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Glossary	of	acronyms	
	
Acronym	 Definition	
CE	 Convergent	Encryption	
DML	 Data	Manipulation	Language	
HCE	 Hash	and	Convergent	Encryption	
HGD	 Hypergeometric	Distribution	
IND-CCA	 Indistinguishability	under	Chosen	Ciphertext	Attack	
IND-CPA	 Indistinguishability	under	Chosen	Plaintext	Attack	
INT-CTXT	 Integrity	of	Ciphertext	
IV	 Initialization	Vector	
JDBC	 Java	Database	Connectivity	
MLE	 Message-Locked	Encryption	
mOPE	 Mutable	Order	Preserving	Encryption	
MPC	 Multiparty	Computation	
OPE	 Order-preserving	Encryption	
POPF-CCA	 Pseudorandom	Order-preserving	Function	under	Chosen	Ciphertext	Attack	
RCE	 Random	Convergent	Encryption	
TTP	 Trusted	Third	Party	
TD	 Trusted	Deployment	
UD	 Untrusted	Deployment	
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Executive	summary	
The	framework	proposed	by	SafeCloud	consists	of	three	layers:	secure	communication,	
secure	 storage,	 and	 secure	 queries.	 Secure	 communication	 provides	 schemes	 for	 the	
establishment	 of	 channels	 amongst	 protocol	 participants	 employing	 technologies	 for	
tamper-resistant	 channels,	 ensuring	 confidentiality	 and	 availability.	 Secure	 storage	
provides	 techniques	 for	 reliable	 storage,	 such	 as	 long-term	 confidentiality,	 protection	
against	 file	 corruption	 or	 data	 deletion.	 Finally,	 secure	 queries	 provide	 cryptographic	
constructions	from	the	database	storage	layer	to	the	end-user	data	processing	requests.	
The	 overarching	 idea	 is	 to	 allow	 system	 developers	 to	 combine	 implementations	 by	
employing	 these	 three	 layers	 to	 achieve	application-specific	deployments	 that	 surpass	
the	 state-of-the-art	 of	 existing	 tools	 with	 respect	 to	 functionality,	 performance	 and	
security.	We	recall	Figure	1,	from	the	general	SafeCloud	framework	description.	
	

	
Figure	1:	The	SafeCloud	framework.	

 
 
This	 document	 has	 been	 produced	 in	 the	 context	 of	 work	 developed	 during	 work	
package	 3	 (WP3),	 dedicated	 to	 the	 development	 of	mechanisms	 for	 ensuring	 privacy-
preserving	 data	 processing.	 The	 central	 focus	 in	 this	 regard	 is	 to	 procure	 the	 balance	
between	 security	 assurances	 and	 acceptable	 levels	 of	 functionality	 and	 performance	
with	respect	 to	application-specific	 requirements.	Deliverable	D3.1	has	been	delivered	
in	 month	 6,	 describing	 the	 general	 architecture	 for	 SafeCloud	 and	 its	 individual	
components,	 as	 well	 as	 several	 solutions	 for	 private	 data	 protection	 in	 SQL	 query	
execution.	
	
Deliverable	 D3.2	 is	 the	 second	 document	 of	WP3,	 and	 succeeds	 the	 previous	work	 of	
D3.1.	 Given	 a	 complete	 architecture,	 component	 and	 scenario	 description,	 we	 now	
provide	a	thorough	overview	of	security	models	for	reasoning	over	the	security	of	our	
protocols,	 and	 present	 an	 in-depth	 evaluation	 of	 available	 privacy-preserving	
techniques	for	data	processing,	as	well	as	an	existing	state-of-the-art	implementation	for	
these	techniques.	Furthermore,	we	show	how	the	proposed	architecture	can	instrument	
a	wide	 variety	 of	 privacy-preserving	 cryptographic	methods	 (and	how	 it	 can	 combine	
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them),	 towards	 validating	 the	 SafeCloud	 framework	 feasibility	 with	 respect	 to	 the	
specified	use	cases.	
 
The	document	 is	 structured	 as	 follows.	 Section	1	will	 provide	 a	 recap	of	 the	previous	
deliverable	proposing	the	architecture	and	its	designated	components,	as	well	as	set	the	
general	 conceptions	 for	 security	 and	 adversarial	 behaviour	 used	 to	 describe	
application-specific	security	requirements.	Sections	2,	3	and	4	map	Solutions	1,	2	and	3,	
respectively.	 For	 each	Solution,	we	present	 the	 considered	 techniques	 and	 compatible	
state-of-the-art	 implementations,	 detail	 how	 these	 can	 be	 instantiated	 given	 the	
available	components	of	SafeCloud	architecture,	and	conclude	with	an	overall	discussion	
regarding	 the	 relevance	 and	 feasibility	 scope.	 Finally,	 Section	 5	 closes	 the	 document	
with	an	overview	of	 the	solutions	made	available	by	SafeCloud,	and	how	the	approach	
can	lead	to	meaningful	contributions	towards	higher-assurance	cloud	deployments.	
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1 Privacy-preserving	storage	and	computation	
1.1 Architecture	
The	development	and	maintenance	of	IT	infrastructures	are	usually	associated	with	very	
high-costs.	This	has	been	a	major	contributor	 to	 the	success	of	 the	cloud	computation	
paradigm,	where	a	very	considerable	part	(or	all,	in	some	instances)	of	these	IT	concerns	
can	be	offloaded	to	remote	providers.	While	this	is	a	meaningful	advantage	with	respect	
to	 cost	 reduction,	 having	 potentially	 sensitive	 data	 stored	 in	 -	 and	 manipulated	 by	 -	
untrusted	environments	must	be	accounted	for.	 Indeed,	the	lack	of	secure	trustworthy	
solutions	 for	 data	 storage	 and	 computation	 in	 Cloud	 environments	 typically	 demand	
specific	deployment	compromises,	which	in	turn	lead	to	suboptimal	systems.	Within	this	
context,	modern	 application	 and	 service	 deployments	 can	 fall	 into	 one	 of	 three	major	
categories:	

• In-house	 deployments,	 where	 everything	 from	 IT	 infrastructure	 to	 software	 is	
designed,	 developed	 and	 maintained	 within	 the	 company	 or	 organization	
facilities.	 This	 is	 usually	 the	 case	 for	 companies	managing	 and	 computing	 over	
data	that	is	too	sensitive	to	be	offloaded	to	standard	Cloud	solutions.	

• Everything	 is	 handed	 over	 to	 a	 Cloud	 or	 a	 set	 of	 Cloud	 providers,	 and	 the	
organization/company	 manages	 its	 infrastructure	 remotely.	 This	 is	 possible	
when	the	company	does	not	handle	sensitive	data,	or	the	security	requirements	
are	 low	enough	 to	 be	 enforced	by	 a	 somewhat	 trustworthy	 cloud	 environment	
(e.g.	one	that	provides	basic	access	control	measures).	

• A	compromise	between	the	previous	two,	in	which	critical	systems	and	services	
remain	 within	 trusted	 premises,	 and	 complementary	 services	 are	 offloaded	 to	
convenient	 Cloud	 providers.	 This	 aims	 to	 be	 the	 “best	 of	 two	worlds”	 solution,	
which	allows	for	extracting	the	maximum	potential	of	the	Cloud	provider	without	
jeopardizing	 information	 security,	 but	 requiring	 a	 case-specific	 analysis	 of	
security	and	functional	requirements.	

	
The	 general	 architecture	 of	 SafeCloud	 solutions	 for	 privacy-preserving	 storage	 and	
computation	is	heavily	rooted	in	the	Cloud	Computing	paradigm	-	focused	on	exploring	
the	 potential	 of	 this	 third	 category	 -	 comprising	 a	 set	 of	 comprehensive	 solutions	 to	
perform	private	and	secure	data	storage	and	computation. 
 
Recall	Figure	2	depicting	the	SafeCloud	general	architecture	for	privacy-preserving	data	
storage	and	processing	at	a	high	level.	We	make	use	of	squares	to	represent	processing	
components,	 rounded	edge	squares	 to	 represent	 interfaces,	 and	 cylinders	 to	 represent	
storage	components.	In	this	context,	we	will	refer	to	the	set	of	components	running	on-
premises	 as	 trusted	 deployment,	 and	 to	 the	 components	 executing	 on	 third-party	
systems	as	untrusted	deployment.	 
 
The	 trusted	 deployment	 infrastructure	 is	 assumed	 to	 be	 completely	 trusted,	 and	 can	
therefore	 receive,	 handle	 and	 process	 sensitive	 data	 without	 requiring	 cryptographic	
techniques.	On	 the	other	hand,	untrusted	Cloud	 infrastructure	refers	 to	providers	 that	
may	 display	 adversarial	 behaviour.	 Typically,	 a	 proxy	will	 be	 required	 for	 integrating	
local	 and	 remote	 deployments,	 to	 be	 located	 on	 trusted	 premises.	 Communication	 is	
made	over	an	untrusted	network	where	adversaries	can	actively	eavesdrop	and	tamper	
with	 transmitted	 packages.	 However,	 we	 assume	 the	 availability	 of	 secure	 and	
authenticated	 channels	 to	 protect	 communication	 from	 external	 malicious	 behaviour.	
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This	can	be	provided	by	the	SafeCloud	private	communication	middleware,	developed	in	
SafeCloud	WP1. 

 
Figure	2:	High-level	SafeCloud	architecture	for	privacy-preserving	data	storage	and	

processing.	
	 

The	 provided	 architecture	 allows	 the	 accomplishment	 of	 several	 solutions,	 describing	
different	deployment	scenarios	that	are	compatible	with	a	variety	of	use	cases.	We	now	
briefly	overview	the	three	solutions,	as	they	will	be	later	detailed	regarding	associated	
privacy-preserving	techniques	and	deployment	considerations.	

• Solution	1	considers	a	single	trusted	client,	offloading	data	and	computations	to	
a	 single	 untrusted	 deployment,	 potentially	 a	 cloud	 provider.	 The	 usage	 of	
cryptographic	 techniques	 in	 this	 setting	 depends	 on	 the	 type	 of	 adversarial	
corruption	considered	remotely,	and	on	 the	 functionalities	 required	 for	 the	use	
case,	 i.e.	 what	 computations	 the	 system	 expects	 the	 untrusted	 deployment	 to	
perform.	

• Solution	2	also	considers	a	single	trusted	client,	but	now	the	required	remote	
efforts	 can	 be	 distributed	 amongst	 multiple	 untrusted	 deployments.	 In	
addition	 to	 previous	 security	 considerations,	 now	 cryptographic	 schemes	 can	
leverage	scenarios	in	which	only	a	subset	of	untrusted	entities	can	be	corrupted	
for	providing	more	efficient/secure	data	processing	implementations.	

• Solution	3	is	a	slight	variation	of	Solution	2,	in	which	several	clients	can	interact	
with	a	set	of	untrusted	deployments,	inputting	and	querying	over	data.	Security	
concerns	 must	 now	 account	 for	 providing	 data	 analysis	 algorithms	 returning	
aggregated	data	from	multiple	clients	without	disclosing	sensitive	data	from	any	
individual	local	deployment.	

	
A	 significant	 factor	 in	 validating	 the	 success	 of	 the	 SafeCloud	 project	 is	 its	 practical	
applicability.	Accordingly,	 it	 is	very	 important	 to	provide	 interfaces	 that	accommodate	
current	 practices,	 to	 enable	 compatibility	 with	 the	 provided	 solutions.	 The	 current	
landscape	of	data	management	systems	allows	for	the	highlight	of	two	large	groups	with	
respect	 to	 interface:	 query	 language-based	 systems	 (SQL)	 and	 NoSQL	 databases.	 The	
solutions	 described	 in	 this	 document	 will	 provide	 the	 end-user	 with	 either	 a	 SQL	
interface	with	 transactional	 support	 or	 a	NoSQL	 interface.	However,	 in	 order	 to	meet	
certain	performance	 levels	without	sacrificing	security	guarantees,	 the	actual	 language	
coverage	of	each	respective	solution	will	be	individually	specified.		
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1.2 Security	model	

Deliverable	 D3.1	 proposed	 several	 implementation	 scenarios	 associated	 with	
SafeCloud’s	 solutions.	 These	 scenarios	 differ	 with	 respect	 to	 computational	 and	 trust	
assumptions	placed	on	the	participants	involved	in	the	protocols.	Solution	1	assumes	an	
environment	with	 a	 single	 local	 client,	which	we	 establish	 to	 be	 trusted,	 and	 a	 single	
remote	untrusted	cloud	provider,	which	we	assume	to	be	untrusted.	Solution	2	allows	
the	 deployment	 of	 distributed	 trust	 protocols,	 as	 it	 assumes	 multiple	 non-colluding	
untrusted	 cloud	 providers.	 Solution	 3	 enables	 different	 clients	 to	 upload/query	 the	
remotely	 stored	 data,	 by	 allowing	 untrusted	 clients	 to	 request	 computations	 over	
sensitive	 information	 (e.g.	 executing	 data	 analysis	 over	 a	 dataset	 shared	 amongst	
companies). 
 
Considering	 different	 deployment	 scenarios	 allows	 for	 leveraging	 fundamentally	
different	 cryptographic	 techniques,	 which	 are	 suitable	 for	 a	 variety	 of	 real-world	
scenarios.	This	 is	 a	 relevant	 factor	because	 it	 not	 only	 complies	with	 the	 security	 and	
performance	requirements	of	the	SafeCloud’s	use	cases,	but	also	extends	the	SafeCloud	
framework	towards	broader	practical	applicability.	 
 
Regardless	 the	 actual	 deployment	 scenario,	 the	 feasibility	 and	 application	 of	 each	
cryptographic	 scheme	 ultimately	 depends	 on	 the	 considered	 security	 model	 for	 such	
scenario.	The	security	model	characterizes	the	considered	adversarial	power	(i.e.	what	
we	assume	an	adversary	is	capable	of	doing,	or	which	participants	it	is	able	to	corrupt),	
which	 allows	 us	 to	 objectively	 describe	 under	 what	 circumstances	 the	 different	
SafeCloud	solutions	can	be	considered	secure.	In	this	regard,	we	assume	the	adversary	
to	 be	 a	 monolithic	 entity	 that	 may	 be	 corrupting	 multiple	 participants	 and	
eavesdropping	on	several	 communication	channels	 simultaneously,	which	 is	a	 simpler	
and	 stronger	 model	 than	 assuming	 multiple	 adversaries	 that	 may	 or	 may	 not	 act	 in	
accordance	 to	 each	 other.	 We	 now	 present	 models	 for	 trust,	 adversary	 power	 and	
corruption	types	that	are	used	to	determine	adversarial	behaviour. 
 
Participants	can	be	either	 trusted	or	untrusted,	which	determines	 the	participants	 that	
the	 adversary	 can	 influence.	 This	 differentiation	 is	 already	 explicit	 in	 SafeCloud’s	
architecture,	 where	 the	 deployment	 is	 divided	 between	 a	 trusted	deployment	 and	 an	
untrusted	deployment,	but	this	notion	can	also	be	applied	to	additional	participants.	For	
instance,	 if	 we	 want	 to	 employ	 SafeCloud’s	 framework	 to	 implement	 a	 protocol	 that	
considers	public	verification	of	outputs,	the	instantiation	may	depend	on	the	trust	that	
can	be	placed	in	said	remote	audit. 
 
Adversary	 power	 formalizes	what	 capabilities	we	 assume	 from	 the	 adversary.	 In	 this	
regard,	 we	 follow	 the	 definitions	 proposed	 by	 Aumann	 and	 Lindell	 [AL07],	 and	
distinguish	three	models	that	can	be	used	to	describe	the	adversary: 

• Active	 adversaries	 can	 behave	 arbitrarily,	 regardless	 of	 what	 the	 protocol	
dictates.	This	means	a	party	corrupted	by	an	active	adversary	can	provide	wrong	
inputs,	tamper	with	messages,	or	even	stop	responding	outright.	

• Covert	 adversaries	 are	 behaviourally	 similar	 to	 active	 adversaries,	 but	 they	 do	
not	 wish	 to	 get	 “caught”	 in	 doing	 so.	 Essentially,	 these	 adversaries	 behave	
arbitrarily,	 as	 long	 as	 the	 possibility	 for	 the	 system	 to	 identify	 them	 as	 an	
adversary	does	not	exceed	some	previously	defined	threshold.	
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• Semi-honest	adversaries	(also	known	as	honest-but-curious)	follow	the	specified	
protocol,	but	may	attempt	to	learn	additional	information	by	analysing	the	local	
transcript	for	messages	exchanged	during	the	computation.	

 
Real-world	 scenarios	 of	 malicious	 entities	 gaining	 access	 to	 protocol	 participants	 are	
modelled	 as	 corruptions.	 The	 corruption	model	 defines	 how	 the	 system	 expects	 these	
corruptions	 to	 occur.	 Corruptions	 can	 be	 performed	 over	 a	 subset	 of	 untrusted	
participants	 up	 to	 a	 predetermined	 threshold,	 and	 they	 may	 be	 static	 or	 adaptive	
[DN14]: 

• Static	corruption	means	that	the	corrupt	participants	are	predetermined	before	
starting	the	protocol,	and	remain	unchanged	for	its	full	duration.	

• Adaptive	corruption	is	strictly	stronger	than	static	corruption,	as	the	participants	
may	 be	 corrupted	 at	 any	 time	 during	 the	 protocol	 execution,	 based	 on	 the	
information	the	adversary	gathered	thus	far.	

 
Furthermore,	 we	 also	 characterize	 the	 type	 of	 corruptions	 to	 be	 either	 snapshot	 or	
persistent	[PBP16]: 

• Snapshot	 corruption	 models	 an	 adversary	 that	 briefly	 accesses	 the	 system,	 by	
giving	 the	 adversary	 access	 to	 all	 information	 held	 by	 the	 corrupt	 party	 at	 the	
moment	of	corruption.	

• Persistent	 corruption	 refers	 to	 the	 standard	 corruption	 definition,	 where	 the	
adversary	gains	full	control	of	that	participant	from	that	moment	onwards	(what	
it	can	do	is	bound	by	the	considered	adversary	power),	as	well	as	access	to	the	
local	transcript.		

 
Following	the	overall	approach	of	WP3,	we	now	describe	the	three	SafeCloud	solutions	
for	 privacy-preserving	 data	 storage	 and	 processing.	 For	 each	 of	 these	 solutions,	 we	
propose	 several	 privacy-preserving	 techniques,	 and	 contextualize	 with	 the	 security	
model	 to	 which	 they	 are	 applicable.	 We	 will	 also	 instantiate	 the	 components	 of	 the	
general	architecture	to	demonstrate	how	the	proposed	cryptographic	techniques	can	be	
implemented,	 and	 how	 the	 interfaces	 provided	 in	 deployment	 can	 be	 instrumented	
accordingly.	
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2 Solution	1:	Secure	processing	in	a	single	untrusted	domain	
	

2.1 Privacy-preserving	techniques	

Solution	 1	 (Figure	 3)	 depicts	 the	 classic	 cloud	 computation	 scenario,	 in	which	 a	 local	
trusted	domain	wants	to	offload	data	and	computation	to	a	potentially	untrusted	cloud	
environment.	 This	 approach	 assumes	 that	 SQL	 query	 processing	 and	 transactional	
support	 can	 be	 performed	 entirely	 under	 trusted	 deployment,	where	NoSQL	provides	
the	necessary	functionalities	to	support	an	ANSI	SQL	database	system.	The	system	proxy	
is	the	component	responsible	for	executing	the	cryptographic	techniques,	and	it	will	be	
executed	 in	 a	 separate	 layer	 from	 the	 SQL	 engine,	 thus	 benefitting	 from	 the	 provided	
abstraction	to	execute	according	to	simple	NoSQL	commands	such	as	Put,	Get	or	Scan.	
	
This	setting	allows	a	plethora	of	cryptographic	mechanisms	to	be	employed,	providing	
varying	 levels	 of	 security.	We	 now	present	 several	 approaches	 for	 privacy-preserving	
techniques	 compatible	 with	 this	 setting,	 and	 detail	 the	 security	 parameters	 in	 which	
their	application	is	feasible.	
 

2.1.1 Authenticated	Encryption 

When	 storing	 sensitive	 data,	 the	 guarantees	 most	 often	 required	 from	 protection	
mechanisms	(i.e.	employed	cryptographic	schemes)	are	confidentiality	and	integrity.	At	
a	 high	 level,	 confidentiality	 means	 that	 the	 protected	 data	 leaks	 no	 information	
regarding	 its	 original	 value,	 while	 integrity	 means	 that	 any	 tampering	 of	 the	 stored	
information	can	be	identified	with	overwhelming	probability.	The	most	standard	way	of	
achieving	this	is	via	the	usage	of	authenticated	encryption	schemes.	
	
An	authenticated	encryption	scheme	is	defined	by	a	triple	of	algorithms	(𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐):	

• 𝐺𝑒𝑛(1+)	takes	a	security	parameter1	and	generates	a	symmetric	key	𝑘.	
• 𝐸𝑛𝑐(𝑘,𝑚)	takes	a	key	and	a	message	and	produces	a	ciphertext	𝑐.	
• 𝐷𝑒𝑐(𝑘, 𝑐)	takes	a	key	and	a	ciphertext	and	produces	a	message	𝑚.	

	
The	 feasibility	 of	 applying	 these	 schemes	 in	 practice	 hinges	 on	 the	 fulfilment	 of	
correctness	 and	 security	 properties.	 Correctness	 is	 a	 general	 concept	 for	 encryption	
schemes,	and	describes	the	intuitive	notion	that	a	decryption	after	encryption	produces	
the	original	message,	i.e.	
	

𝐷𝑒𝑐 𝑘, 𝐸𝑛𝑐 𝑘,𝑚 = 𝑚	
	
The	 security	 of	 these	 schemes	 is	 often	 analysed	 with	 respect	 to	 meeting	 the	
requirements	of	semantic	security	[GM82],	which	states	that	an	adversary	should	not	be	
able	 to	 infer	 any	 information	 about	 the	 original	 value	 from	 the	 associated	 ciphertext,	
given	 a	 specific	 context.	 The	 formalization	 of	 security	 for	 authenticated	 encryption	
schemes,	 in	 particular,	 can	 be	 analysed	 by	 considering	 indistinguishability	 under	
chosen-plaintext	attacks	(IND-CPA)	and	ciphertext	integrity	(INT-CTXT),	which	together	
imply	 security	 for	 Authenticated	 Encryption	 (a	 strictly	 stronger	 notion	 than	 the	
standard	IND-CCA,	indistinguishability	against	chosen-ciphertext	attacks).	
																																																								
1 The security parameter is standardly expressed via unary representation. In this case, 𝑛 represents a string of 𝑛 
1s. 
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These	 schemes	 are	 used	 exclusively	 for	 ensuring	 security	 of	 information,	 since	 they	
exclude	 any	 possibility	 of	 computation	 over	 ciphertexts.	 This	 actively	 disables	 the	
possibility	 for	 an	 untrusted	 storage	 entity	 (the	 untrusted	 deployment,	 according	 to	
SafeCloud	architecture)	to	perform	computation	over	the	stored	data,	and	thus	prevents	
leveraging	the	potentially	higher	computation	capabilities	associated	with	it.	
	

	
Figure	3:	Solution	2	architecture:	single	untrusted	domain. 

	
	

2.1.2 State-of-the-art	Implementations	of	Authenticated	Encryption	

Following	the	ENISA	(European	Union	Agency	 for	Network	and	Information	Security)2	
algorithms,	key	size	and	parameters	report,	several	mechanisms	for	the	implementation	
of	 authenticated	 encryption	 schemes	 are	 proposed.	 We	 now	 provide	 some	 examples	
described	at	a	high	level	to	serve	as	baseline.	
	
Encrypt-then-MAC	with	CBC	mode	and	CBC-MAC	as	the	message	authentication	code	is	a	
two-pass	process	whose	analysis	in	[BN00]	provides	very	positive	feedback	for	practical	
usage.	Other	related	constructions	such	as	Encrypt-and-MAC	or	MAC-then-Encrypt	are	
generally	 not	 advised	 to	 be	 put	 into	 practice,	 as	 real	 world	 attacks	 have	 been	
implemented	in	systems	using	these	variants.	More	information	about	this	can	be	found	
in	the	referenced	report.	
	

																																																								
2 https://www.enisa.europa.eu/ 
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Assuming	the	underlying	block	cipher	is	secure,	OCB	mode	is	a	highly	efficient	one-pass	
mode	of	operation	proposed	by	Rogaway	[RBB03],	whose	wide	adoption	in	practice	has	
been	mostly	hindered	by	two	U.S.	patents.	However,	in	January	2013,	the	author	stated	
that	OCB	mode	is	 free	for	software	usage	under	a	GNU	General	Public	License,	and	for	
other	non-open	source	software	under	a	non-military	license	[R13].	
	
Galois	 Counter	 Mode	 (GCM)	 [M05]	 has	 been	 developed	 as	 an	 improvement	 to	 CWC	
mode	[KVW04],	as	a	highly	parallelizable	online	alternative	 to	similar	mechanisms	 for	
authenticated	encryption.	GCM	has	been	shown	to	be	provably	secure,	assuming	that	the	
IV	is	never	used	more	than	once	for	a	given	key	and	that	the	underlying	block	cipher	is	
secure.	Attacks	on	specific	weaknesses	of	deployments	can	be	 found	 in	 the	referenced	
report.	 One	major	 advantage	 of	 this	 approach	 is	 its	 design,	 which	 facilitates	 efficient	
implementations	in	hardware.	
	

2.1.3 Deterministic	Encryption 

Deterministic	 encryption	 is	 the	 concept	 of	 a	 cryptosystem	 that	 always	 produces	 the	
same	 ciphertext	 for	 the	 same	key	plaintext	 pair.	 Loosely	 speaking,	 this	means	 that	 by	
encrypting	the	same	value	multiple	times	it	will	result	in	the	same	ciphertext,	which	can	
then	 be	 verified	 by	 anyone	 in	 possession	 of	 those	 ciphertexts.	 Similar	 to	 what	 was	
previously	 presented,	 deterministic	 encryption	 schemes	 are	 also	 characterized	 as	 a	
triple	of	algorithms	(𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐)	following	the	same	broad	descriptions.	
	
Employing	 deterministic	 encryption	 schemes	 also	 provides	 specific	 correctness	 and	
security	 properties.	 Correctness,	 in	 addition	 to	 the	 previously	 mentioned	 definition	
where	 a	 decryption	 after	 encryption	produces	 the	 original	message,	must	 ensure	 that	
two	ciphertexts	are	the	same	if,	and	only	if,	the	associated	plaintexts	are	the	same,	i.e. 
	

𝐸𝑛𝑐 𝑘,𝑚/ = 𝐸𝑛𝑐 𝑘,𝑚0 	⇒ 	𝑚/ = 𝑚0	
	
Semantic	 security	 under	 chosen-plaintext/chosen-ciphertext	 attacks	 can	 only	 be	
achieved	 for	 randomized	 encryption	 algorithms.	 Consequently,	 the	 security	 of	 these	
schemes	must	follow	definitional	models	in	which	the	adversarial	power	to	query	values	
is	 limited,	 as	 proposed	 in	 [BBO07].	 Essentially,	 employing	 deterministic	 encryption	
entails	 forfeiting	 security	 against	 an	adversary	 that	 can	 correlate	 ciphertexts	 and	gain	
meaningful	 information	 from	 perceiving	 which	 messages	 are	 equal	 (albeit	 not	
necessarily	 recovering	 the	 associated	 plaintext),	 or	 the	 frequency	 in	 which	 they	 are	
stored.	
	
Alternatively,	 this	 also	 leads	 to	 very	 efficient	 solutions	 for	 so-called	 searchable	
encryption.	 If	 the	 untrusted	 deployment	 can	 trivially	 compare	 ciphertexts	 to	 confirm	
equality,	then	the	client	may	have	the	remote	provider	search	for	specific	values.	For	a	
setting	where	the	client	has	information	remotely	stored,	using	deterministic	encryption	
is	the	difference	between	simply	encrypting	an	identifier	search	value	and	sending	it	to	
the	server	for	comparison,	and	having	to	request	the	full	database,	decrypt	it,	and	search	
it	 locally.	 When	 considering	 real-world	 applications,	 which	 often	 require	 the	 remote	
storage	to	hold	a	significant	amount	of	information,	the	latter	option	becomes	infeasible.	
	
Additionally,	 techniques	 such	 as	 Convergent	 Encryption	 or,	 more	 generally,	
Message-Locked	Encryption	(MLE)	are	often	used	for	the	identification	and	removal	of	
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duplicate	files,	also	known	as	secure	deduplication.	These	schemes	derive	keys	from	the	
plaintexts	themselves,	which	are	then	used	to	produce	the	ciphertext,	whereas	general	
deterministic	 encryption	 generates	 keys	 independently	 of	 plaintext,	 and	 therefore	
requiring	 equal	 keys	 for	 correct	 comparisons.	 Formally,	 this	 approach	 considers	 an	
additional	algorithm	𝑇𝑎𝑔(𝑐),	which	receives	a	ciphertext	and	provides	a	tag	that	can	be	
used	 to	 compare	 values.	 This	 means	 that	 the	 encryption	 of	 two	 equal	 messages	 will	
always	produce	a	result	that	is	comparable	using	the	𝑇𝑎𝑔	algorithm,	i.e.	
	

𝑚/ = 𝑚0 ⇔ 𝑇𝑎𝑔(𝐸𝑛𝑐 𝑘/,𝑚/ ) = 𝑇𝑎𝑔(𝐸𝑛𝑐 𝑘0,𝑚0 )	
	
The	 idea	 of	 using	 this	 subset	 of	 cryptographic	 mechanisms	 allows	 a	 remote	 cloud	
provider	 serving	 multiple	 users,	 such	 as	 Dropbox,	 for	 example,	 not	 to	 have	 to	 store	
duplicate	 information	 uploaded	 by	 different	 users	 (locally	 and	 separately	 encrypting	
their	data).	Suppose	Alice	encrypts	𝑚/	into	𝑐/,	and	sends	it	 to	the	server;	now	suppose	
Bob	 encrypts	𝑚0	into	𝑐0,	 and	 sends	 it	 to	 the	 server;	 the	 server	 is	 aware	 if	𝑚/ = 𝑚0	by	
checking	 if	𝑇𝑎𝑔(𝑐/) = 𝑇𝑎𝑔(𝑐0)	,	 and	 can	 actively	 choose	 not	 to	 store	 the	 duplicate	𝑐0		
into	 the	database.	Whenever	Bob	requests	 the	 supposedly	uploaded	𝑐0,	 the	 server	 can	
simply	provide	𝑐/,	which	it	knows	to	contain	the	same	information.	
	
The	usage	of	MLE	schemes	 leads	 to	more	efficient	storage	management	by	 the	server,	
but	 it	 can	 also	 expose	 vulnerabilities,	 especially	 if	 the	 cloud	 side	does	not	 require	 the	
user	to	upload	his	file	when	it	already	exists	remotely.	Suppose	that	Alice	suspects	that	
Bob	is	in	possession	(i.e.	has	uploaded	the	value	to	the	server)	of	a	particular	file	𝑓	that	
is	unlikely	to	be	uploaded	by	anyone	else	(a	payroll	with	predictable	structure	and	Bob’s	
name	on	it,	for	instance).	Alice	can	create	𝑓	locally,	encrypt	it	by	using	MLE	and	transmit	
it	 to	 the	 server.	 If	 the	 server	 does	 not	 request	 the	 upload	 of	 the	 file,	 then	 Alice	 has	
confirmation	 that	 the	 file	 is	 already	 remotely	 stored,	 and	 thus	 can	 conclude	with	high	
probability	 that	 it	 is	Bob’s.	Alternatively,	 if	 the	 file	 follows	a	predictable	structure	and	
has	sensitive	information	that	is	not	entirely	predictable	(Bob’s	payroll	with	a	value	that	
Alice	 is	 unsure	 of,	 but	 curious	 about),	 Alice	 can	 create	 files	𝑓/, … , 𝑓+	containing	 likely	
payment	values	and	upload	them	sequentially.	If	the	server	does	not	request	the	upload	
for	some	particular	𝑓9 ,	then	Alice	has	successfully	guessed	Bob’s	specific	payment	file.	
	

2.1.4 State-of-the-art	Implementations	of	Deterministic	Encryption 

The	component	that	confers	probabilistic	nature	to	the	standard	symmetric	encryption	
schemes	is	the	initialization	vector.	As	such,	secure	block	ciphers	running	in	ECB	mode	
(which	does	not	use	 IV)	 or	 in	 other	modes	with	 the	 IV	 set	 to	 a	 constant	 value	 can	be	
implemented	as	deterministic	encryption	schemes.	
	
Alternatively,	 [BBO07]	 also	 introduces	 two	 searchable	 encryption	 schemes	 with	
particular	 focus	 on	 performance,	 considering	 a	 public-key	 scenario	 (𝐺𝑒𝑛	provides	 a	
public	and	a	private	key,	𝐸𝑛𝑐	is	run	with	the	public	key,	and	𝐷𝑒𝑐	is	run	with	the	secret	
key):	

• Encrypt-with-Hash	makes	use	of	 a	 standard	 IND-CPA	encryption	 scheme	and	 a	
hash	function	over	the	plaintext	and	public	key	to	produce	the	randomness	coins	
used	 in	 the	 encryption	 scheme,	 and	 therefore	 producing	 equal	 ciphertexts	 for	
equal	plaintexts.		
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• RSA-DOAEP	is	a	length-preserving	deterministic	version	of	RSA-OAEP,	where	the	
randomness	 employed	 for	 encrypting	 the	 message	 is	 also	 extracted	 from	 the	
message	itself	by	applying	hash	functions	to	the	plaintext.	

	
Several	 techniques	 for	 Convergent	 Encryption	 have	 been	 employed	 in	 practical	
deployments	for	a	broad	range	of	applications	[M+08,	DR+02,	AZ10,	CTP04].	However,	
the	 general	 primitive	 of	 MLE	 [BKR13]	 has	 contextualized	 and	 proposed	 further	
mechanisms	enabling	this	particular	type	of	data	protection.		
	
Alongside	a	thorough	security	and	performance	analysis	of	these	implementations,	and	
considering	 the	 availability	 of	 an	 encryption	 scheme	 and	 a	 hash	 function,	 techniques	
proposed	in	[BKR13]	encompass:	

• Convergent	Encryption	 (CE).	This	 is	 the	most	 straightforward	 approach,	where	
the	key	is	derived	by	simply	performing	a	hash	over	the	plaintext.	The	tag	is	the	
ciphertext	itself.	

• Hash-and-Convergent	Encryption	(HCE).	This	is	a	slight	variation	of	CE	where	the	
key	 is	 derived	 in	 a	 similar	 fashion,	 but	 the	 encrypted	 ciphertext	 is	 a	
concatenation	 of	 the	 original	 ciphertext	 with	 the	 hash	 of	 the	 derived	 key,	
allowing	more	parallelizable	implementations.	

• Random	Convergent	Encryption	(RCE).	 It	allows	the	generation	of	key,	message	
encryption	and	tag	production	to	be	done	in	a	single	pass.	It	 is	the	construction	
that	 is	 parallelizable	 to	 a	 higher	 degree	 of	 granularity.	 This	 is	 achieved	 by	
selecting	a	random	encryption	key,	encrypting	the	message	with	it	and	providing	
a	XOR	between	the	derived	key	and	the	randomly	generated	key.	
	

2.1.5 Order-preserving	Encryption 

Range	queries	are	a	very	common	operation	 in	database	manipulation.	For	 instance,	a	
client	might	request	to	the	server	all	records	that	have	a	certain	numeric	attribute	that	is	
greater	than	some	number	𝑥.	It	is	not	possible	to	simply	encrypt	the	numerical	attribute	
by	 using	 traditional	 encryption	 schemes	 because	 these	 do	 not	 preserve	 any	 property	
from	 the	 original	 data.	 Furthermore,	 deterministic	 encryption	 or	MLE	 schemes	 allow	
comparisons,	but	not	order-related	queries.	
	
Order-preserving	 Encryption	 (OPE),	 is	 an	 encryption	 scheme	 that	 preserves	 the	
numerical	order	of	the	plaintexts	in	the	corresponding	ciphertexts.	It	was	proposed	by	
Agrawal	 et	 al.	 in	 2004	 [AKS+04]	 and	 aimed	 to	 provide	 a	 solution	 for	 the	 problem	 of	
performing	 efficient	 range	 queries	 over	 encrypted	 data.	 In	 these	 schemes,	 for	 any	𝑚/	
and	𝑚0,	the	encryption	of	𝑚/	will	only	be	greater	than	the	encryption	of		𝑚0	if,	and	only	
if,	𝑚/	is	greater	than	𝑚0,	i.e.	
	

𝑚/ > 	𝑚0 	⟺ 𝐸𝑛𝑐 𝑘,𝑚/ > 𝐸𝑛𝑐(𝑘,𝑚0)	
	
This	flavour	of	encryption	is	relatively	recent	and	non-standardized,	and	as	such	several	
different	 schemes	were	 proposed	 in	 the	 last	 few	 years,	 as	 presented	 in	 Table	 1,	 from	
[PLZ13].	Only	a	single	work	claims	to	leak	nothing	besides	relative	order	[PLZ13].	Many	
of	 them,	 however,	 do	 not	 present	 a	 study	 or	 a	 formal	 proof	 addressing	 the	 issue	 of	
quantifying	plaintext	bits	leaked	by	the	technique.		
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A	popular	approach	for	modelling	security	of	OPE	schemes	was	proposed	by	[BCL+09]	
as	 the	POPF-CCA	 (Pseudorandom	Order-preserving	Function	under	Chosen	Ciphertext	
Attack),	defining	the	pseudorandom	order-preserving	function	advantage	under	chosen-
ciphertext	 attacks.	 A	 security	 analysis	 of	 an	 OPE	 scheme	 under	 this	 definition,	 and	
further	 details	 regarding	 caveats	 and	 other	 insights	 with	 respect	 to	 general	 security	
discussion	of	OPE	can	also	be	found	in	the	same	reference.		
	

2.1.6 State-of-the-art	Implementations	of	Deterministic	Encryption 

The	 implementation	 of	 [BCL+09]	 relies	 on	 two	 main	 blocks:	 Hypergeometric	
Distribution	(𝐻𝐺𝐷)	and	the	function	𝑇𝑎𝑝𝑒𝐺𝑒𝑛.	
	

	

Table	1:	Order-preserving	Encryption	(OPE)	proposals. 
	
To	better	understand	the	HGD	construction,	consider	the	following	example.	There	are	
100	balls	 in	a	bin,	20	of	which	are	black	and	the	remaining	80	are	white.	When	taking	
one	ball,	it	is	intuitive	that	the	probability	of	that	ball	being	black	is	20%.	Now	suppose	
we	 take	𝑦	balls	 out	 of	 the	 bin	without	 any	 replacement.	 There	 is	 a	 random	variable	𝑋	
following	a	hypergeometric	distribution	 that	 specifies	 the	number	of	withdrawn	black	
balls,	 following	a	hypergeometric	distribution.	Let	us	now	assign	the	previously	stated	
values	to	variables:	let	𝑁	be	the	whole	set	(100),	and	𝑀	be	the	set	of	black	balls	(20).	Let	
𝑦	be	 the	 total	 number	 of	withdrawn	balls	 and	𝑥	the	 number	 of	withdrawn	black	balls.	
The	 probability	 of	𝑥	black	 balls	 appearing	 in	 the	𝑦	withdrawn	 balls	 is	 given	 by	 the	
following	equation:	

	

𝑃DEF 𝑥, 𝑁,𝑀, 𝑦 = 	

𝑦
𝑥

𝑁 − 𝑦
𝑀 − 𝑥
𝑁
𝑀

	

	
The	binomial	coefficient	is	defined	as:	
	

𝑦
𝑥 =

𝑦!
𝑥! 𝑦 − 𝑥 ! 	for	0 ≤ 𝑥	 ≤ 𝑦	

	
	

Authors	 Year	of	Publication	
Ozsoyoglu	et	al.	[OSC03]	 2003	
Agrawal	et	al.	[AKS+04]	 2004	
Boldyreva	et	al.	[BCL+09]	[BCO11]	 2009	
Agrawal	et	al.	[AAE+09]	 2009	
Seungmin	et	al.	[STD+09]	 2009	
Kadhem	et	al.	[KAK10a]	 2010	
Kadhem	et	al.	[KAK10b]	 2010	
Xiao	et	al.	[XYH12a]	 2012	
Xiao	et	al.	[XYH12b]	 2012	
Yum	et	al.	[YKK12]	 2012	
Liu	and	Wang	[LW12]	 2012	
Liu	and	Wang	[LW13]	 2013	
Popa	et	al.	[PLZ13]	 2013	
Ang	et	al.	[AWW14]	 2014	
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In	1985,	Kachitvichyanukul	and	Schmeiser	designed	and	published	an	exact	algorithm	
for	sampling	according	to	the	hypergeometric	distribution	[KS85].	This	algorithm	takes	
the	following	arguments:	the	number	of	elements	of	the	complete	set,	N;	the	number	of	
elements	of	the	subset,	M;	the	number	of	samples,	y;	and	a	source	of	randomness,	cc.	The	
algorithm	 is	deterministic.	The	output	 is	x,	 a	 variable	 that	 follows	 the	hypergeometric	
distribution,	and	that	represents	the	number	of	withdrawn	black	balls.		
	
The	𝑇𝑎𝑝𝑒𝐺𝑒𝑛	construction	 aims	 to	 provide	 all	 the	 necessary	 randomness	required	 by	
the	 implementation	 of	 the	 OPE	 scheme	 in	 [BCL+09].	 It	 produces	 inputs	 for	 the	𝐻𝐺𝐷	
algorithm	 and	 it	 is	 also	 used	 for	 selecting	 the	 return	 value	 of	 the	 encryption	 and	
decryption	 algorithms.	 The	 authors	 proposed	 a	 length	flexible	pseudorandom	function,	
LF-PRF,	 that	 uses	 a	 variable-input-length	 pseudorandom	 function,	 VIL-PRF,	𝐹,	 and	 a	
variable-output-length	pseudorandom	generator,	VOL-PRG,	𝐺.	They	also	present	a	proof	
stating	 that	 if	𝐹	is	 a	 VIL-PRF	 and	𝐺	is	 a	 VOL-PRG	 then	𝑇𝑎𝑝𝑒𝐺𝑒𝑛	is	 a	 LF-PRF.	 The	
following	equation	presents	a	definition	for	𝑇𝑎𝑝𝑒𝐺𝑒𝑛:	
	

𝑇𝑎𝑝𝑒𝐺𝑒𝑛 1O, 𝑘, 𝑥 = 𝐺(1O, 𝐹(𝑘, 𝑥))	
	
1O 	is	 the	generator	output	 length3,	𝑘	is	a	key	chosen	uniformly	at	random	from	the	key	
space	 and	𝑥	is	 the	 input.	 The	 authors	 recommend	 to	 instantiate	𝐹	with	CMAC	 (Cipher-
based	 Message	 Authentication	 Code).	 G	 can	 be	 instantiated	 with	 AES128	 in	 CTR	
(Counter	mode).	A	concrete	instantiation	of	𝑇𝑎𝑝𝑒𝐺𝑒𝑛	can	be	as	follows:	
	

𝑇𝑎𝑝𝑒𝐺𝑒𝑛 𝐾, 𝑥 = 𝐴𝐸𝑆128𝐶𝑇𝑅(𝐶𝑀𝐴𝐶 𝑘, 𝑥 , 𝑇)	
	

𝑇	being	a	string	of	length	𝑙.	
	

We	 now	 present	 a	 description	 of	 the	 OPE	 scheme	 in	 [BCL+09].	 The	 key	 generation	
algorithm	𝐺𝑒𝑛	is	 straightforward,	 so	 we	 will	 focus	 our	 presentation	 on	 the	 more	
intricate	𝐸𝑛𝑐	and	𝐷𝑒𝑐.	 The	 pseudocode	 for	 encryption	 algorithm	𝐸𝑛𝑐	is	 presented	 in	
Figure	4.	Let	ℳ	and	𝒞	be	the	plaintext	domain	and	ciphertext	domain,	respectively.	Let	
𝑚	be	 the	 number	 to	 be	 encrypted.	 Since	 the	 algorithm	 is	 recursive,	 consider	 that	 the	
explanation	starts	at	the	moment	of	the	first	call.		
	
In	line	1	of	the	listing	in	Figure	4,	the	cardinality	of	the	sets	ℳ	and	𝒞	is	placed	in	𝑀	and	
𝑁,	respectively.	In	line	2,	𝑑	is	assigned	with	the	minimum	value	of	ℳ	minus	1.	The	same	
for	variable	𝑟.	Now,	in	line	3,	𝑦	contains	𝑁	divided	by	2	plus	𝑟.	Following	the	previously	
mentioned	 example,	 where	𝑁	had	 the	 value	 of	 100,	 and	 assuming	 that	 the	 ciphertext	
space	contains	values	from	1	to	100,	then	𝑦	will	contain	the	value	50.	Since	𝑀	is	20	and,	
as	such,	greater	than	1,	the	execution	jumps	to	line	8.	𝑇𝑎𝑝𝑒𝐺𝑒𝑛	is	now	used	to	generate	a	
random	token	𝑐𝑐	that	will	be	used	as	𝐻𝐺𝐷	input.	
	
	
	

																																																								
3 The generator output length representation is similar to the representation of the security parameter described in 
Footnote 1. 
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  𝐸𝑛𝑐ℳ,𝒞(k,m) 
1  m <- |ℳ|; N <- |𝒞| 
2  d <- min(ℳ) - 1; r <- min(𝒞) – 1 
3  y <- r + ⌈N/2⌉ 
4  If M = 1 then: 
5     cc <- 𝑇𝑎𝑝𝑒𝐺𝑒𝑛(k,m) 
6     c <- 𝒞 
7     Return c 
8  cc <- 𝑇𝑎𝑝𝑒𝐺𝑒𝑛(k,y) 
9  x <- 𝐻𝐺𝐷(ℳ,	𝒞,y,cc) 
10 If m ≤ x then: 
11    ℳ <- d + 1,…,x 
12    𝒞 <- r + 1,…,y 
13 Else: 
14    ℳ <- x + 1,…,d + M 
15    𝒞 <- y + 1,…,r + N 
15 Return 𝐸𝑛𝑐ℳ,𝒞(k,m) 

Figure	4:	OPE	Encryption	Algorithm.	
	
Recall	that	𝐻𝐺𝐷	receives	as	arguments	the	number	of	elements	of	the	big	set	(ciphertext	
domain),	the	small	set	(plaintext	domain)	and	the	number	of	draws	(samples).	Now	we	
replace	the	previously	given	𝑁	and	𝑀	by	𝒞	and	ℳ,	respectively.		
	
The	 variable	 𝑥 	will	 now	 be	 sampled	 by	𝐻𝐺𝐷 ,	 which	 is	 invoked	 as	 follows:	
𝐻𝐺𝐷 1,… ,100 , 1, … ,20 , 50, 𝑐𝑐 .	 Given	 this	 execution,	𝑥	will	 be	 assigned	 with	 the	
value	10	with	≈ 20%	chance,	values	9	and	11	with	a	chance	of	≈ 17.5%,	and	so	on.	Since	
the	same	key	𝑘	and	the	same	number	𝑚	will	generate	the	same	token	𝑐𝑐,	and	since	HGD	
is	deterministic,	𝑥	will	have	the	same	value	between	different	executions	for	the	same	𝑘	
and	𝑚.	 This	 property	 is	 what	 allows	 this	 scheme	 to	 meet	 the	 correctness	 properties	
expected	from	OPE	schemes.	
	
At	 this	 point,	 the	 algorithm	 performs	 a	 comparison	 between	𝑚	and	𝑥.	 If	𝑚	 ≤ 𝑥,	 for	
example	𝑚 = 5,	 then	 it	will	 set	ℳ	and	𝒞	to	1,… , 𝑥	and	1,… ,50	and	 then	recursively	call	
itself	 with	 the	 new	 domains.	 In	 fact,	 it	 is	 performing	 a	 binary	 search	 to	 find	 a	
correspondence	(encryption)	 for	𝑚	in	domain	𝒞.	 It	only	stops	when	the	message	space	
(ℳ)	contains	only	one	element,	𝑚	itself.	
	
The	pseudocode	for	the	decryption	algorithm	𝐷𝑒𝑐	is	presented	in	Figure	5.	Decryption	is	
similar	 to	 encryption.	 In	 line	 12,	 and	 comparing	 it	 with	 line	 10	 of	 the	 encryption	
algorithm,	the	ciphertext	𝑐	is	compared	with	𝑦	to	select	the	direction	of	the	search:	right	
or	left.	In	fact,	it	is	intuitive	to	understand	that	the	search	path	over	the	domains	will	be	
the	 same	 as	 the	 one	 performed	 by	 the	 encryption	 algorithm	 since	 order	 is	 preserved	
when	 encrypting.	 Regarding	 the	 last	 step	 (starting	 in	 line	 4),	 if	 the	 message	 space	
contains	only	one	element,	the	decryption	of	the	ciphertext	has	been	computed	and	that	
element	is	now	assigned	to	𝑚.		
	
	
	
	



	 D3.2	-	Privacy-preserving	storage	and	computation	techniques	
	 20	

  𝐷𝑒𝑐ℳ,𝒞(k,c) 
1  m <- |ℳ|; N <- |𝒞| 
2  d <- min(ℳ) - 1; r <- min(𝒞) – 1 
3  y <- r + ⌈N/2⌉ 
4  If M = 1 then: 
5     m <- min(ℳ) 
6     cc <- TapeGen(k,m) 
7     w <- 𝒞 
8     If w = c then Return m 
9     Else return Error 
10 cc <- TapeGen(k,y) 
11 x <- HGD(ℳ,	𝒞,y,cc) 
10 If c ≤ y then: 
11    ℳ <- d + 1,…,x 
12    𝒞 <- r + 1,…,y 
13 Else: 
14    ℳ <- x + 1,…,d + M 
15    𝒞 <- y + 1,…,r + N 
15 Return 𝐷𝑒𝑐ℳ,𝒞(k,c)	

	
Figure	5:	OPE	Description	Algorithm.	

	

2.1.7 Alternative	approaches	to	Order-preserving	Encryption:	CryptDB 

CryptDB,	presented	 in	 the	 literature	 in	2011,	was	defined	by	 the	authors	as	a	 “system	
that	 provides	 practical	 and	 provable	 confidentiality"	 [PRZ+11].	 The	 security	 of	
CryptDB’s	 schemes	 was	 discussed	 in	 [AS14]	 and	 [NKW15],	 and	 in	 response	 to	 these	
publications	 CryptDB	 authors	 published	 a	 report	 where	 they	 described	 the	 best	
practices	and	guidelines	for	using	CryptDB	system	in	a	secure	way	[PZB15].	One	of	the	
key	 components	of	CryptDB	 is	OPE.	CryptDB’s	 approach	 is	not	 as	 stateless	 as	 the	one	
proposed	in	[BCL+09],	 instead	requiring	the	server	to	hold	more	information	than	just	
data.	It	also	requires	additional	coordination,	as	the	employed	protocols	are	interactive	
between	 client	 and	 server.	 However,	 CryptDB’s	 solution	 requires	 significantly	 less	
computational	power	on	the	client	side,	with	the	encryption	and	decryption	operations	
being	1	to	2	orders	or	magnitude	more	efficient	than	the	previously	presented	solution.	
	
CryptDB	considers	the	following	simple	scenario.	There	is	a	client	entity	with	sensitive	
data	 to	 store	 and	 query,	 and	 an	 untrusted	 server	 that	 is	 capable	 of	 storage	 and	
computation.	 The	 authors	 provide	 two	 implementations	 for	 order-preserving	
encryption	that	are	compatible	with	this	scenario	(and	therefore	SafeCloud	Solution	1).	
Both	 leak	 the	relative	order	when	considering	any	 type	of	 server	corruption.	The	 first	
has	 better	 performance	 but	 only	 provides	 security	 against	 a	 semi-honest	 adversary,	
while	the	second	can	withstand	active	adversarial	behaviour.	Given	their	similarity,	we	
now	describe	how	the	first	implementation	works,	and	then	detail	how	it	can	be	adapted	
to	the	second.	
	
Consider	a	client	that	wants	to	store	the	set	of	values	{30,	20,	40,	10}.	The	first	step	is	
performed	 by	 the	 client,	 and	 consists	 in	 encrypting	 all	 the	 values	 using	 a	 symmetric	
deterministic	encryption	algorithm.	Let	us	assume,	for	the	sake	of	explanation,	that	the	
encrypted	values	are	the	following:	
	

0x303030, 0x202020, 0x404040, 0x101010 
 

The	 first	approach	uses	mutable	Order-preserving	Encryption	(mOPE).	The	server	has	
two	 different	 auxiliary	 data	 structures	 to	 maintain	 mOPE-related	 information.	 These	
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structures	are:	an	AVL	Tree	(a	self-balancing	binary	search	tree)	and	a	Hash	Table.	Each	
node	of	 the	 tree	 stores	a	 (deterministically)	 encrypted	value.	All	 encrypted	values	are	
inserted	 in	 the	 tree	 considering	 the	original	value.	 Since	 the	 server	only	has	access	 to	
encrypted	values,	the	client	has	to	guide	the	server	through	the	tree	traversal.	The	first	
insertion	is	obvious,	so	one	can	assume	that	the	first	value	is	already	inserted.	To	insert	
the	 number	 20	 in	 a	 server	 that	 only	 contains	 the	 30	 encoded,	 the	 insertion	 protocol	
proceeds	as	follows:	

1. The	client	requests	the	first	encrypted	value	to	the	server	and	receives	0x303030	
2. The	client	decrypts	the	ciphertext,	obtaining	the	value	30.	It	then	compares	with	

20,	 and	 since	30 < 20,	 the	 client	 requests	 the	 server	 for	 a	 left-side	 node	
ciphertext.	

3. The	server	returns	a	message	to	the	client	indicating	that	the	left	node	is	free.	
4. The	 client	 encrypts	 the	 value	 20	 and	 sends	 the	0x202020 to	 be	 stored	 on	 the	

left-side	node	in	the	server.		
	

The	client	proceeds	until	all	values	are	inserted	in	the	remote	tree,	whose	final	result	is	
shown	 in	Figure	6.	Now	 that	 the	 tree	has	 all	 encrypted	 values	 inserted	 correctly,	 it	 is	
necessary	to	assign	an	encoding	(the	order-preserving	encrypting	result)	to	all	of	them.	
The	number	 that	will	be	assigned	 to	each	one	of	 the	nodes	 is	given	by	 the	position	of	
each	node	in	the	tree.	This	number	will	be	built	bit	by	bit	as	shown	next.	

	
Figure	6:	Resulting	OPE	Tree.	

	
	
	

Encrypted	value	 Order-preserving	Encoding	Value	 OPE	Value	in	Decimal	
0x101010 [00]10	 2	
0x202020 [0]100	 4	
0x303030 []1000	 8	
0x404040 [1]100	 12	

Table	2:	CryptDB	Hash	Table.	
	
First,	we	define	our	order-preserving	encoding	domain,	which	we	will	assume	 to	be	4	
bits	for	the	sake	of	the	example,	giving	us	the	possibility	of	inserting	16	different	values,	
24	in	the	tree,	and	thus	in	the	system.	Starting	from	the	higher	bit,	the	corresponding	bit	
should	be	set	to	0	if	the	path	goes	to	the	right	and	1	if	it	goes	to	the	left.	When	the	path	
has	less	than	4	bits,	padding	should	be	inserted.	The	first	bit	of	padding	is	1	and	all	the	
remaining	 are	0.	This	mapping	will	 be	 stored	 in	 the	previously	mentioned	hash	 table,	
illustrated	by	Table	2.	The	set	of	values	{2,4,8,12}	is	the	set	that	contains	the	result	of	the	
order-preserving	encryption	method.	These	are	the	numbers	that	will	be	used	to	allow	
the	execution	of	queries	over	data.	
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The	 querying	 of	 values	 is	 made	 interactively.	 For	 instance,	 when	 the	 client	 wants	 to	
perform	a	record	selection	from	the	server	“all	records	with	a	certain	attribute	greater	
than	 30”,	 it	 first	 encrypts	 the	 value	 30,	 and	 asks	 the	 server	 for	 the	 encoding	 of	
0x303030,	 to	which	 the	server	responds	8.	The	client	 finally	changes	 the	query	 to	 “all	
records	with	a	certain	attribute	greater	than	8”	and	sends	it	to	the	server.	
	
The	reason	why	ciphertexts	are	mutable	is	related	to	the	underlying	technique	used	by	
this	method.	Furthermore,	 it	 is	proven	by	 the	authors	of	 this	work	 that	 the	usage	of	a	
mutable	ciphertext	scheme	 is	a	necessary	condition	 to	 leak	no	more	 than	 the	order	of	
the	elements	to	the	server.	Since	the	encoding	of	the	values	depends	on	their	position	in	
the	tree,	and	since	it	is	not	possible	to	control	the	insertion	order	of	the	values	in	a	real-
world	environment,	the	tree	can	assume	an	unbalanced	state.	This	means	that	the	tree	
has	 to	 be	 balanced,	 and	 consequently	 the	 positions	 of	 the	 values	will	 have	 to	 change.	
Therefore,	from	time	to	time,	and	depending	on	the	insertion	operations	performed,	the	
remotely	stored	encodings	will	also	have	to	be	updated.	
	
In	 the	 available	 implementation	 of	 CryptDB,	 the	 authors	 selected	 a	 B-Tree	 structure	
instead	of	an	AVL.	The	same	principles	of	 the	above	explanation	apply	 for	 this	kind	of	
structure.	The	selection	of	B-Trees	to	support	this	key-component	was	due	to	the	higher	
performance	shown	under	real-world	circumstances.	 In	 theory,	 scapegoat-trees	would	
have	 better	 asymptotic	 performance,	𝒪(𝑙𝑜𝑔	𝑛),	 in	 the	 number	 of	 updates	 to	 the	
encodings	 when	 performing	 balancing	 operations.	 This	 first	 approach	 is	 resistant	
against	a	semi-honest	adversary,	since	it	does	not	leak	more	than	the	order	to	the	server	
when	used	in	the	appropriate	conditions.	
	
In	 order	 to	 prevent	 leakage	 associated	 to	 active	 adversaries,	 the	 client	 must	 have	 a	
method	to	verify	the	 integrity	of	 the	tree,	so	as	to	reject	adversarial	 tampering.	 In	this	
case,	when	the	server	does	not	remove	nodes	upon	request,	a	property	called	same-time	
OPE	security	 is	 violated.	 This	 property	 states	 that	 the	 server	 is	 only	 allowed	 to	 have	
access	to	the	order	of	the	elements	that	are	inserted	in	the	storage	at	each	moment	and	
should	 never	 be	 able	 to	 perform	 inferences	 between	 the	 order	 of	 current	 and	 old	
elements.	This	can	be	achieved	by	using	Merkle	trees	[M89],	used	to	enforce	 integrity.	
However,	 if	 this	 is	not	 implemented	considering	second	pre-image	attacks	 [K+09],	 the	
server	can	easily	trick	the	client	into	accepting	a	tampered	result.		
	

2.1.8 Alternative	approaches	to	Order-preserving	Encryption:	ARX 

Following	an	approach	somewhat	similar	to	the	one	implemented	in	CryptDB,	a	strongly	
encrypted	 database	 system	 was	 proposed	 in	 [PBP16].	 This	 Solution	 also	 considers	 a	
trusted	client	and	an	untrusted	server,	and	addresses	the	 issue	of	 leaking	the	order	of	
data	to	the	server.	For	this	type	of	system,	all	data	is	encrypted	using	standardly	secure	
symmetric	cryptography	(see	the	Authenticated	Encryption	section	for	more	details).		
	
One	of	the	main	motivations	for	this	approach	is	to	provide	resistance	against	snapshot	
attacks.	 Persistent	 corruptions	 can	 still	 infer	 order	 of	 stored	 data	 by	 analysing	 access	
patterns,	so	its	security	with	respect	to	order	applies	only	to	snapshot	corruptions.	This	
means	 that	 an	 image	 of	 the	 server	 state	 and	 its	 encrypted	 data	 at	 any	 current	 time	
(excluding	 client	 interactions)	 must	 not	 be	 sufficient	 for	 inferring	 any	 meaningful	
information	 regarding	 the	 original	 data.	 This	 work	 only	 considers	 semi-honest	
adversarial	behaviour.	
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To	perform	a	range	query,	for	instance	“all	records	with	a	certain	attribute	greater	than	
20”,	a	special	index	is	used,	ARX-RANGE.	For	each	searchable	attribute	there	is	one	index,	
this	 index	 is	a	 tree	and	 it	 is	 located	 in	 the	server.	Each	node	of	 this	 index	 is	a	garbled	
circuit	that	receives	as	 input	a	special	token	given	by	the	client	and	it	has	2	outputs:	a	
direction	(right	or	left)	and	a	special	token	to	be	given	to	the	next	node,	which	is	also	a	
garbled	circuit.	
	
A	garbled	circuit	is	an	encrypted	program	(created	securely	by	the	client)	that	allows	the	
server	to	perform	obfuscated	computations.	These	computations	are	present	in	each	of	
the	nodes,	and	consist	in	comparisons	between	two	numbers:	the	number	contained	in	
the	input	token,	and	an	encoded	number	in	the	circuit.	Following	the	provided	example,	
the	client	 first	creates	a	 token	 that	contains	 the	encoding	of	 the	number	20.	Then,	 the	
client	sends	this	encoding	to	the	server.	Let	us	consider	that	in	the	first	node	of	the	ARX-
RANGE	 index	 there	 is	 a	 garbled	 circuit	 that	 contains	 the	 following	 encrypted	
computation:	> 30.	Since	20 < 30,	this	first	garble	circuit	should	output	direction	right,	
and	a	token	will	be	given	to	the	next	node.	Now	consider	that	the	current	right-node	has	
the	 following	 computation:	> 20,	 and	 it	 has	 no	 child	 nodes.	 Since	 the	 result	 of	 this	
computation	is	a	valid	result,	the	server	will	return	to	the	client	a	list	of	encrypted	values	
(also	created	by	the	client)	that	are	linked	with	the	condition	of	being	greater	than	20.	
The	client	decrypts	 this	 list,	which	contains	all	database	 identifiers	of	 the	records	 that	
have	the	considered	attribute	greater	than	20.	The	decryption	of	these	identifiers	is,	in	
itself,	 an	 encryption	 of	 the	 identifiers	 stored	 in	 the	 database.	 The	 client	 shuffles	 the	
encrypted	 identifiers	 (so	 they	 do	 not	 reveal	 the	 relative	 order	 between	 them)	 and	
requests	the	server	to	retrieve	the	correspondent	records.	
	
Security	considerations	demand	that	each	garbled	circuit	is	used	only	once.	This	implies	
that,	for	every	range	query,	the	client	must	provide	new	garbled	circuits	to	the	server	to	
replace	the	ones	used	in	the	performed	operation.	The	number	of	garbled	circuits	to	be	
replaced	is	logarithmic	in	the	number	to	different	values	for	the	corresponding	attribute,	
so	this	cost	is	amortized	as	the	amount	of	data	increases.	
	

2.2 Deployment	
The	architecture	proposed	 for	Solution	1	 is	divided	 in	 two	domains,	 a	 trusted	domain	
and	 an	 untrusted	 one.	 As	 shown	 in	 Figure	 3,	 both	 domains	 are	 composed	 of	 several	
components	that	are	independent	and	can	have	different	implementation	approaches.	
	
Regarding	the	trusted	domain,	client	applications	may	use	our	secure	database	solution	
by	resorting	to	a	SQL	or	a	NoSQL	API.	Java	Database	Connectivity	(JDBC)	will	be	used	to	
provide	 the	 clients	 with	 an	 ANSI	 SQL	 API	 while	 abstracting	 any	 specific	 API	 detail	
required	by	the	SQL	Engine	implementation.	 
 
The	 SQL	 engine	 is	 based	 on	 previous	work	 developed	 in	 the	 CumuloNimbo	European	
Project	 (FP7-257993)	 and	 enables	 the	 cooperation	 of	 the	 SafeCloud	 project	 with	 the	
work	 developed	 in	 previous	 projects.	 The	 engine	 is	 implemented	 in	 Java	 and	 has	 no	
security/privacy	 considerations	 as	 its	 main	 focus	 is	 to	 provide	 a	 solution	 capable	 of	
answering	SQL	queries	with	high	throughput. 
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The	 SQL	 query	 engine	 provides	 an	 ANSI	 SQL	 interface	 with	 transactional	 support	
(Commit,	 Abort,	 and	 Begin).	 This	 engine	 is	 responsible	 for	 planning,	 optimizing	 and	
executing	 queries,	 and	works	 together	with	 components	 for	 transaction	management	
and	data	storage.	The	query	engine	architecture	has	the	key	advantage	of	being	stateless	
regarding	application	data.	Data	manipulation	language	(DML)	statements	(Select,	Insert,	
Update	 and	 Delete)	 can	 be	 executed	 without	 any	 coordination	 amongst	 different	
instances.	 As	 a	 result,	 the	 system	 can	 be	 deployed	 in	 distributed	 infrastructures	 and	
scaled	to	a	large	number	of	servers.	The	query	engine	layer	translates	user	queries	into	a	
set	 of	 NoSQL	 operations	 (Put,	Get,	Delete,	 and	 Scan	 operations)	 to	 be	 invoked	 on	 the	
storage	layer.	This	storage	layer	can	be	any	NoSQL	database	with	a	similar	API	to	HBase.	
This	 translation	 mechanism	 includes	 a	 mapping	 of	 the	 relational	 schema	 into	 an	
appropriate	 optimized	NoSQL	 schema.	Once	 again,	 SafeCloud	 architecture	 assumes	 an	
HBase	NoSQL	interface	in	the	Proxy	component,	which	matches	the	requirements	of	the	
SQL	engine. 
 
HBase	already	provides	advanced	query	facilities	(filters)	to	retrieve	specific	sets	of	key-
values.	The	query	engine	component	takes	advantage	of	HBase	features	to	push	parts	of	
the	 query	 execution	 to	 the	 NoSQL	 data	 store	 layer	 in	 order	 to	 leverage	 NoSQL	
computation	and	reduce	the	amount	of	information	that	must	be	sent	and	processed	in	
the	SQL	engine.	Moreover,	by	using	HBase	as	the	storage	backend,	the	SQL	Engine	takes	
advantage	 of	 HBase’s	 scalability	 to	 support	 a	 higher	 number	 of	 clients	 and	 achieve	
improved	query	performance. 
 
Finally,	 transactions	 are	 handled	 in	 a	 holistic	 manner	 providing	 full	 ACID	 properties	
across	 the	 entire	 SafeCloud	 stack	 (SQL	Engine	 and	NoSQL	backend).	 In	particular,	 the	
transaction	 support	 system	 (also	 based	 on	 work	 presented	 in	 the	 CumuloNimbo	
European	Project)	is	designed	to	provide	transaction	management	for	user	queries. 
 
The	NoSQL	client	API	will	be	compatible	with	a	subset	of	the	default	HBase	API.	This	API	
will	be	used	both	by	NoSQL	client	applications	and	by	the	SQL	Engine.	Namely,	the	API	
will	support	the	following	HBase	operations.		

• Put	-		Insert	a	key-value	record	on	the	NoSQL	database.	
• Get	-	Retrieve	a	key-value	record	from	the	NoSQL	database.	
• Delete	-	Delete	a	key-value	record	from	the	NoSQL	database.	
• Scan	-	Retrieve	a	range	of	key-value	records	from	the	NoSQL	database.	

	
Moreover,	 the	 Get	 and	 Scan	 operations	 will	 support	 the	 following	 HBase	 filters:	
SingleColumnValueFilter,	 WhileMatchFilter,	 RowFilter	 and	 BinaryPrefixComparator.	
These	 filter	 requirements	 are	 posed	 by	 the	 SQL	 engine	 that	 uses	 them	in	 order	 to	
provide	an	ANSI	SQL	API.	A	more	detailed	description	of	these	operations	can	be	read	in	
deliverable	D3.1. 
 
The	proxy	component	will	be	compatible	with	the	previous	HBase	interface	and	will	be	
responsible	 for	 processing	 client	 and	 SQL	 Engine	 requests,	 and	 issuing	 these	 to	 the	
untrusted	 domain.	 More	 concretely,	 the	 proxy	 will	 be	 implemented	 in	 Java	 and	 will	
modify	 the	 HBase	 client	 to	 issue	 functionally	 similar	 requests	 to	 the	 HBase	 cluster	
deployed	 in	 the	 untrusted	 domain,	 considering	 the	 underlying	 cryptographic	
techniques.	The	unmodified	HBase	client	exports	to	the	applications	a	NoSQL	API	as	the	
one	 discussed	 above,	 and	 manages	 how	 clients	 connect	 and	 send	 requests/receive	
replies	 from	 HBase.	 Since	 requests	 and	 replies	 are	 handled	 by	 this	 component,	
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modifying	it	will	enable	the	encryption	of	sensitive	data	before	storage	(Put	operation)	
and	 the	 decryption	 of	 data	 upon	 retrieval	 (Get	 operation),	 and,	 depending	 on	 the	
functionalities	 made	 available	 by	 the	 techniques,	 Scan	 or	 Filter	 operations	 can	 be	
converted	to	similar	operations	for	equality	and	range	query	retrieval	of	protected	data.	 
 
Some	 cryptographic	mechanisms,	 such	 as	 CryptDB	 or	 ARX,	 require	 additional	 remote	
state	 and	 computations	 in	 the	HBase	 cluster	 (untrusted	 domain).	 These	will	 be	 taken	
care	of	by	employing	the	HBase	Coprocessor	mechanism.	This	mechanism	can	be	seen	as	
a	 plugin	 that	 adds	 additional	 behaviour	 to	 HBase	 clusters	without	modifying	 its	 core	
implementation. 
 
Note	that	the	joint	effort	of	the	local	Proxy	and	(in	some	cases)	the	remote	Coprocessor	
allows	the	system	to	display	a	transparent	behaviour	with	respect	to	the	chosen	security	
techniques,	and	the	way	data	is	being	stored/processed	in	the	untrusted	domain,	from	
client	 applications	 and	 the	 SQL	 Engine.	 The	 untrusted	 domain	 is	 expected	 to	 be	
composed	 by	 a	 single	 cluster	 running	 an	 unmodified	 HBase	 deployment,	 modulo	 the	
extended	Coprocessor	mechanism.	 
	

2.3 Discussion	
Solution	1	considers	a	somewhat	standard	scenario	for	the	development	of	solutions	in	
the	cloud	paradigm.	Assuming	 that	 the	 remote	cloud	provider	 is	untrusted	 (hence	 the	
untrusted	 deployment	 referred	 to	 in	 the	 SafeCloud	 architecture),	 security	 techniques	
should	be	enforced	to	prevent	malicious	entities	to	act	upon	the	proposed	systems.	The	
first	section	of	this	chapter,	in	particular,	has	been	dedicated	to	a	thorough	survey	of	the	
primitives	 and	 state-of-the-art	 implementations	 that	 are	 compatible	 with	 this	 simple	
scenario.	
	
Unfortunately,	by	the	fundamental	properties	of	these	cryptosystems,	 it	 is	not	possible	
to	infer	a	scheme	that	is	objectively	“the	best”	for	deployment	on	all	possible	solutions.	
In	fact,	the	existing	variety	of	approaches	is	a	direct	consequence	of	exploring	multiple	
possibilities	 of	 trade-offs	 between	 security	 guarantees,	 available	 computational	
functionalities,	 and	 performance	 of	 implementations.	 To	 highlight	 the	 importance	 of	
different	 techniques	 in	different	 contexts,	we	now	propose	 two	 scenarios:	A	 and	B.	 In	
scenario	A,	a	user	wants	to	offload	a	database	of	highly	sensitive	files	that	will	be	used	
mostly	for	archival	purposes,	 i.e.	not	to	be	queried	over	and	only	expecting	to	retrieve	
single	 files	 from	 time	 to	 time.	 In	 scenario	 B,	 a	 user	 that	 wants	 to	 offload	 a	 database	
containing	mildly	sensitive	numerical	data,	 to	be	often	queried.	The	usage	of	 standard	
authenticated	encryption	seems	like	a	natural	choice	for	A,	as	it	provides	strong	security	
guarantees	without	 any	 significant	 disadvantages	 for	 that	 usage,	 but	 useless	 for	 B,	 as	
frequent	 querying	 would	 imply	 retrieving	 the	 full	 database	 and	 performing	 the	
operations	 locally,	 which	 is	 completely	 unfeasible.	 Alternatively,	 the	 usage	 of	 order-
preserving	encryption	(or	similar	techniques	allowing	range	queries)	might	be	a	fitting	
solution	 if	 the	 user	 in	B	 is	willing	 to	 allow	 the	 relative	 order	 of	 the	 stored	data	 to	 be	
leaked	in	exchange	for	enabling	the	cloud	provider	to	take	the	responsibility	for	query	
computation.	In	turn,	the	user	of	scenario	A	is	likely	not	interested	in	this	technique,	as	it	
seems	 pointless	 to	 sacrifice	 confidentiality	 with	 respect	 to	 data	 ordering	 to	 enable	 a	
computation	that	the	system	is	not	expected	to	perform	in	the	first	place.	
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Contrary	 to	 the	 provided	 examples,	 when	 considering	 real-world	 applications,	 the	
selection	of	 techniques	for	specific	requirements	 is	hardly	often	straightforward.	Since	
most	practical	secure	solutions	for	cloud	deployment	consider	only	a	subset	of	proposed	
mechanisms	 (in	 most	 cases,	 even	 reducing	 the	 scope	 to	 a	 single	 flavour	 of	 data	
encryption),	users	lack	the	tools	required	to	have	their	implementation	tailored	to	their	
application-specific	 needs,	 so	 they	 often	 compromise	 to	 deploy	 their	 solution	 using	 a	
suboptimal	system	(functional,	performance	and/or	security	wise).	
	
SafeCloud	 aims	 to	 fill	 this	 significant	 niche	 of	 secure	 frameworks	 by	 allowing	 the	
deployment	 of	 solutions	 that	 can	 opt	 to	 use	 different	 cryptographic	 mechanisms	 for	
different	levels	of	data	security/functionality	requirements.	This	is	by	no	means	the	only	
approach	that	has	ever	aimed	to	provide	a	more	granular	approach	to	data	protection	
(CryptDB	 is	 an	 example	 of	 providing	 custom	 layered	 encryption,	 but	 several	 other	
systems	have	been	designed	according	to	a	similar	approach,	such	as	Google’s	Encrypted	
BigQuery4,	 SAP’s	 SEEED5,	 or	 Microsoft’s	 Always	 Encrypted	 SQL	 Server6),	 and	 should	
instead	 be	 seen	 as	 a	 natural	 progression	 towards	 proposing	 solutions	 for	 the	
deployment	 of	 systems	 taking	 into	 consideration	 more	 granular	 application-specific	
security	requirements.		
	
One	 of	 the	 central	 objectives	 for	 the	 project	 is	 about	 providing	 this	 in	 a	 way	 that	 is	
transparent	 to	 the	 end-user.	 More	 specifically,	 we	 are	 interested	 in	 providing	 a	
framework	 in	which,	 after	 the	 system	has	 been	 initialized	 and	 the	 privacy-preserving	
techniques	instrumented	according	to	system	specifications,	the	interaction	of	the	user	
with	 the	 Client	 Application	 is	 the	 same,	 regardless	 of	 the	 underlying	 cryptographic	
schemes	employed7.	This	 is	made	possible	by	the	 joint	action	of	the	Proxy	component,	
and	by	the	remote	HBase	Coprocessor	(which,	for	many	of	the	proposed	schemes,	is	not	
even	required).	
	
By	 enabling	 a	 fully	 customizable	 Proxy,	 SafeCloud	 enables	 the	 instrumentation	 of	
solutions	 that	 can	 not	 only	 freely	 select	 the	 type	 of	 encryption	 used	 (via	 standard	
authenticated	 encryption,	 order-preserving	 encryption,	 or	 other	 variants),	 but	 also	
select	 different	 techniques	 to	 be	 used	 in	 different	 contexts.	 The	 importance	 of	 this	
granularity	 level	 can	 be	 exemplified	 by	 recalling	 scenarios	 A	 and	 B,	 considering	 that	
systems	generally	store	and	manage	data	sets	with	different	goals	in	mind:	some	might	
be	 highly	 sensitive	 for	 archive,	 others	 less	 sensitive	 and	 expected	 to	 be	 frequently	
queried.	 This	 essential	 component	 executes	 the	 required	 security	 mechanisms	
depending	 on	 the	 system	 specification,	 and	 inherently	 enables	 a	 higher	 level	 of	
customization	of	technique	usage	according	to	the	specific	application	requirements.	
	
As	 a	whole,	 Solution	 1	 of	 the	 SafeCloud	 framework	 takes	 a	 user-centred	 approach	 by	
allowing	 the	 combination	 of	 security	 mechanisms,	 supporting	 an	 application-specific	
optimized	implementation	for	practical	deployments.	Solutions	2	and	3	extend	the	scope	
of	 the	 framework	 to	more	 generic	 scenarios,	 namely	multiple	 untrusted	 domains	 and	
untrusted	clients,	 further	expanding	the	combination	of	allowed	deployment	scenarios	
for	optimized	approaches.	
	 	

																																																								
4 https://cloud.google.com/bigquery/ 
5 https://www.sics.se/sites/default/files/pub/andreasschaad.pdf 
6 https://msdn.microsoft.com/en-us/library/mt163865.aspx 
7 Modulo performance differences, which are inherent to the computation requirements of each implementation. 
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3 Solution	2:	Secure	processing	in	multiple	untrusted	domains	
	

3.1 Privacy-preserving	techniques		

Solution	 2	 (Figure	 7)	 extends	 the	 domain	 of	 the	 previous	 approach	 by	 allowing	 the	
usage	of	multiple	untrusted	domains	instead	of	just	one.	Naturally,	this	does	not	exclude	
the	deployment	of	techniques	applicable	on	a	single	remote	domain,	and	can	even	allow	
performance	improvements,	e.g.	by	distributing	the	load	onto	several	remote	machines.	
Furthermore,	 and	 more	 importantly,	 this	 enables	 the	 leverage	 of	 additional	
privacy-preserving	techniques	that	hinge	on	a	dynamic	usage	of	untrusted	domains.	
 

 
Figure	7:	Solution	3	architecture:	multiple	untrusted	domains. 

 

3.1.1 Secure	Multiparty	Computation 

The	secure	execution	of	code	over	multiple	untrusted	participants	 is	a	problem	within	
the	 domain	 of	multiparty	 computation.	 Secure	Multiparty	 Computation	 (MPC)	 can	 be	
defined	 as	 a	 problem	 in	which	 a	 number	 of	𝑛	players	𝑃/, … , 𝑃+	in	 possession	 of	 inputs	
𝑥/, … , 𝑥+	(respectively)	agrees	to	compute	a	function	𝑓(𝑥/, … , 𝑥+) 	= 	 (𝑦/, …	, 𝑦+),	so	that	
each	𝑃9 	knows	𝑦9 	and	 learns	 nothing	 additional	 that	 could	 not	 be	 deduced	 from	 its	
personal	 input	 and	 output.	 Yao’s	 millionaire	 problem	 [Y82],	 where	 two	 millionaires	
attempt	to	evaluate	which	is	wealthier	without	disclosing	the	real	value	of	their	wealth,	
is	a	simple	example	of	MPC.		
	
This	can	trivially	be	achieved	if	we	consider	the	usage	of	secure	channels	and	a	trusted	
third	party	(TTP).	In	this	assumption,	each	𝑃9 	would	only	need	to	send	𝑥9 	to	the	trusted	
party	 and	 expect	 to	 receive	𝑦9 	as,	 by	 definition	 of	 the	 TTP,	 function	𝑓	is	 executed	
correctly	 and	 securely.	However,	 it	 is	 not	 feasible	 to	 assume	 that	 participants	 of	 joint	



	 D3.2	-	Privacy-preserving	storage	and	computation	techniques	
	 28	

protocol	 executions	 in	 real-world	 scenarios	 can	 agree	 on	 a	 trusted	 participant	 to	
compute	over	their	sensitive	data.	As	such,	the	problem	of	MPC	refers	solely	to	the	cases	
in	which	these	conditions	are	unavailable.	
	
The	 generality	 of	 applications	 makes	 the	 MPC	 security	 definition	 a	 complex	 task.	 To	
assist	in	this	effort,	the	approach	of	ideal	versus	real	world	is	generally	considered	to	be	
adequate	 towards	 formalizing	 a	 protocol’s	 security	 definition.	 This	 concept	 is	 used	 in	
methods	 for	 formalizing	 composable	 security	 proofs,	 such	 as	Universal	 Composability	
[R01],	 reactive	 simulatability	 [PW00],	 abstract	 cryptography	 [MR11]	 or	 inexhaustible	
Turing	machines	[KT13].	
	
The	real	world	describes	the	behaviour	expected	from	an	actual	protocol	execution	for	a	
specified	 number	 of	 participants.	 An	 ideal	 world	 is	 essentially	 a	 formalization	 of	 the	
same	 protocol	 under	 the	 TTP	 setting.	 In	 this	 world,	 an	 ideal	 functionality	 executes	
procedures,	 while	 a	 simulator	 that	 is	 fully	 aware	 of	 the	 occurrence	 of	 corruptions	
simulates	towards	the	adversary	what	it	expects	to	see	in	a	real-world	scenario.		
	
The	approach	is	based	on	the	intuition	that	if	such	simulator	exists,	then	the	adversary	
cannot	possibly	gain	more	information	than	that	he	would	obtain	when	interacting	with	
the	protocol,	executing	with	the	described	TTP.	If	the	views	of	the	real	and	ideal	worlds	
follow	similar	distributions,	then	we	say	that	the	protocol	is	a	secure	implementation	of	
the	ideal	functionality8.	Composability	properties	are	a	major	strength	for	this	approach.	
In	this	context,	if	a	given	functionality	is	simulatable	and	composable,	we	can	assume	it	
exists	in	the	real	world,	and	therefore	it	can	be	employed	to	prove	other	functionalities:	
if	𝜋/is	proven	to	be	a	secure	realization	of	𝐹,	and	𝜋0	is	shown	to	be	a	secure	realization	
of	𝐺	assuming	𝐹,	validity	of	𝐺	is	dependent	on	the	correctness	of	𝜋/’s	proof.	Not	all	real-	
versus	 ideal-world	 approaches	 imply	 composability	 of	 functionalities.	 This	 can	 be	
achieved	 through	 inherent	 characteristics	 of	 the	 security	 model	 (universal	
composability	 makes	 use	 of	 a	 hybrid	 model	 to	 assert	 composability	 of	 ideal	
functionalities),	but	composability	properties	may	also	be	formalized	at	a	higher	level.	
	
As	 such,	 security	 analysis	 is	 particularly	 dependent	 on	 the	 types	 of	 adversarial	
behaviour	 and	 corruptions	 considered,	 as	 it	 is	 naturally	 easier	 to	 present	 an	 MPC	
protocol	 as	 secure	 if	 we	 consider	 more	 restrained	 adversaries.	 Feasibility	 of	 MPC	
implementation	 for	 real-world	 solutions	 hinges	 on	 these	 assumptions,	 as	 security	
against	extremely	powerful	adversaries	can	be	both	extremely	costly	performance-wise	
(sometimes	requiring	the	employment	of	cryptographic	primitives	which	have	very	high	
computation	 and	 communication	 requirements)	 and	 not	 quite	 representative	 of	 the	
realistic	malicious	entities	acting	upon	the	system.		
	
3.1.2 State-of-the-art	Implementations	of	Secure	Multiparty	Computation 

Secret	sharing	is	an	essential	technique	to	protect	sensitive	data	amongst	independent	
entities	 in	 such	 a	way	 that	 one	 single	 participant	 cannot	 have	 access	 to	 the	 sensitive	
information	 by	 itself.	 Formally,	 and	 more	 broadly,	 a	(𝑘, 𝑛)	threshold	 scheme	 takes	 a	
sensitive	value	𝑣	and	distributes	it	in	𝑛	pieces	𝑣/, . . . , 𝑣+.	Recovering	the	original	value	𝑣	

																																																								
8  This similarity can refer to views that are either identical, producing perfectly secure implementations, 
statistically indistinguishable, producing statistically secure implementations, or computationally 
indistinguishable, producing computationally secure implementations. 
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requires	 the	 joint	 collection	 of	 at	 least	𝑘	out	 of	 the	𝑛	shares.	 In	 many	 practical	
implementations	𝑘 = 𝑛,	i.e.	all	shares	are	required	to	recover	the	original	data.		
	
With	the	motivational	goal	of	protecting	a	private	key,	two	independent	researchers,	Adi	
Shamir	[S79]	and	George	Blakley	[B79],	presented	their	solutions	for	secret	sharing	 in	
1979. 
	
The	 solution	 proposed	 by	 Adi	 Shamir	 employs	 polynomial	 interpolation	 on	 a	
2-dimensional	plane	to	divide	a	sensitive	value	on	a	set	of	secrets.	As	with	every	secret	
sharing	 scheme,	 it	 is	 assumed	 that	𝑣	can	 be	 converted	 into	 a	 number.	 Thus,	 given	 the	
numerical	representation	of	𝑣	and	a	random	polynomial	𝑞 𝑥 	of	degree	𝑘 − 1		where	the	
first	 element	 is	𝑣,	 the	 evaluation	 for	 each	 coefficient	 generates	 a	 new	 secret.	 Given	𝑘	
secrets	and	the	corresponding	indexes,	it	is	possible	to	obtain	the	original	coefficients	by	
polynomial	interpolation.	
	
Blakley’s	scheme	uses	𝑛	nonparallel	(𝑛 − 1)	dimensional	hyperplanes	that	intersect	in	a	
single-point	to	encode	the	value	𝑣	into	multiple	secrets.	Value	𝑣	is	determined	by	a	large	
collection	 of	 planes,	 while	 a	 plane	 can	 only	 determine	 reduced	 amounts	 of	
values.		Therefore,	to	encode	a	sensitive	value	in	secrets,	a	random	plane	𝐿	from	the	ones	
defined	 by	 the	 value	 is	 chosen.	 Furthermore,	 another	 set	 of	 subspaces	 is	 randomly	
chosen	so	that	 they	 intersect	 in	𝐿,	and	thus	encoding	the	value	as	a	set	of	coordinates.	
Each	player	will	store	enough	information	to	generate	a	single	sub-plane,	and	only	when	
enough	planes	are	intersected	can	the	secret	value	be	decoded.	
	
The	 implementation	 of	 complex	(𝑘, 𝑛)	threshold	 schemes	 can	 be	 both	 intricate	 and	
computationally	 demanding,	 when	 compared	 with	 simpler	 schemes	 such	 as	 the	 one	
employed	 by	 Sharemind.	 The	 Sharemind	 secret	 sharing	 uses	 a	 simple	 additive	 secret	
sharing	 scheme	 that	 works	 by	 taking	 a	 sensitive	 value	𝑣,	 generating	 two	 random	
numbers	from	a	finite	field	𝒵0o 	and	subtracting	𝑣	from	the	sum	of	the	two	to	obtain	the	
third.	 This	 secret	 sharing	 scheme	 considers	 an	 additive	 ring,	 which	 is	 an	 essential	
component	for	the	usage	in	secure	multiparty	computation	protocols.	In	particular,	this	
technique	 is	 trivially	shown	to	be	secure	against	adversaries	corrupting	2	out	of	 the	3	
participants. Assuming	 that	 a	 trusted	 domain	 can	 securely	 distribute	 private	
information	using	secret	sharing,	MPC	protocols	are	then	capable	of	performing	general	
computations	over	the	data	without	leaking	the	information	held	in	each	domain,	or	any	
information	related	to	the	computation	being	carried	out	(besides	the	output,	and	what	
can	be	inferred	from	it).		
	
The	protocols	chosen	for	Solution	2	and	3	are	based	on	the	protocols	proposed	by	the	
Sharemind	 framework	 [B+12].	 It	 is	 worth	 mentioning	 that	 this	 framework	 is	 being	
developed	by	CYBERNETICA,	one	of	the	partners	of	the	SafeCloud	project.	Therefore,	the	
project	 consortium	 has	 a	 deep	 know-how	 regarding	 the	 functionalities	 of	 Sharemind.	
Moreover,	 the	 research	and	outputs	of	 the	project	will	be	beneficial	 for	advancing	 the	
current	state	of	this	framework.	 
	
These	 schemes	 are	 shown	 to	 be	 secure	 under	 the	 circumstances	 of	 semi-honest	
adversarial	behaviour,	statically	and	persistently	corrupting	up	to	one	out	of	 the	three	
protocol	 participants.	 This	 security	 model	 is	 common	 in	 the	 development	 of	 secure	
cloud	 solutions,	 where	 the	 computation	 is	 to	 be	 distributed	 over	 several	 competing	
cloud	 providers.	 Deployment	 assumes	 the	 pre-establishment	 of	 secure	 channels	
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amongst	the	untrusted	deployments,	which	can	be	deployed	using	the	SafeCloud	secure	
communication	layer	developed	by	WP1.	
	
Two	main	protocols	from	the	Sharemind	framework	will	be	considered	for	performing	
database	operations	in	this	context:	the	Equality	protocol	and	the	GreaterThan	protocol.	
These	protocols	enable	the	databases	to	perform	record	comparison	and	range	queries	
over	 the	protected	data,	 and	 thus	act	 as	 the	building	blocks	 for	many	SQL	and	NoSQL	
operations.	Every	NoSQL	API	operator	requires	the	comparison	of	records	to	retrieve	a	
single	stored	value,	or	to	retrieve	a	set	of	records.	Without	equality	matching	or	order	
comparison,	a	NoSQL	database	can	only	store	information. 
 
These	 two	 protocols,	 essential	 for	 basic	 secure	 query	 computation,	 are	 going	 to	 be	
described	 next	 with	 an	 overview	 of	 the	 computation	 on	 each	 party,	 as	 well	 as	 a	
description	regarding	how	all	participants	 jointly	calculate	 the	desired	output	without	
leaking	 information. To	 understand	 the	 presented	 code,	 consider	 that	 players	 are	
denoted	 by	𝑃,	 and	 that	 every	 calculation	 is	 performed	 on	 the	 additive	 ring	𝒵0o.	
Furthermore,	it	is	assumed	that	each	player	holds	two	secrets,	each	one	corresponding	
to	 the	 secret	 sharing	of	𝑢	and	𝑣.	 These	values	 are	 composed	by	 secrets	(𝑢/, 𝑢0, 𝑢q)	and	
(𝑣/, 𝑣0, 𝑣q),	 correspondingly.	 These	 two	 protocols	 are	 based	 on	 a	 simple	 arithmetic	
equation	between	u	and	v.	However,	since	the	values	are	encoded	into	secrets	stored	in	
independent	 parties,	 the	 equation	 is	 performed	 with	 an	 MPC	 protocol	 that	 takes	
additional	steps	to	achieve	the	same	result	without	compromising	the	security.		
 

𝑃/ generates random 𝑟0 <- 𝒵0o 
𝑃/ computes 𝑟q <- (𝑢/-𝑣/)-	𝑟0 
𝑃/ sends 𝑟9 to 𝑃9 (i = 2,3) 
𝑃9 computes 𝑒9 = (𝑢9-𝑣9) + 𝑟9 (i=2,3) 
𝑃/ sets 𝑇/ <- 2+-1 
𝑃0 sets 𝑇0 <- 𝑒0 
𝑃q sets 𝑇q <- (0-𝑒q) 
Return 𝐵𝑖𝑡𝐶𝑜𝑛𝑗(T) 

Figure	8:	Algorithm	BitConj. 
 
Take	 as	 an	 example	 the	 Equality	 protocol.	 This	 construction	 is	 built	 upon	 the	
observation	 that	 if	 two	values	are	equal,	 then	 the	subtraction	of	 these	values	yields	0.		
The	 subtraction	 of	 the	 global	 values	 u	 and	 v	 is	 calculated	 with	 the	 MPC	 protocol,	
expressed	 in	 Figure	 8.	 	 This	 protocol	 builds	 on	 the	 stored	 secrets	 of	 each	 value,	
(𝑢/, 𝑢0, 𝑢q)	and	(𝑣/, 𝑣0, 𝑣q),	 to	 calculate	 new	 secrets	 that	 return	 the	 correct	 result.	 The	
first	steps	of	 the	protocol	are	the	generation	of	a	random	number	𝑟0	and	calculation	of	
𝑟qby	the	player	𝑃/.	𝑟q	is	nothing	more	than	the	difference	between	𝑢/	and	𝑣/offset	by	the	
random	number	𝑟0.	 After	 these	 two	 steps,	 the	 first	 player	 sends	𝑟0	to	𝑃0	and	𝑟q	to	𝑃q	so	
that	 each	player	may	 calculate	 the	difference	of	 the	 secrets	 they	hold	 and	offset	 them	
with	the	secrets	 from	𝑃/.	The	result	 from	the	 local	difference	of	each	remaining	player	
are	 the	 secrets	𝑒0	and	𝑒q,	 described	 in	 Figure	 8.	 Both	 secrets	 hold	 the	 result	 from	
subtracting	𝑢	and	𝑣	when	added,	as	can	be	verified	as	follows: 
 

𝑒0 + 𝑒q = (𝑢0 	−	𝑣0) 	+	𝑟0 	+ (𝑢q 	− 𝑣q) 	+	𝑟q	
																 = (𝑢0 −	𝑣0) 	+ (𝑢q − 𝑣q) 	+	(𝑢/ − 𝑣/)		

	= 𝑢 − 𝑣																																												
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In	 fact,	 the	addition	of	 	𝑒0	and	𝑒q	is	calculated	by	another	secure	protocol,	which	 is	 the	
function	𝐵𝑖𝑡𝐶𝑜𝑛𝑗.	 This	 is	 also	 another	 Sharemind	 protocol	 for	 computing	 difference.	
Once	the	protocol	is	finished,	three	secrets	are	sent	back	to	the	client,	which	will	recover	
either	a	0	or	any	other	result	(for	inequality).	
	
The	GreaterThan	protocol,	displayed	in	Figure	9,	works	very	similarly	to	the	equality	
protocol,	by	calculating	the	difference	between	values.	The	protocol	returns	1	when	𝑢	is	
greater	than	𝑣	and	0	otherwise.	While	the	Equality	protocol	just	provides	the	difference,	
the	GreaterThan	protocol	knows	that	when	𝑢	is	greater	than	𝑣,	then	the	most	significant	
bit	of	the	calculated	difference	is	1.	Thus,	to	retrieve	the	highest	bit	there	is	another	
secure	protocol	that	performs	a	right	shift.	By	executing	a	right	shift	that	sends	the	most	
significant	bit	to	the	least	significant	bit,	the	resulting	output	becomes	1	or	0,	depending	
on	the	highest	significant	bit	value.	
 

𝑃9 calculates 𝑑9 <- 𝑢/-𝑣9 
w <- 𝑆ℎ𝑖𝑓𝑡𝑅𝑖𝑔ℎ𝑡(p, n-1) 
Return 𝑅𝑒𝑠ℎ𝑎𝑟𝑒(w) 

Figure	9:	Algorithm	GreaterThan.	
		

The	 complete	 execution	 of	GreaterThan	 requires	 two	 additional	 protocols	𝑆ℎ𝑖𝑓𝑡𝑅𝑖𝑔ℎ𝑡	
and	𝑅𝑒𝑠ℎ𝑎𝑟𝑒,	demanding	 a	 much	 higher	 level	 of	 message	 exchange	 than	 the	 Equality	
protocol. 
	

	
Figure	10:	Interaction	between	MPC	protocols	and	secret	sharing. 

	
The	interaction	between	MPC	protocols,	secret	sharing	and	parties	is	depicted	in	Figure	
10.	 The	 picture	 displays	 a	 conceptual	 model	 where	 there	 is	 a	 Dealer,	 i.e.	 a	 trusted	
participant	 holding	 sensitive	 information	 that	 shares	 secret	 values	 and	 sends	 them	 to	
participants,	where	they	are	stored.	Each	party	holds	multiple	secrets,	but	just	a	single	
share	 from	 every	 encoded	 value.	 Furthermore,	 the	 parties	 are	 able	 to	 execute	 secure	
protocols	 and	 communicate	 amongst	 them	 using	 secure	 channels.	 The	 request	 for	 a	
Sharemind	protocol	 computation	by	 the	dealer	 in	 this	 setting	 is	executed	 in	 two	main	
steps.	First,	each	party	generates	a	new	secret	from	their	private	inputs,	this	new	secret	
does	 not	 disclose	 any	 information	 about	 the	 protected	 data	 and	 cannot	 be	 used	 by	 a	
party	or	attacker	to	decode	the	original	value.		The	other	step	is	performing	a	calculation	
based	 on	 the	 secrets	 exchanged	 between	 the	 players.	 This	 two	 steps	 are	 performed	
multiple	times	to	achieve	a	desired	output.	
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By	leveraging	secret	sharing	and	MPC,	the	overarching	goal	of	Solution	2	is	to	provide	a	
fully	 functional	NoSQL	database	built	on	 top	of	 three	 independent	untrusted	domains,	
each	 running	 its	 own	 untrusted	 NoSQL	 database.	 When	 using	 MPC,	 data	 privacy	 is	
ensured	by	storing	a	distinct	secret	in	each	domain,	and	thus	protecting	the	original	data	
from	 an	 attacker	 that	 has	 access	 to	 data	 shares	 held	 in	 a	 single	 domain.	 Additional	
techniques	 (such	 as	 the	 ones	 described	 in	 Solution	 1)	 can	 also	 be	 employed	 in	
conjunction	with	MPC	 to	 achieve	 a	 tailor-made	 solution	 for	 the	 security/performance	
requirements	of	SafeCloud	applications. 
	

3.2 Deployment	
Similar	to	Solution	1,	the	architecture	proposed	for	Solution	2	is	divided	in	two	domains,	
a	 trusted	domain	and	several	untrusted	ones.	As	shown	in	Figure	7,	both	domains	are	
composed	 of	 several	 components	 that	 are	 independent	 and	 can	 have	 different	
implementation	 approaches.	 Client	 applications	may	use	our	 secure	database	 solution	
by	resorting	to	a	SQL	or	a	NoSQL	API.	JDBC	will	be	used	as	the	interface	between	clients	
and	the	SQL	Engine	that	will	be	identical	to	the	component	discussed	for	Solution	1.	The	
operations	 supported	 by	 the	 NoSQL	 client	 API	 will	 also	 be	 the	 same	 as	 the	 ones	
supported	in	Solution	1,	i.e.	Put,	Get,	Delete,	Scan	and	respective	filters.	
	
Again,	 the	 proxy	 component	 -	 a	modification	 of	 the	HBase	 client	 -	will	 be	 compatible	
with	the	previous	NoSQL	interface.	However,	unlike	in	Solution	1,	it	will	be	responsible	
for	managing	 the	 connections	 and	 issuing	 requests	 to	 three	untrusted	domains,	while	
providing	a	 centralized	NoSQL	database	abstraction	 for	NoSQL	client	 applications	and	
the	SQL	Engine.	This	component	will	perform	the	required	translation	between	NoSQL	
calls	 received	 from	 the	NoSQL	 interface	 into	 their	equivalent	operations.	For	 instance,	
data	insertion	made	by	a	Put	operation	will	divide	sensitive	data	into	three	secrets	and	
store	 them	 into	 the	 corresponding	 HBase	 clusters.	 A	 Get	 operation	 for	 sensitive	
information	will	collect	the	secrets	sent	back	by	the	HBase	clusters,	which	will	perform	
the	 necessary	multiparty	 computation	 to	 retrieve	 the	 desired	 key-value	 pair,	 and	will	
send	the	original	data	back	to	the	clients.	Filter	operations	can	be	converted	into	similar	
MPC	operations	in	the	HBase	clusters	for	range	query	retrieval	of	protected	data. 
 
Each	 HBase	 cluster	 runs	 an	 unmodified	 HBase	 deployment.	 This	 does	 not	 require	
modifying	 HBase	 core	 implementation,	since	 the	 added	 functionality	 will	 be	
implemented	 by	 resorting	 to	 the	 HBase	 Coprocessor	 mechanism.	 The	 Multiparty	
protocols	will	be	provided	as	a	 library,	and	will	resort	 to	Coprocessors	to	perform	the	
required	computation	over	stored	secrets	in	each	HBase	cluster.	For	instance,	when	the	
proxy	issues	a	Get	request	for	retrieving	a	specific	protected	value,	each	HBase	backend	
receives	a	secret	and	performs	the	Sharemind	equality	protocol	to	look	up	for	that	value	
in	the	cluster	storage.	Note	that	both	the	secrets	sent	by	the	proxy	and	the	computation	
done	by	the	MPC	protocols	ensure	that	sensitive	 information	 is	not	 leaked	throughout	
the	process.	 
 
Finally,	 the	 multiparty	 protocols	 require	 HBase	 clusters	 (in	 this	 solution,	 the	
Coprocessors)	 to	 exchange	 secrets	 amongst	 them.	 These	 secrets	 are	 intermediate	
computation	results	that	are	protected	from	attackers	by	the	security	of	the	protocol.	To	
exchange	such	secrets,	we	will	employ	a	middleware	communication	layer	ensuring	that	
secrets	are	delivered	correctly	across	clusters.	 
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3.3 Discussion	

Solution	2	is	a	natural	extension	to	the	previous	setting	by	allowing	multiple	untrusted	
environments	 (cloud	 providers,	 in	 the	 most	 likely	 scenario)	 to	 be	 used	 for	 the	
deployment	of	SafeCloud	applications.	
	
Note	that	if	we	assume	that	all	of	the	remote	environments	are	untrusted	and	cooperate,	
this	 is	 a	 particular	 case	 of	 Solution	 1,	 where	 the	 untrusted	 environment	 is	 simply	 a	
distributed	system	deployed	over	multiple	clouds.	However,	this	approach	allows	us	to	
make	use	of	techniques	that	leverage	the	possibility	of	only	a	subset	of	these	untrusted	
deployments	acting	maliciously.	This	is	often	considered	to	be	a	realistic	assumption	for	
some	use	cases,	as	different	cloud	providers	offer	services	in	a	competing	environment,	
and	are	therefore	highly	motivated	to	not	cooperate.	This	obviously	does	not	imply	that	
all	systems	should	assume	(unlikely	as	it	might	be)	that	the	three	providers	will	never	
collude,	but	instead	gives	us	another	trade-off	for	deployment	setting/assumptions	that	
can	be	offered	to	the	client.	To	exemplify	this	advantage,	assume	a	scenario	where	the	
user	wants	to	offload	sensitive	numerical	data	to	the	cloud,	which	he	 intends	to	query	
often,	 similarly	 to	 scenario	B	presented	 in	 the	previous	discussion	 (Section	 2.3).	With	
Solution	 1,	 feasibly	 deploying	 this	 system	 would	 require	 for	 the	 relative	 order	 to	 be	
leaked	 to	 the	 untrusted	 deployment	 (assuming	 persistent	 corruptions).	 Solution	 2,	
however,	proposes	an	alternative:	 if	 the	user	considers	reasonable	to	assume	the	non-
collusion	 of	 the	 competing	 cloud	 providers,	 then	 this	 system	 can	 be	 deployed	 over	
multiple	untrusted	systems	so	that	querying	can	be	done	remotely,	and	the	ordering	of	
original	data	is	kept	confidential	from	the	untrusted	environments.	This	can	likely	be	a	
meaningful	 factor	 considering	 the	 potential	 of	 vulnerabilities	 related	 to	 ordered	
ciphertexts,	such	as	frequency	attacks.	
	
Secret	 sharing	and	 similar	 techniques	have	been	used	 in	 the	past	 to	 store	data	across	
several	cloud	domains	while	ensuring	its	privacy	[BCQ+11,	ZYT+15,	TLS+15].	However,	
unlike	 our	 solution,	 such	 systems	 do	 not	 support	 any	 kind	 of	 processing	 over	 stored	
data.	More	recently,	the	usage	of	secret	sharing	with	homomorphic	properties	has	been	
a	relatively	common	approach	to	the	delegation	of	secure	computations	over	protected	
data,	 notably	 [MB10,	 WCK+14,	 D+12,	 LTV12].	 The	 employment	 of	 Sharemind	 for	
executing	MPC	in	our	scenario	has	three	main	advantages,	namely:	i)	it	allows	SafeCloud	
to	 take	 advantage	 of	 a	 mature	 protocol	 where	 practical	 MPC	 use	 cases	 have	 been	
successfully	 executed	 and	 evaluated	 [LW15],	 ii)	 the	 security/functionality	 trade-offs	
provided	by	Sharemind	nicely	complement	 the	considerations	 in	which	 the	previously	
proposed	techniques	can	be	employed,	and	iii)	 the	 in-depth	know-how	of	the	involved	
partners	 regarding	 the	 Sharemind	 tool	 allows	 us	 to	more	 thoroughly	 build	 upon	 and	
expand	the	existing	state-of-the-art	of	the	framework.	
	
Solution	2	is	a	particularly	hot	R&D	topic,	and	similar	European	research	projects	such	
as	 SUPERCLOUD9	are	 focused	 on	 this	 particular	 scenario.	 SUPERCLOUD	 differs	 from	
SafeCloud	 in	 its	 fundamental	 approach,	 by	 focusing	 primarily	 on	 allowing	 system	
deployments	 under	 highly	 heterogeneous	 cloud	 providers,	 and	 on	 enhancing	 user	
experience	with	 respect	 to	 provider	 lock-in	 protection	 and	 administration	 complexity	
reduction	via	automation. 
	

																																																								
9 https://supercloud-project.eu/ 
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Similar	 to	 the	 arguments	 presented	 for	 the	 previous	 discussion,	 the	 Proxy	 and	 the	
remote	Coprocessors	are	central	to	the	availability	of	these	techniques	in	a	transparent	
way.	Deployments	for	Solution	2	are	not	limited	to	using	secret	sharing	and	multiparty	
computation	 for	 the	 entire	 system,	 but	 can	 instead	 employ	 a	 combination	with	 single	
untrusted	deployment	techniques	to	meet	different	 levels	of	security	and	performance	
considerations.	 The	 approach	 taken	 in	 this	 adaptation	 is	 consistent	 with	 how	 these	
components	 were	 previously	 proposed,	 as	 the	 proxy	 executes	 the	 adequate	 security	
mechanisms	depending	on	the	specifications	for	the	data	being	stored	and	managed. 
	
Therefore,	 Solution	 1	 and	 Solution	 2	 of	 the	 SafeCloud	 framework	 provide	 a	 highly	
granular	approach	for	combining	security	mechanisms	according	to	application-specific	
requirements.	 The	 exclusivity	 between	 the	 solutions	 is	 dependent	 on	 the	 deployment	
scenario	the	user	is	considering,	namely	regarding	the	multitude	of	untrusted	domains.	
Solution	3	further	extends	the	system	to	allow	untrusted	clients	to	query	sensitive	data,	
a	setting	that	is	not	encompassed	by	the	previous	approaches.	
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4 Solution	3:	Secure	processing	in	multiple	untrusted	domains	
with	untrusted	clients	

	

4.1 Privacy-preserving	techniques	
Solution	 3	 differs	 from	 the	 previous	 solution	 by	 enabling	 the	 possibility	 of	 having	
multiple	 local	 domains,	 where	 not	 all	 of	 them	 are	 trusted.	 The	 general	 idea	 for	 this	
scenario	 is	 to	 allow	multiple	 client	 entities	 to	 upload	 their	 sensitive	 data	 to	 a	 shared	
database	 that	 can	 be	 later	 queried	 over	 by	 potentially	 untrusted	 end-users.	 	This	
solution	relies	heavily	on	Sharemind,	a	programmable	distributed	secure	computation	
framework	 using	 MPC.	 Sharemind	 is	 designed	 as	 an	 application	 server	 that	 runs	
applications	 written	 in	 the	 SecreC	 [DLR13]	 language,	 which	 distinguishes	 between	
private	and	public	data	on	a	type-system	level.	When	Sharemind	servers	execute	SecreC	
applications,	they	automatically	use	MPC	protocols	to	process	private	data.	
	
In	general,	 the	Sharemind	framework	supports	different	protocol	suites	which	provide	
different	 security	 guarantees.	 This	 solution	 uses	 the	 shared3p	 protocol	 suite	which	 is	
the	 oldest	 and	most	matured	 protocol	 suite	 for	 Sharemind,	 ensuring	 security	 against	
non-colluding	semi-honest	adversaries	with	persistent	corruption	of	one	compute	party.	
The	 theoretical	 background	 behind	 shared3p	 is	 essentially	 the	 same	 as	 in	 solution	 2:	
shared3p	uses	additive	secret	sharing	and	multiparty	computation	with	3	parties.	The	
computations	are	oblivious,	 i.e.	 the	parties	running	the	computations	will	not	 learn	the	
inputs	nor	the	outputs.	Sharemind	offers	a	clear	distinction	between	different	actors	in	
the	system.	There	are	3	actor	classes:	

• Input	party	 is	an	entity	 that	provides	private	 information	 to	 the	system.	 In	 this	
case,	it	is	the	party	that	securely	secret	shares	the	inputs	and	transmits	them	to	3	
compute	parties.	

• Compute	 parties	 store	 shares	 of	 secret-shared	 data	 and	 run	 the	 cryptographic	
multiparty	protocols	to	perform	computation	over	those	shares	of	private	data.	

• Result	 parties	 are	 the	 ones	who	 get	 the	 secret-shared	 results	 of	 the	 operations	
and	 analytics	 performed	 by	 the	 compute	 parties.	 Having	 all	 three	 shares,	 the	
result	party	can	reconstruct	the	actual	results.	

 
One	 entity	 can	 play	 the	 roles	 of	 input,	 compute	 and	result	 party	 at	 the	 same	 time.	
Generally,	 you	 have	 several	 input	parties	who	 do	 not	want	 to	 reveal	 their	 inputs.	 For	
input	parties,	 it	makes	sense	 to	control	one	of	 the	compute	 servers,	which	enables	 the	
input	 party	 to	 revoke	 access	 to	 its	 data.	 An	 input	 party	 can	 just	 turn	 off	 the	 compute	
server	 it	 controls	 and	 this	 stops	 further	multiparty	 computations	 on	 its	 secret-shared	
data.	The	result	parties	must	be	trusted,	otherwise	an	adversary	can	corrupt	the	result	
party,	and	therefore	alter	the	outcome	of	the	system.	
	
For	 statistical	 analysis	 on	 the	 Sharemind	 framework,	 there	 is	 a	 tool	 called	 Rmind	
[BKL+14],	designed	to	mimic	command-line	user	interface	of	the	popular	data	analysis	
system	R	[rsystem].	As	seen	in	Figure	11,	depicting	its	architecture,	Rmind	is	composed	
of	three	main	components.	The	first	is	the	query	interface,	which	translates	R	commands	
into	execution	of	Sharemind	scripts.	The	second	is	the	library	of	scripts	that	handles	the	
actual	 data	 transformations	 and	 statistical	 analysis	 inside	 the	 Sharemind	 application	
server.	 The	 third	 component	 is	 a	 utility	 application	 called	CSV	importer	 which,	 as	 the	
name	implies,	imports	data	from	CSV	files	and	secret	shares	it	between	compute	parties.	
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In	the	Rmind	setting:	 input	parties	run	instances	of	CSV	importer,	compute	parties	run	
Sharemind	servers	with	the	privacy-preserving	and	statistical	analysis	algorithm	library	
written	in	SecreC,	and	result	parties	run	the	Rmind	tool	to	query	the	shared	database.	
	

	
Figure	11:	Architecture	of	Rmind. 

 
Solution	3	has	an	architecture	very	similar	to	the	Rmind	tool,	as	shown	in	Figure	12.	In	
fact,	 the	only	difference	between	solution	3	and	 the	Rmind	 tool	 is	 the	query	 interface.	
Instead	 of	 providing	 a	 command-line	 user	 interface	 as	 done	 for	 Rmind,	 solution	 3	
contains	 a	 component	 called	 SQL-controller.	While	 Rmind	 has	 R-like	 query	 language,	
SQL-controller	 uses	 SQL	 as	 the	 query	 language.	 Solution	 3	 reuses	 the	 same	 library	 of	
privacy-preserving	 data	 transformations	 and	 statistical	 analysis	 algorithms	 to	 do	 the	
data	processing.	The	library	implements	functions	like	aggregating,	joining	and	filtering	
secret-shared	data	without	leaking	the	original	values.	
	
The	SQL-controller	is	written	in	Haskell	and	it	relies	on	the	Sharemind	controller	library	
for	secret-sharing	and	communicating	with	Sharemind	servers	run	by	compute	parties.	
The	SQL-controller	makes	sure	that	query	parameters	are	secret	shared.	However,	 the	
format	of	the	query,	the	table,	and	the	column	names	are	not	hidden	from	the	compute	
parties.	 SQL-controller	 also	 uses	 the	 Sharemind	 controller	 library	 to	 reconstruct	 the	
results	of	SQL	queries	 from	the	secret-shared	responses	obtained	 from	the	Sharemind	
servers.		
	
The	library	of	privacy-preserving	data	transformations	and	statistical	analysis	contains	
many	useful	functions.	Almost	all	of	these	store	their	results	in	a	new	temporary	table,	
and	 publish	 to	 the	 SQL-controller	 only	 the	 name	 of	 the	 new	 table.	 Therefore,	 only	
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metadata	 about	 table	 names	 and	 function	 calls	 is	 exchanged	 while	 processing	 a	 SQL	
query.	Only	in	the	end,	when	the	final	query	results	are	obtained,	are	they	sent	back	to	
the	SQL-controller.		

	

	
Figure	12:	Solution	3	architecture.	

	(Note	the	resemblance	with	Rmind	architecture	in	Figure	11) 
	
Whether	 an	 output	 table	 is	 aggregated	 enough	 to	 hide	 information	 about	 individual	
rows	 or	 not,	 it	 is	 a	 non-trivial	 question	 which	 is	 particularly	 relevant	 for	 real-world	
applications.	Data	transformation	algorithm	library	enforces	a	strict	limit	where	a	filter	
which	would	 return	 less	 than	n	members	will	 return	none.	 	The	 same	 limit	 is	used	 in	
aggregations:	when	a	particular	group	contains	less	than	n	members,	it	will	be	discarded	
from	 the	 results.	 In	 general,	 the	 problem	 of	 leaking	 information	 about	 inputs	 when	
publishing	 aggregates	 might	 be	 solved	 with	 differential	 privacy.	 In	 practice,	 access	
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policy-based	 solutions	 will	 be	 used	 to	 enforce	 that	 only	 the	 allowed	 information	 is	
extracted	from	the	shared	database.	
	
To	obtain	efficient	database	operations	like	SQL	JOIN	and	GROUP	BY	clauses,	we	need	to	
compare	a	significant	amount	of	secret-shared	inputs	for	equality.	These	two	algorithms	
follow	the	described	behaviour:	

• First,	the	input	rows	are	obliviously	shuffled.	
• Afterwards,	 JOIN	 or	 GROUP	BY	 keys	 are	 combined	 into	 one	 identifier	which	 is	

then	obliviously	encrypted	using	AES.	
• Finally,	 the	 AES	 encrypted	 identifiers	 are	 declassified	 and	 GROUP	 BY/JOIN	

operations	can	be	executed	by	using	public	data	(namely	over	the	AES	encrypted	
identifiers).	

	
Figure	13	describes	 the	aggregation	algorithm.	More	details	on	 JOIN	operation	 can	be	
found	 in	 [LTW13].	 A	 formal	 description	 of	 the	 aggregation	 operation	 required	 for	
GROUP	BY	clause	 is	detailed	 in	 [BKK16].	To	satisfy	ORDER	BY	clauses,	we	employ	 the	
sorting	methods	described	in	[BLT14].	
	

	
Figure	13:	Aggregation	algorithm.	

	

4.2 Deployment	

Deployment	of	this	Solution	is	inherently	more	complex	as	there	are	more	participants	
considered	to	operate	in	the	system.	
	
Instead	of	providing	a	user	interface	directly,	the	SQL-controller	mimics	a	popular	open	
source	 database	 PostgreSQL10.	 PostgreSQL	 server	 and	 clients	 use	 a	 specific	 network	

																																																								
10 PostgreSQL - https://www.postgresql.org/ 
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protocol	 called	 the	wire	 protocol11	to	 interact.	 PostgreSQL	 server	 has	 to	 be	 contacted	
through	 the	 wire	 protocol.	 Likewise,	 the	 SQL-controller	 does	 not	 have	 a	 direct	 user	
interface,	 and	 instead	 it	 can	 be	 used	 through	PostgreSQL	wire	 protocol.	 This	 decision	
was	made	to	avoid	writing	a	lot	of	language	specific	SQL	interface	drivers,	such	as	JDBC	
and	ODBC.	PostgreSQL	is	a	widely	used	database,	and	therefore	already	has	bindings	to	
use	 it	 from	 other	 languages.	 All	 the	 bindings	 end	 up	 using	 the	 same	wire	 protocol	 to	
actually	 communicate	with	 the	PostgreSQL	 server.	By	 emulating	PostgreSQL	 server	 in	
the	 SQL-controller,	 client	 applications	 of	 SQL-controller	 can	 be	 written	 with	 ease	 in	
every	language	that	has	existing	drivers	or	bindings	for	PostgreSQL.	
	
At	the	core	of	the	deployment	are	the	3	compute	parties,	which	should	reside	in	different	
administrative	domains.	These	3	domains	can	be	either	trusted	or	untrusted,	as	it	is	only	
important	 that	no	adversary	 can	 corrupt	more	 than	one.	Compute	 parties	 are	 running	
Sharemind	application	servers.	
	
Every	input	party	must	secret	share	its	private	input	data	and	distribute	the	shares	to	3	
compute	 parties.	 Since	 the	data	before	 secret	 sharing	 is	 unprotected,	 the	 input	parties	
must	be	in	the	trusted	domain.	Input	parties	can	use	a	simple	proxy	application	like	the	
CSV	importer	 from	 Rmind,	 or	 the	 client	 application	 can	 use	 the	 Sharemind	 Controller	
library	directly	to	secret	share	the	data	and	store	it	on	compute	parties.	However,	input	
parties	can	also	run	the	SQL-controller	and	insert	the	data	using	SQL	INSERT	commands. 
	
It	 is	 also	possible	 for	 the	 input	 party	 to	be	a	website	 visitor.	 In	 that	 case,	 a	 JavaScript	
library	will	do	the	secret	sharing	in	the	browser,	thus	not	requiring	for	the	user	to	trust	
the	 web	 server.	 Deployments	 with	 inputs	 coming	 from	 the	 browser	 are	 further	
discussed	in	[T16].	
	
In	 the	 result	 parties	 there	 is	 a	 SQL-controller	 that	 processes	 the	 query	 and	 uses	
Sharemind	 Controller	 library	 to	 secret	 share	 the	 query	 parameters	 and	 remotely	
execute	the	query	on	compute	parties.	The	SQL-controller	imitates	PostgreSQL	server,	so	
client	 application	 can	 use	 existing	 drivers	 (JDBC,	 for	 example)	which	 are	meant	 to	 be	
used	with	PostgreSQL	 server.	 It	 should	be	noted	 that	only	 a	 subset	of	 the	PostgreSQL	
commands	is	actually	supported.	
	
A	 picture	 describing	 the	 deployment	 scheme	 can	 be	 seen	 in	 Figure	 14.	 Note	 that,	 in	
general,	 there	 is	no	 limit	on	 the	number	of	 input	 and	result	 parties.	There	must	be,	 at	
least,	one	input	party	using	the	Sharemind	Controller	library	directly.	On	three	separate	
domains,	there	are	the	3	Sharemind	servers.	The	result	party	uses	JDBC	driver	to	talk	to	
SQL-controller,	which	 runs	 the	MPC	protocols	 on	 the	compute	 parties	 to	 obtain	query	
results.	
	
This	solution	uses	the	Sharemind	framework	which	is	written	in	C/C++.	Employing	the	
communication	middleware	developed	in	the	context	of	WP1,	makes	a	Java	API	available	
for	 usage,	 by	 introducing	 an	 extra	 layer	 of	 indirection	 and	 requiring	 additional	
integration,	 but	 also	 allows	 the	 establishment	 of	 secure	 channels	 in	 a	 modular	 way.	
Calling	Java	from	the	C/C++	application	is	possible.	However,	Sharemind	already	has	a	
very	complicated	network	stack	which	can	also	be	used	to	 instantiate	secure	channels	
with	 framework-specific	 optimizations	 for	 low	 latency	 and	 high	 throughput.	 There	

																																																								
11 PostgreSQL Frontend/Backend protocol - https://www.postgresql.org/docs/9.4/static/protocol.html 
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might	 be	 a	 trade-off	 between	 additional	 security	 provided	 by	 the	 communication	
middleware	 and	 performance	 offered	 by	 Sharemind’s	 existing	 native	 network	 stack,	
which	is	something	to	consider	depending	on	the	SafeCloud	application.	
	

	
Figure	14:	Deployment	of	Solution	3	showing	different	administrative	domains.	

 

4.3 Discussion	
One	 considerable	difference	between	 this	 Solution	and	 the	previous	 is	 that	 Solution	2	
allows	some	of	 the	processing	 to	be	done	over	plaintext	 (in	 the	 trusted	environment).	
Note	 that	 this	 approach	 considers	multiple	 trusted	 domains	 (not	 necessarily	 trusting	
each	 other)	 interested	 in	 keeping	 their	 data	 inputs	 private,	while	 computing	 over	 the	
whole	 aggregated	 set	 of	 data,	 which	 encompasses	 other	 sensitive	 information	 of	 the	
client.	To	 address	 this	 issue,	 Solution	3	 ensures	 that	only	 aggregations	of	data	will	 be	
converted	back	as	plaintexts	 to	respond	to	remote	data	querying.	These	differences	 in	
domain	and	requirements	directly	imply	that	this	Solution	cannot	be	offered	as	a	direct	
alternative	for	previous	scenarios.	
	
One	of	 the	benefits	of	 this	Solution	 is	 its	application	 in	the	popular	demand	for	secure	
queries	over	joint	collections	of	sensitive	data.	This	has	been	the	main	focus	of	European	
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research	projects	such	as	PRACTICE12	and,	more	specifically,	SafeCloud.	This	also	fits	the	
required	criteria	for	the	MaxData	analytical	use	case	described	in	Deliverable	D5.2.	The	
scenario	describes	multiple	hospitals	(input	parties)	providing	patient	data	as	sensitive	
inputs	to	the	system,	which,	in	one	hand,	must	be	stored	securely	and	confidentially	and,	
on	the	other	hand,	have	to	be	available	 for	query	computation	 for	 the	 identification	of	
epidemics.	Solution	3	guarantees	security	properties	for	information	privacy	regarding	
patient	data,	while	allowing	statistical	queries	to	be	performed	on	this	data.	
	
Alternative	 solutions	 to	 the	query	processing	of	 joint	databases	 exist	 in	 the	 literature.	
Aircloak13	employs	differential	privacy	 techniques,	but	 requires	all	parties	 to	 trust	 the	
Aircloak	server,	which	is	similar	to	a	TTP	scenario,	and	not	consistent	with	SafeCloud’s	
approach	 to	 untrusted	 remote	 deployments.	 Other	 solutions	 for	 providing	 these	
functionalities	 by	 employing	 MPC	 can	 be	 listed	 as	 potential	 alternatives	 [CMF+14,	
RSH+14],	 and	 some	 have	 even	 been	 shown	 to	 be	 feasible	 for	 real-world	 applications	
[D+15].	Using	Sharemind	allows	us	to	take	advantage	of	a	framework	that	has	also	been	
shown	 to	 be	 feasible	 for	 practical	 applications	 using	 the	 Rmind	 tool	 [BKK16],	 and	
therefore	validating	the	basis	of	this	approach.	
	
One	limitation	associated	with	this	third	Solution	is	the	disability	of	querying	individual	
data	 items,	 from	 the	domain-specific	 consideration	 that	multiple	 input	parties	provide	
sensitive	 data	 and	 have	 individual	 demands	 for	 confidentiality.	 When	 considering	 a	
single	 input	party,	 this	 limitation	can	be	safely	removed	without	affecting	privacy,	and	
this	 can	be	 offered	 as	 an	 alternative	 instantiation	 to	 the	problem	of	 Solution	2,	 as	we	
now	have	a	single	trusted	deployment. 
	
	 	

																																																								
12 https://practice-project.eu/ 
13 https://www.aircloak.com/ 
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5 Conclusion	
The	first	deliverable	of	WP3	presented	and	detailed	the	unifying	general	architecture	of	
SafeCloud,	alongside	 three	main	solutions	 for	enabling	privacy-preserving	storage	and	
computation.	 This	 deliverable	 directly	 follows	 that	 line	 of	 work	 by	 describing	 the	
security	models	 allowed	 by	 the	 several	 solutions	 of	 SafeCloud,	 detailing	 the	 available	
privacy-preserving	 techniques	 compatible	with	 said	models,	 and	 specifying	how	 these	
techniques	can	be	instantiated	seamlessly	in	the	SafeCloud	general	architecture. 
 
The	first	Solution	maps	a	standard	cloud	deployment	scenario	of	a	single	trusted	client	
outsourcing	computations	to	a	single	untrusted	cloud	provider.	This	allows	the	usage	of	
standard	 encryption	 schemes,	 providing	 excellent	 security,	 but	 disabling	 computation	
functionalities.	Alternatively,	this	Solution	also	allows	the	deployment	of	cryptographic	
schemes	 that	 enable	 specific	 computations	 over	 encrypted	 data,	 such	 as	 equality	
comparisons	 and	 range	 queries.	 This	 leads	 to	 a	more	 complete	 usage	 of	 the	 superior	
computational	power	of	the	cloud	provider,	by	sacrificing	security	and	performance	at	
different	levels.	 
 
The	second	Solution	adds	the	possibility	of	having	multiple	untrusted	cloud	providers.	
This	does	not	prevent	the	usage	of	any	of	the	aforementioned	schemes,	while	expanding	
the	available	techniques	to	MPC	schemes	that	make	use	of	a	more	complex	trust	model.	
This	further	allows	the	execution	of	a	broader	scope	of	computations	over	data,	whilst	
providing	 stronger	 security	 guarantees	 for	 the	 sensitive	 stored	 data,	 under	 wider	
variety	of	trust	models.	 
 
The	 third	 Solution	 allows	 multiple	 local	 users	 to	 upload	 their	 data	 to	 a	 collective	
distributed	 untrusted	 environment.	 This	 allows	 the	 execution	 of	 more	 ambitious	
processing	 algorithms	 that	 require	 significant	 amounts	 of	 data	 to	 extract	 useful	
analytics.	By	enabling	MPC	algorithms	to	be	executed	over	this	joint	database,	we	have	
guarantees	that	the	information	obtained	by	the	clients	requesting	data	queries	does	not	
include	private	inputs,	which	are	kept	secure	at	all	times. 
 
The versatility of the proposed techniques is helpful in the context of the	 SafeCloud	
framework,	as	the	general	architecture	allows	the	existence	of	a	multi-purpose	Proxy	on	
the	client	side	and	a	customized	HBase	Coprocessor/Sharemind	application	server	that	
implements	these	techniques	seamlessly.	This	plays	a	central	role	in	the	transparency	of	
the	 implementation	with	 respect	 to	 the	end-user,	 as	 the	 local	proxy	 is	 responsible	 for	
trusted	operations,	such	as	data	encryption/decryption	or	secret	sharing,	whilst	remote	
deployment	translates	the	requested	queries	into	the	application-specific	operations.		
	
The	provided	modularity	is	crucial	to	the	success	of	the	SafeCloud	project	for	two	main	
reasons.	 First,	 it	 allows	 the	 users	 of	 a	 SafeCloud-enabled	 solution	 to	 experience	 a	
standard	 widely	 used	 API	 that	 remains	 constant	 regardless	 of	 the	 underlying	
techniques,	 enabling	 service	 providers	 to	 offer	 security	 guarantees	 based	 on	 complex	
cryptographic	 mechanisms	 without	 sacrificing	 usability.	 Second,	 it	 allows	 the	
deployment	 of	 services	 using	 this	 approach	 to	 be	 tailored	 by	 following	 specific	 fine-
grained	 security	 and	 performance	 requirements	 of	 SafeCloud’s	 use	 cases,	 as	 well	 as	
expand	 the	 scope	 of	 the	 SafeCloud	 framework	 towards	 solving	 a	 broader	 set	 of	 real-
world	problems.		
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