt	 servers.	 The	 specific	
operations	 used	 and	 the	 different	 configurations	 that	 are	 considered	 in	 the	 current	
design	of	the	system	are	described	in	detail	in	D3.5.		
	
In	 the	 context	 of	 the	 present	 document	 it	 suffices	 to	 understand	 that	 HBase	 itself	
remains	unmodified	in	our	design,	and	that	our	system	simply	adds	functionality	to	the	
HBase	 system	 by	 translating	 typical	 NoSQL	 operations	 to	 operations	 that	 are	 data	
privacy-aware.	A	more	in-depth	discussion	of	the	security	techniques,	their	deployment	
within	 SafeCloud,	 and	 the	 associated	 security	 guarantees	 is	 provided	 in	 D3.5.	 In	 the	
following	sections	we	focus	on	the	actual	system	prototype	and	how	it	can	be	installed,	
run	 and	 tested.	 When	 necessary,	 we	 will	 provide	 context	 for	 the	 specific	 set	 of	
CryptoWorker	configurations	used	in	this	first	implementation	of	the	prototype.		
	
	
	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 17	

4 Solution	1:	Secure	processing	in	a	single	untrusted	domain	
4.1 Overview	
Solution	 1	 of	 the	 secure	 processing	 layer	 of	 SafeCloud	 is	 focused	 on	 providing	 secure	
data	processing	when	a	single	untrusted	domain	is	used.	This	corresponds	to	the	typical	
use	of	a	single	cloud	provider	for	data	storage	and	processing.	As	noted	previously,	this	
solution	relies	on	a	secure	key	value	store	component	that	is	composed	of	both	trusted	
and	untrusted	deployment	sub-components.		
In	 this	 section	we	describe	 the	prototype	 for	 the	HBase-based	 secure	key	value	 store.	
This	 prototype	 was	 designed	 to	 allow	 the	 configuration	 of	 the	 different	 privacy	
preserving	 techniques	 described	 in	 D3.5.	 These	 techniques	 include	 order	 preserving	
encryption,	 deterministic	 and	 standard	 encryption	 and	 searchable	 encryption.	 The	
current	 version	 (M18)	 of	 the	 prototype	 has	 already	 been	 tested	 with	 deterministic	
encryption.	The	preliminary	results	are	presented	in	D3.5.	
	

4.2 Architecture	
The	design	of	the	current	prototype	for	Solution	1	follows	the	architecture	planned	for	
the	final	software	package.	In	terms	of	implementation	it	lacks	support	for	some	of	the	
techniques	 mentioned	 in	 the	 previous	 WP3	 deliverables	 and	 still	 constitutes	 a	 non-
optimized	 implementation.	 However,	 the	 architecture	 was	 designed	 with	 strong	
modularity	concerns,	which	allows	the	prototype	to	be	ready	for	quick	integration	with	
the	components	 that	will	be	developed	along	 the	rest	of	 the	project.	More	specifically,	
this	 prototype	 only	 includes	 a	 CryptoWorker	 and	 correspondent	 cryptobox	 for	
deterministic	encryption.	Other	components	will	be	added	in	the	following	months.		
In	 Figure	11	we	present	 the	 concrete	 architecture	 for	 the	prototype	 instantiated	with	
the	deterministic	encryption	CryptoWorker.		
	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 18	

	
Figure	11	-	Solution	1	prototype	architecture.	

					
The	 prototype	 follows	 the	 architecture	 presented	 in	 the	 previous	 sections	 and,	 as	
described	 previously,	 uses	 Apache	 HBase.	 SafeCloud	 CryptoWorker	 code	works	 as	 an	
extension	 of	 the	HBase	 client	 library	 and,	 on	 the	 server	 side,	 runs	 in	 coprocessors	 at	
each	HBase	Region	Server.	Looking	at	 the	specific	case	of	Solution	1,	we	consider	only	
one	remote	site	with	a	single	HBase	deployment,	which	in	turn	can	hold	multiple	Region	
Servers.	Region	Server	management	 is	 left	 to	HBase	 itself	 and	SafeCloud	coprocessors	
only	extend	their	behavior.		
	
In	 Figure	 11	we	 depict	 the	 basic	workflow	 for	 the	 deterministic	 encryption	 case	 that	
serves	as	an	illustrative	example	about	how	Solution	1	prototype	works.	Upon	a	request	
the	 CryptoWorker,	 configured	 to	 use	 deterministic	 encryption,	 knows	 it	 should	
instantiate	a	deterministic	encryption	cryptobox	to	deal	with	cryptographic	operations.	
It	 also	 knows	 that	 requests	 contain	 plain	 (unencrypted)	 values	 that	 do	 not	make	 any	
sense	 to	 the	 HBase	 server,	 which	 only	 contains	 encrypted	 data.	 Accordingly,	 the	
CryptoWorker	 uses	 the	 cryptobox	 to	 cipher	 the	 request	 values	 in	 order	 to	 be	 able	 to	
issue	secure	operations	to	the	remote	HBase	server.	Because	we	are	using	deterministic	
encryption,	equality	operations	are	still	valid	over	the	encrypted	data.	As	a	consequence,	
the	GET	operation	can	still	be	performed	normally	and	no	extra	server-side	behavior	is	
needed.	 However,	 the	 scan	 operation	 requires	 relative	 order	 to	 be	maintained	 in	 the	
encrypted	data,	which	is	not	the	case	for	deterministic	encryption.	In	fact,	this	operation	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 19	

requires	 all	 data	 that	 could	 possibly	 answer	 the	 scan	 operation	 to	 be	 retrieved	 and	
processed	 in	 the	 trusted	 environment.	 Observe	 that	 this	 specific	 instantiation	 of	
deterministic	 encryption	 still	 follows	 the	 more	 abstract	 API	 proposed	 in	 D3.5,	 since	
there	is	an	initial	step	of	computation	on	the	client-side	encrypting	data,	a	step	of	server-
side	operations	for	storing/retrieving	data,	and	a	final	step	for	decoding	upon	obtaining	
encrypted	 values.	 There	 is	 no	 extended	 behavior	 deployed	 on	 the	 server	 side	 (at	 the	
coprocessors)	 that	 can	 avoid	 this	 overhead	 without	 compromising	 deterministic	
encryption	 privacy	 levels.	 This	 will	 impact	 significantly	 the	 performance	 of	 the	
prototype	and	such	impact	 is	different	when	using	different	techniques,	as	we	will	see	
further	on.	This	substantiates	our	initial	claim	that	there	is	no	solution	that	fits	all	cases	
and	compromises	between	privacy	levels	and	performance	must	be	taken	into	account	
when	choosing	a	specific	privacy	technique	or	set	of	techniques.	
The	 workflow	 presented	 for	 Solution	 1	 is	 somewhat	 straightforward,	 which	 will	 get	
gradually	 more	 complex	 as	 CryptoWorkers	 have	 to	 deal	 with	 more	 convoluted	
workflows,	 as	 detailed	 in	 deliverable	 D3.5.	 An	 example	 of	 this	 is	 the	 CryptoWorker	
deployed	in	the	prototype	for	Solution	2.		
	

4.3 Prototype	
The	initial	demonstrator	of	Solution	1	follows	the	architecture	described	in	the	previous	
section	 and,	 as	 one	 of	 the	main	 concerns,	 it	 follows	 a	modular	 and	 flexible	 approach	
where	several	cryptographic	techniques	can	be	easily	integrated	in	the	near	future.		
	
In	more	detail,	the	current	prototype	supports	AES	encryption	with	a	fixed	initialization	
vector,	which	makes	encryption	deterministic.	The	 library	used	 is	 the	one	provided	 in	
Java	crypto	[JAVAC16]	and	it	serves	as	an	example	of	the	type	of	techniques	that	could	
be	 supported	 in	 this	 solution.	 This	 technique	 is	 added	 by	 implementing	 the	
deterministic	encryption	cryptobox.	This	implementation	assumes	that	keys	and	values	
are	protected	with	AES-GCM.	
	
The	 implementation	 of	 this	 technique	 allows	 supporting	 the	 vanilla	HBase	 operations	
i.e.,	PUT,	GET,	SCAN,	DELETE	and	filters.	
	
Note	 that	 the	main	advantage	of	our	architecture	and	 implementation	 is	 that	 it	can	be	
easily	 integrated	 with	 other	 techniques,	 such	 as	 order	 preserving	 encryption	 and	
standard	encryption.	Implementation-wise	most	of	these	techniques	do	not	require	any	
additional	 computation	 at	 the	HBase	 backend	 (coprocessors)	 since	 the	 CryptoWorker	
deployed	at	the	trusted	infrastructure	is	responsible	for	ciphering	and	deciphering	the	
data	 and	 to	 do	 the	 additional	 computation	 to	 support	 the	 full	 HBase	 API.	 For	 other	
techniques	 that	 also	do	not	 require	additional	 computation	at	 the	HBase	backend,	 the	
design	pattern	is	similar.	In	fact,	for	techniques	such	as	order	preserving	encryption,	the	
work	 done	 at	 the	 CryptoWorker	 for	 all	 remote	 operations	 is	 reduced,	 since	 the	 data	
stored	 at	 the	 untrusted	 HBase	 backend	 can	 be	 compared	 even	when	 encrypted.	 This	
means	 that	 the	 CryptoWorker	 is	 able	 to	 support	 SCAN	 queries	 without	 having	 to	
transfer	 rows	 to	 the	 trusted	 infrastructure	 in	 order	 to	 validate	 their	 values	 with	 the	
requested	query.	
	
Finally,	 for	supporting	cryptographic	 techniques	 that	require	state/computation	at	 the	
HBase	 backend,	 e.g.	 maintaining	 some	 obfuscated	 function	 for	 comparison,	 we	 can	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 20	

employ	co-processors	 in	a	way	similar	 to	 the	approach	described	 in	Solution	2,	where	
this	mechanism	is	necessary.	
	
4.3.1 Setup	and	Usage	

Solution	 1	 prototype	 is	 currently	 installable	 through	 Docker	 containers	 [DOCKER16].	
Docker	containers	are	isolated	components	that	are	initialized	with	a	configuration	file	
where	 it	 is	 detailed	 what	 are	 the	 software	 packages	 (Java,	 HBase,	 etc)	 that	 must	 be	
installed	and	how	to	deploy	 these	components.	With	 this	configuration	 file	 it	becomes	
easy	 to	 automatically	 deploy	 our	 solution	 in	 any	 machine	 supporting	 the	 Docker	
environment.	
	
In	 our	 Docker	 containers	 we	 have	 the	 required	 configuration	 to	 install	 HBase	
components,	 our	 HBase	 client	 supporting	 the	 CryptoWorker,	 and	 all	 the	 necessary	
dependencies.	 Currently	 we	 have	 two	 Docker	 images	 relevant	 to	 this	 solution	 in	 the	
Docker	 public	 registry.	 The	 first	 image	 is	 an	 HBase	 backend	 on	 a	 standalone	
configuration.	 This	 configuration	 deploys	 all	 the	 necessary	 HBase	 components	 in	 a	
single	server.	The	second	image	contains	the	necessary	dependencies	to	use	our	HBase	
Client,	plus	our	model	for	the	CryptoWorker.	Finally,	to	perform	an	initial	evaluation	of	
our	proposal,	we	integrated	our	solution	with	the	YCSB	benchmark	[YCSB16],	a	widely	
used	framework	to	evaluate	the	performance	of	different	NoSQL	databases.	
	
Upon	SafeCloud	distribution,	a	configuration	of	these	images	can	be	deployed	either	on	a	
distributed	cluster	or	on	a	single	machine.	As	there	are	a	variety	of	Docker	orchestration	
tools	 that	 can	 be	 used	 to	 deploy	 images	 in	 a	 distributed	 setting,	 this	 section	 only	
presents	 the	 steps	 required	 to	 do	 a	 local	 deploy.	 A	 local	 deploy	 only	 requires	 an	
operating	system	with	a	Docker	engine	and	the	deployment	steps	required	are	the	same	
for	every	platform.	Nonetheless,	the	process	of	 installing	a	Docker	engine	also	changes	
depending	on	 the	operating	 system.	As	 this	 is	 beyond	 the	 scope	of	 this	document,	we	
refer	the	installation	process	to	the	Docker	official	website	documentation	[DOCKER16].	
An	 additional	 tool	 is	 also	 required	 to	 simplify	 the	 deployment	 process,	 Docker-
compose1.	
	
Besides	the	referred	essential	tools,	two	configuration	files	are	required.	Figure	12	and	
13	 display	 the	 exact	 content	 that	 each	 file	 must	 have.	 These	 files	 incorporate	 the	
required	configuration	to	deploy	the	two	Docker	images	on	a	local	server.	
	
baseline:	
	 image:	rogerp/baseline	
	 net:	ncwork	
	 hostname:	baseline	
	 container_name:	baseline	

Figure	12	-	HBase	deployment	configuration.	
	 	 	 	 	
	
	
	

																																																								
1	https://docs.docker.com/compose/install/

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 21	

	
	
	
ycsb:	
										image:	safecloud/ycsb:aes	
	 net:	ncwork	
	 hostname:	ycsb	
	 container_name:	ycsb	

Figure	13	-	YSCB	deployment	configuration.	
	
To	deploy	and	test	our	current	demonstrator	the	following	steps	are	necessary:	

• Write	the	contents	of	Figure	12	to	a	new	file	hbase.yml	
• Write	the	contents	of	Figure	13	to	a	new	file	ycsb.yml	
• Create	a	new	docker	network	named	ncwork	with	the	following	command:	

docker	network	create	ncwork	
• Deploy	the	hbase	backend	with	the	following	command:	

	 	 docker-compose	-f		hbase.yml	up	
• Deploy	the	ycsb	image	with	the	following	command:	

																								docker-compose	-f	ycsb.yml	up	
	
After	executing	 these	commands	 the	YCSB	benchmark	should	start	 issuing	requests	 to	
the	database	and,	after	completing	the	benchmark,	an	output	with	the	achievable	latency	
and	 throughput	 for	 requests	 is	 displayed.	 Preliminary	 YCSB	 results	 for	 this	 prototype	
are	detailed	in	deliverable	D3.5.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 22	

5 Solution	2:	Secure	processing	in	multiple	untrusted	domains	
5.1 Overview	
Similarly	 to	 Solution	 1,	 this	 solution	 also	 relies	 on	 a	 secure	Key	Value	 Store	 backend.	
However,	 Solution	 2	 considers	 multiple	 untrusted	 domains.	 Consequently,	 a	 single	
HBase	deployment	is	no	longer	sufficient,	as	each	untrusted	domain	must	be	treated	as	a	
completely	independent	entity.	Nevertheless,	the	high	level	approach	taken	is	similar	to	
the	one	previously	described	for	Solution	1,	i.e.,	we	do	not	modify	HBase	itself	but	rather	
externally	add	the	necessary	behavior	via	the	appropriate	embedded	mechanisms.		
	
For	the	particular	case	of	Solution	2,	we	consider	three	independent	untrusted	servers,	
each	 with	 a	 separate	 HBase	 deployment.	 The	 added	 behavior	 empowers	 each	 HBase	
instance	 to	 provide	 secure	 operations	 following	 multi-party	 computation	 algorithms.	
Moreover,	 this	 entails	 the	 requirement	 for	 communication	 capabilities	 between	 the	
different	entities	since	this	is	a	fundamental	necessity	for	general	multi-party	protocols.		
In	 the	 following	 sections	 we	 present	 the	 prototype	 for	 the	 multi-party	 computation	
HBase	solution.	

5.2 Architecture	
The	 concrete	 architecture	 for	 this	 second	 prototype	 is	 presented	 in	 Figure	 14.	 As	
expected,	this	prototype	considers	three	different	remote	deployments,	where	different	
HBase	 instances	 are	 installed.	 A	 client-side	 CryptoWorker,	 at	 the	 trusted	 site,	 is	
instantiated	and	configured	with	the	appropriate	multi-party	computation	parameters.	
In	 contrast	 with	 the	 previous	 prototype	 instantiated	 for	 deterministic	 encryption,	
backend-side	 CryptoWorkers	 take	 part	 in	 the	 process,	 and	 are	 now	 responsible	 for	
request	 processing	 and	 engage	 in	 a	 specific	 workflow	 to	 be	 able	 to	 address	 the	 data	
requests	 from	 the	 client.	 In	 particular,	 they	 follow	multi-party	 computation	 protocols	
that	 require	 communication	 between	 the	 three	 CryptoWorkers	 deployed	 in	 the	 three	
different	untrusted	sites.		
	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 23	

	
Figure	14	-	Solution	2	prototype	architecture.	

	
	
Briefly,	 a	GET	operation	 is	encoded	 into	 three	different	operations	 to	be	 issued	 to	 the	
three	 independent	 backends.	 When	 a	 backend-side	 CryptoWorker	 identifies	 such	
request	as	a	multi-party	computation	request,	it	starts	the	specific	set	of	procedures	to	
process	 it.	 This	 typically	 includes	 querying	 the	 local	 HBase	 instance	 for	 data,	
communicating	 with	 other	 backend-side	CryptoWorkers	 and,	 finally,	 replying	 to	 the	
trusted	 site.	The	 client-side	CryptoWorker	processes	 the	answers	and	 translates	 them	
into	a	plain	data	reply	to	the	client	application.		
	
The	 computation	 and	 communication	 steps	 necessary	 for	 this	workflow	 are	 thorough	
and	 subtle,	 since	 they	 depend	 on	 the	 underlying	 complex	 cryptographic	 mechanisms	
that	 allow	 for	 general	 secure	 computation	 of	 functionalities	 over	 several	 participants.	
For	a	more	in-depth	overview	of	MPC	protocol	details,	please	refer	to	deliverable	D3.5.			
	
	
	
	
	
	
	
	
	
	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 24	

5.3 Prototype	

The	initial	demonstrator	of	Solution	2	follows	the	architecture	described	in	the	previous	
section.	 In	more	 detail,	 the	 current	 prototype	 supports	multi-party	 computation	 over	
secret	shared	data	by	implementing	CryptoWorkers	both	at	the	trusted	domain	(HBase	
client)	and	untrusted	domain	(HBase	coprocessors).	The	MPC	cryptoBox	used	by	these	
CryptoWorkers	 is	 written	 in	 Java	 and	 is	 a	 tailored	 implementation	 of	 Sharemind	
protocols,	 thus	 leveraging	previous	knowledge	of	 the	Cybernetica	project	partner.	The	
communication	 done	 across	 CryptoWorkers	 in	 different	 HBase	 clusters	 is	 done	 by	
resorting	to	a	middleware	component	implemented	using	Java	IO	Sockets.	
	
The	 implementation	 of	 this	 technique	 allows	 supporting	 the	 vanilla	HBase	 operations	
i.e.,	 PUT,	 GET,	 SCAN,	 DELETE	 and	 filters.	 Again,	 the	 architecture	 and	 implementation	
used	for	this	solution	is	highly	modular	so,	any	other	security	techniques	that	resort	to	
multiple	untrusted	domains	could	be	integrated	with	a	minimal	effort	in	our	Solution	2.	
	
5.3.1 Setup	and	Usage	

The	deployment	of	Solution	2	follows	a	very	similar	approach	to	Solution	1.	It	uses	the	
same	 tools	 and	 technologies,	 however	 the	 docker	 images	 and	 configurations	 are	
updated	to	reflect	the	multiple	backend	architecture	of	this	solution.	Three	instances	of	
the	HBase	backend	components	have	to	be	instantiated	with	different	configurations.	As	
such,	Figure	15	contains	the	configuration	file	that	must	be	used	to	deploy	three	HBase	
clusters,	 each	 with	 an	 integrated	 CryptoWorker	 module,	 which	 are	 named	 cluster1,	
cluster2	 and	 cluster3.	 To	 deploy	 the	 YCSB	 benchmark	 and	 HBase	 client	 plus	
CrytpoWorker	bundle,	only	a	minor	detailed	must	be	changed.	Instead	of	using	the	tag	
aes	it	must	be	used	the	tag	mpc	as	can	be	seen	in	Figure	16.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 25	

cluster1:	
	 image:	saferegions:latest	
	 ports:	
				 -	"60010:60010"	#	Master	info	web	portal	port	
				 -	"60000:60000"	#	Master	port	for	client	to	connect	
				 -	"16262:16262"	#	Zookeeper	port	for	the	client	to	connect	
	 net:	ncwork	
	 hostname:	cluster1	
	 container_name:	cluster1	
	 command:	"-s	0	6262	cluster2	6262	cluster3	6262	60000	16262"	
	
cluster2:	
	 image:	saferegions:latest	
	 ports:	
				 -	"60020:60010"	
				 -	"61000:61000"	
				 -	"17262:17262"	
	 net:	ncwork	
	 hostname:	cluster2	
	 container_name:	cluster2	
	 command:	"-s	1	6262	cluster3	6262	cluster1	6262	61000	17262"	
	
cluster3:	
	 image:	saferegions:latest	
	 ports:	
				 -	"60030:60010"	
				 -	"62000:62000"	
				 -	"18262:18262"	
	 net:	ncwork	
	 hostname:	cluster3	
	 container_name:	cluster3	
	 command:	"-s	2	6262	cluster1	6262	cluster2	6262	62000	18262"	

Figure	15	-	HBase	deployment	configuration	
	 	 	 	 	
	
ycsb:	
										image:	safecloud/ycsb:mpc	
	 net:	ncwork	
	 hostname:	ycsb	
	 container_name:	ycsb	

Figure	16	-	YCSB	deployment	configuration	
	 	 	 	
	
To	 deploy	 this	 solution,	 it	 is	 assumed	 that	 a	 docker	 engine	 and	 docker-compose	 are	
installed	on	a	single	machine	as	in	the	deployment	of	solution	1.	Again,	this	section	only	
presents	the	steps	required	to	do	a	local	deploy.	The	necessary	commands	are:	
	

• Write	the	contents	of	Figure	15	to	a	new	file	hbase.yml	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 26	

• Write	the	contents	of	Figure	16	to	a	new	file	ycsb.yml	
• Create	a	new		docker	network	named	ncwork	with	the	following	command:	

docker	network	create	ncwork	
• Deploy	the	hbase	backend	with	the	following	command:	

	 	 docker-compose	-f		hbase.yml	up	
• Wait	around	40	seconds	until	the	MPC	CryptoWorkers	establish	a	connection	and	

the	instances	are	operational.		
• Deploy	the	ycsb	image	with	the	following	command:	

																								docker-compose	-f	ycsb.yml	up	
	
After	executing	 these	commands	 the	YCSB	benchmark	should	start	 issuing	requests	 to	
the	prototype	and	after	completing,	the	benchmark	should	produce	a	final	output	with	
the	throughput	and	latency	metrics	for	the	NoSQL	operations	issued.	Again,	preliminary	
results	for	this	prototype	are	detailed	D3.5.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 27	

6 Conclusion	
Along	 this	 document,	 we	 have	 described	 the	 current	 prototype	 versions	 for	 the	 non-
elastic	 secure	 key	 value	 store.	 This	 implies	 two	 separate	 versions	 with	 distinct	
architectures.	For	the	first	solution	prototype,	there	are	two	main	goals	to	achieve	until	
the	end	of	the	project.	First,	it	is	necessary	to	implement	the	remaining	techniques	and	
evaluate	 them.	 Second,	 optimizations	 should	 be	 studied	 and	 implemented	 in	 order	 to	
improve	the	data	store	performance	and	elasticity	in	order	to	achieve	the	use-cases	non-
functional	requirements.		
	
Solution	2	relies	on	multi-party	algorithms	that	are	known	to	be	quite	costly	in	terms	of	
performance.	 The	 elasticity	 of	 this	 solution	 is	 also	 a	 point	 of	 future	 research	 work.	
Although	 it	 is	not	a	main	project	goal	we	aim	at	providing	some	optimizations	 for	this	
solution	as	well.		
	
Finally,	another	important	aspect	that	follows	the	work	presented	in	this	deliverable	is	
integration.	The	prototype	components	we	have	described	are	part	of	a	bigger	picture	
and	must	be	 integrated	with	other	components	such	as	query	engines	and	transaction	
management	system	in	order	to	provide	full	functionality.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 D3.3	–	Non-elastic	Secure	Key	Value	Store	
	 28	

7 References	
[APACHE16a]		Apache	HBase	Team	(2016).	“Apache	HBase	™	Reference	Guide”.	

(https://hbase.apache.org/book.html)	
	[APACHE16b]	Apache	Hadoop	documentation	(2016).	

(https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-
hdfs/HdfsUserGuide.html)	

[APACHE16c]		Apache	Cassandra	documentation	(2016).			
(http://cassandra.apache.org)	

	[APACHE12]	Apache	HBase	Team	(2012).	“Coprocessor	Introduction”.	
(https://blogs.apache.org/hbase/entry/coprocessor_introduction)	

[DOCKER16]	 Docker	containers	web	page	(2016).		
(https://www.docker.com)	

[JAVAC16]	 Java	Crypto	documentation	(2016).		
(https://docs.oracle.com/javase/7/docs/api/javax/crypto/package-
summary.html)	

[PMP+16]	 Pontes	 R,	 Maia	 F,	 Paulo	 J,	 Vilaça	 R.	 	2016.	 	SafeRegions:	 Performance	
Evaluation	of	Multi-party	Protocols	on	HBase.	2016	IEEE	35th	Symposium	
on	Reliable	Distributed	Systems	Workshops	(SRDSW),	2016	.	:31-36

	[PRZ+11]	 Raluca	 Ada	 Popa,	 Catherine	 Redfield,	 Nickolai	 Zeldovich	 and	 Hari	
Balakrishnan.	 Cryptdb:	 protecting	 confidentiality	 with	 encrypted	 query	
processing.	 In	 Proceedings	 of	 the	 Twenty-Third	 ACM	 Symposium	 on	
Operating	Systems	Principles,	pages	85-100.	ACM,	2011.	

	[YCSB16]	 YCSB	benchmark	repository	(2016).	
(https://github.com/brianfrankcooper/YCSB)	

	

