
	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 1	

Architectural and API

proposal for the secure
processing stack

D3.1

Project reference no. 653884

February 2016

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 2	

Document	information	

Scheduled	delivery	 	 29.02.2016	
Actual	delivery	 	 01.03.2016	
Version	 	 	 1.0	
Responsible	Partner	 	 INESC-TEC	
	

Dissemination	level	

Public		
	 	

Revision	history	

Date	 Editor	 Status	 Ver
sio
n	

Changes	 	 	

07.02.2016	 Francisco	 Maia,	 João	
Paulo	

Draft	 0.1	 First	Draft	

10.02.2016	 Bernardo	 Portela,	 Dan	
Bogdanov	

Draft	 0.2	 Architecture	definition	

17.02.2016	 João	 Paulo,	 Francisco	
Maia,	 Bernado	 Portela,	
Dan	Bogdanov	

Submission	 0.3	 First	Submission	

18.02.2016	 Miguel	 Pardal,	 Miguel	
Correia	

Revision	 0.4	 INESC	Revision	

19.02.2016	 João	 Paulo,	 Francisco	
Maia,	 Bernado	 Portela,	
Dan	Bogdanov	

Revision	 0.5	 Changes	according	to	revision.	

26.02.2016	 Valerio	 Schiavoni	 and	
Hugues	Mercier	

Revision	 0.6	 UniNE	Revision	

29.02.2016	 João	 Paulo,	 Francisco	
Maia,	Karl	Tarbe	

Final	
version	

1	 Final	version	of	the	deliverable	

31.08.2016	 João	 Paulo,	 Hugues	
Mercier	

Final	
version	

1.1	 Comments	clean-up	

	

Contributors	

Bernado	Portela	(INESC-TEC)	
Dan	Bogdanov		(CYBERNETICA)	
Karl	Tarbe	(CYBERNETICA)	
Reimo	Rebane	(CYBERNETICA)	
Francisco	Maia	(INESC-TEC)	
João	Paulo	(INESC-TEC)	
Rogério	Pontes	(INESC-TEC)	
	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 3	

Internal	reviewers	

Miguel	Pardal	(INESC-ID)	
Miguel	Correia	(INESC-ID)	
Valerio	Schiavoni	(UniNE)	
Hugues	Mercier	(UniNE)	
	

Acknowledgements	
This	 project	 is	 partially	 funded	 by	 the	 European	 Commission	 Horizon	 2020	 work	
programme	under	grant	agreement	no.	653884.	
	
More	information	

Additional	 information	 and	 public	 deliverables	 of	 SafeCloud	 can	 be	 found	 at	
http://www.safecloud-project.eu	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 4	

Glossary	of	acronyms	

Acronym	 Definition	
D	 Deliverable	
DoA	 Description	of	Work	
EC	 European	Commission	
PM		 Project	Manager	
PO	 Project	Officer	
WP	 Work	Package	
SQL	 Structured	Query	Language	
API	 Application	Interface	
ICT	 Information	and	Communications	Technology	
IT	 Information	Technology	
ACID	 Atomicity,	Consistency,	Isolation,	Durability	

	 	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 5	

Table	of	contents	

Document	information	...	2	

Dissemination	level	...	2	

Revision	history	..	2	

Contributors	...	2	

Internal	reviewers	...	3	

Acknowledgements	...	3	

More	information	...	3	

Glossary	of	acronyms	..	4	

Table	of	contents	..	5	

1	 Executive	summary	..	7	

2	 General	architecture	for	privacy-preserving		computation	..	10	

2.1	 Deployment	Scenario	..	10	

2.2	 General	solution	API	..	12	

2.2.1	 SQL	API	...	13	

2.2.2	 NoSQL	API	...	14	

2.2.3	 Discussion	...	14	

2.3	 General	Solution	Architecture	...	15	

3	 Solution	1:	Secure	processing	in	a	single		untrusted	domain	...	16	

3.1	 Introduction	..	16	

3.2	 Architecture	and	API	...	17	

3.2.1	 Trusted	deployment	...	18	

3.2.2	 Untrusted	deployment	..	19	

3.3	 Discussion	...	19	

4	 Solution	2:	Secure	processing	in	multiple	untrusted	domains	..	20	

4.1	 Introduction	..	20	

4.2	 Architecture	and	API	...	21	

4.2.1	 Trusted	deployment	...	22	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 6	

4.2.2	 Untrusted	deployment	..	23	

4.3	 Discussion	...	23	

5	 Solution	3:	Secure	processing	in	multiple	untrusted	domains	with	untrusted	clients
	 24	

5.1	 Introduction	..	24	

5.2	 Architecture	..	25	

5.2.1	 Proxy	component	...	25	

5.2.2	 Back-end	Component	...	26	

5.3	 Discussion	...	26	

6	 Conclusion	..	27	

7	 References	..	28	

	

	 	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 7	

1 Executive	summary	

The	SafeCloud	framework	has	three	layers,	as	depicted	in	Figure	1	presents	the	secure	
communication	technology	that	ensures	that	parties	can	form	secure	channels	that	are	
even	 harder	 to	 eavesdrop	 or	 block;	 SafeCloud	 secure	 storage	 technologies	 go	 beyond	
encryption	 and	 offer	 protection	 against	 deletion	 and	 destruction;	 SafeCloud	 secure	
query	 technology	 extends	 cryptographic	 protection	 from	 database	 storage	 to	 data	
processing.	 An	 ICT	 system	 developer	 can	 combine	 solutions	 from	 the	 three	 layers	 to	
provide	beyond-state-of-the-art	protection	for	personal	data	or	business	secrets.	

	

Figure	1:The	SafeCloud	framework	

The	 objective	 of	 work	 package	 3	 (WP3)	 is	 centred	 on	 the	 practical	 and	 theoretical	
investigation	of	mechanisms	for	data	distribution	and	processing,	 in	a	way	that	allows	
for	security	assurances	to	be	provided	whilst	maintaining	computation	capabilities.	It	is,	
therefore,	focused	on	the	secure	query	or	secure	processing	layer	(bottom	of	the	table).	

This	deliverable	(D3.1)	is	the	first	of	WP3,	to	be	delivered	on	month	6.	We	describe	the	
general	architecture	and	three	different	solutions	for	protecting	private	data	during	SQL	
query	execution.	The	three	solutions	provide	varying	levels	of	security	and	performance.	
For	example,	solutions	1	and	2	can	achieve	higher	performance	levels,	but	assume	that	
the	query	source	can	be	trusted	with	all	the	data.	However,	solution	3	no	longer	assumes	
the	 query	 source	 can	 be	 trusted	 and	 uses	 a	 stronger	 encryption	 scheme.	 This	 last	
solution	 is	 thus	 very	 suitable	 for	 securely	 processing	 data	 collected	 from	 multiple	
sources.	

This	 document	 is	 structured	 as	 follows.	 Section	 2	 will	 describe	 the	 high	 level	
architecture	 that	 is	 common	 to	 the	 three	 solutions	proposed	 in	 this	WP.	 Sections	3,	 4	
and	 5	 match	 solutions	 1,	 2	 and	 3	 respectively,	 detailing	 what	 are	 the	 proposed	
approaches,	the	associated	motivation,	and	how	they	fit	the	general	architecture.	Finally,	
Section	5	concludes	the	deliverable	with	a	general	overview	of	its	contents.	

Solution: Vulnerability-tolerant	channels Protected	channels Route-aware	channels

Gives:
Tolerance	to	vulnerabilities

	in	components

Decreased	risk	of	fake	certificates;	
resistance	to	port	scans	and	enumeration	

of	network	infrastructure

Improved	confidentiality	with	warnings	
about	route	hijacking	and	making	harder	

access	to	communication

API: Extended	secure	socket	API Extended	secure	socket	API Extended	secure	socket	API

Provided	by: INESC-ID,	TUM INESC-ID,	TUM INESC-ID,	TUM

Solution: Distributed	encrypted	filesystem Long-term	distributed	encrypted
	data	storage

Secure	block	storage

Gives: Encrypted	file	storage
Entangled	immutable	data	storage	
for	protection	against	tampering	

and	censorship

Block	storage	
on	individual	data	centers

API: POSIX REST	(S3	or	similar) Key/value

Provided	by: UniNE,	INESC-ID UniNE,	INESC-TEC UniNE,	INESC-TEC

Solution: Secure	processing	in	a	
single	untrusted	domain

Secure	processing	in	
multiple	untrusted	domains

Secure	processing	in	multiple	untrusted	
domains	with	untrusted	clients

Gives:
Privacy	of	data	values	
against	the	server,	
optional	key	privacy

Privacy	of	key	and	data	values	
against	the	servers

Privacy	of	key	and	data	values	
against	the	servers	and	clients

API: SQL SQL SQL

Provided	by: INESC-TEC INESC-TEC,	Cyber Cyber

 SafeCloud architecture

Se
cu
re

st
or
ag
e

St
at
e	
of
	th
e	
ar
t:

En
cr
yp
te
d	
st
or
ag
e

St
at
e	
of
	th
e	
ar
t:

Cr
yp
tD
B

Se
cu
re

qu
er
ie
s

Se
cu
re
	

co
m
m
un
ic
at
io
n

St
at
e	
of
	th
e	
ar
t:

TL
S	
se
cu
re
	ch
an
ne
ls

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 8	

The	 secure	 processing	 layer	 of	 SafeCloud	 is	 focused	 in	 investigating,	 evaluating	 and	
implementing	 solutions	 that	 provide	 adequate	 trade-offs	 between	 performance	 and	
security	levels,	leveraging	trust	models	and	computational	capacities	required	from	the	
trusted	and	untrusted	deployments.	However,	 real-world	scenarios	and	 their	practical	
deployments	 can	widely	 vary,	 so	 it	 is	 highly	 unlikely	 to	 expect	 a	 single	 solution	 to	 fit	
every	particular	case.	With	that	in	mind,	alternatively	to	what	could	be	achieved	with	a	
single	 and	more	 focused	 approach,	we	propose	 three	 solutions	 for	privacy-preserving	
storage	 that	 are	 suited	 for	 applications	 with	 distinct	 security	 and	 performance	
requirements.	This	decision	allows	extending	the	practicability	and	applicability	of		the	
secure	 processing	 layer.	 The	 compromises	 in	 designing	 our	 proposed	 solutions	 are	
depicted	in	Figure	2.		

	

Figure	2:	SafeCloud	solution	range	and	trade-offs	

	

The	first	solution	describes	a	simple	cloud	setting,	in	which	clients	have	access	to	a	local	
secure	 SQL	 engine,	 and	want	 to	 outsource	 data	 storage	 and	 computation	 to	 a	 remote	
NoSQL	engine.		When	this	deployment	is	considered	to	be	untrusted	(as	is	the	case	when	
the	one	holding	the	data	is	responsible	for	handling	sensitive	information),	the	issue	of	
security	and	privacy	should	be	taken	into	consideration	for	protocol	development,	while	
still	ensuring	that	the	solution	remains	practical	and	applicable	in	real	world	scenarios.	
For	 instance,	 the	choice	of	using	standard	cryptographic	 techniques	on	all	data	allows	
for	 achieving	 reasonably	 strong	 security	 guarantees,	 however	 it	 disables	 computation	
over	the	data,	which	in	many	cases	defeats	the	purpose	of	employing	a	cloud	provider.	
As	such,	our	solution	proposes	 the	usage	of	different	 techniques	 for	different	 levels	of	
data	 sensitivity,	 aiming	 to	 provide	 “good	 enough”	 security	 assurances	 while	 enabling	
efficient	computation	over	stored	data.	

The	second	solution	aims	to	leverage	multiple	untrusted	non-colluding	cloud	providers	
to	enhance	security	guarantees	without	losing	computational	functionalities.	It	assumes	
the	 same	 client	 with	 a	 secure	 SQL	 engine,	 but	 now	 it	 communicates	 with	 several	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 9	

untrusted	NoSQL	cloud	providers.	By	employing	cryptographic	techniques	that	rely	on	
distributing	information	over	these	non-colluding	entities,	state-of-the-art	protocols	for	
multi-party	 computation	 can	 enable	 secure	 function	 execution	 over	 data	 that	 is	 kept	
confidential	from	every	individual	cloud	provider.	The	performance	values	are	expected	
to	be	lower	than	the	ones	from	the	previous	approach,	however	this	setting	allows	for	
computation	over	data	that	is	kept	information-theoretically	secure	at	all	times.	

The	 third	 and	 final	 solution	 is	 different	 from	 the	 previous	 ones	 in	 two	major	 points.	
First,	it	reduces	the	computational	power	required	from	the	client,	by	allowing	the	SQL	
engine	to	be	run	in	the	untrusted	environment.	Second,	it	allows	for	multiple	clients	to	
process	over	the	stored	data	without	assuming	that	all	of	them	are	trusted	(i.e.	that	they	
trust	each	other).		The	latter	opens	the	possibility	for	several	users	with	sensitive	data	to	
jointly	store	data	with	security	guarantees,	while	allowing	computations	(such	as	data	
analytics)	 to	be	executed	over	 the	 collected	 information.	This	 is	particularly	 impactful	
for	clients	such	as	hospitals	and	governmental	institutions,	which	manage	large	amounts	
sensitive	data	but	also	would	highly	benefit	from	joint	statistical	analysis	over	it.	 	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 10	

2 General	architecture	for	privacy-preserving		computation			

Cloud	 Computing	 has	 become	 a	 key	 paradigm	 for	 application	 and	 service	
deployment.	Companies	benefit	 from	 the	pay-as-you-go	model	 and	avoid	high	upfront	
costs	with	IT	infrastructures.	The	move	to	the	cloud	paradigm	also	targets	performance,	
since	 the	 cloud	 resources	 can	adapt	and	 scale	according	 to	 the	demand.	 Such	benefits	
come	at	 the	expense	of	 the	 company’s	 control	over	 the	 infrastructure	and	 require	 the	
company	to	trust	on	a	third	party	-	a	cloud	provider	-	with	the	company’s	software	stack	
and	data.	Therefore,	 taking	 advantage	of	 cloud	 capabilities	 is	 non-trivial	 as	 this	 raises	
several	 security	 and	 privacy	 concerns,	 as	 well	 as	 architectural	 challenges	 [AFG+10,	
MSL+11].		

The	 lack	 of	 secure	 and	 private	 solutions	 for	 data	 storage	 and	 computation	 in	
current	cloud	environments	demands	different	deployment	compromises,	which	in	turn	
lead	to	suboptimal	systems.	 In	particular,	even	if	companies	can	largely	benefit	 from	a	
move	to	cloud	services,	they	avoid	doing	so	due	to	security	concerns	[DROPBOX12].		As	
a	consequence,	 the	solution	 is	 to	continue	relying	on-premises’	 infrastructures	 to	hold	
the	most	critical	parts	of	the	company’s	system.	The	resulting	system,	therefore,	consists	
of	 a	 hybrid	 infrastructure	 composed	 by	 on-premises	 storage	 and	 computation	 and	 by	
offloaded	 storage	 and	 computing	 capabilities	 to	 the	 cloud.	 Considering	 this	 setting,	
different	 compromises	 can	 be	 obtained	 according	 to	 the	 amount	 of	 offloaded	
responsibilities,	which	are	related	to	the	trust	level	each	company	attributes	to	the	cloud	
provider.			

In	 this	 section,	 we	 present	 a	 general	 architecture	 for	 SafeCloud	 solutions	 to	
privacy-preserving	 storage	 and	 computation1.	 Heavily	 rooted	 in	 the	 cloud	 computing	
paradigm,	such	architecture	comprises	a	set	of	comprehensive	solutions	to	private	and	
secure	 data	 storage	 and	 computation	 considering	 the	 project	 use	 cases.	 Each	 solution	
offers	 practical	 trade-offs	 between	 performance	 and	 security	 as	 well	 as	 between	
processing	power	and	infrastructure	trustworthiness.		

We	begin	by	describing	the	assumptions	considered	in	the	design	of	SafeCloud’s	
privacy-preserving	 processing	 solutions	 by	 presenting	 the	 planned	 deployment	
scenario.	We	proceed	presenting	the	general	architecture	that	abstracts	each	one	of	the	
different	solutions	and	covers	their	key	components.	Finally,	each	SafeCloud	solution	is	
presented	detailing	the	security	and	trust	models	it	considers,	and	a	representative	use	
case	of	its	applicability.	

2.1 Deployment	Scenario	

Traditionally,	companies	and	organisations	internally	develop	and	maintain	their	
IT	 infrastructure	 to	 support	 their	 activities.	 Such	 practice	 has,	 often,	 very	 high	 costs	
associated	to	the	infrastructure	itself	as	well	as	deriving	from	problems	such	as	resource	
over-provisioning	or	under-provisioning.		More	recently,	the	cloud	computing	paradigm	
changed	how	applications	are	being	deployed	and	how	IT	infrastructures	are	managed.	

																																																								
1 Data computation will also be referred as data processing in this document. In the context of SafeCloud, data
computation or processing is related to the knowledge that can be obtained from processing a given set of data.
In particular, this encompasses data aggregation, data filtering and data analytics to mention a few.

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 11	

The	core	idea	of	this	new	paradigm	is	to	leverage	large	infrastructure	deployments	in	a	
pay-as-you-go	model	where	clients	can	dynamically	allocate	and	release	resources	from	
such	deployments	and	pay	only	for	what	they	use.	A	direct	consequence	of	this	model	is	
that,	 now,	 a	 company	 can	 have	 access	 to	 large	 infrastructures	 and	 set-up	 large	
deployments	without	incurring	in	significant	up-front	costs	[AFG+10].		

Modern	application	and	service	deployments	can	fall	into	one	of	three	categories.	
The	first	one	includes	in-house	deployments	where	everything	from	IT	infrastructure	to	
software	 is	 designed,	 developed,	 and	maintained	within	 the	 company	 or	 organization	
facilities.	The	second	one	is	the	opposite	situation	where	everything	is	handed	over	to	a	
cloud	or	a	group	of	cloud	providers	and	the	organization	or	company	simply	manages	its	
infrastructure	remotely.	The	third	category	includes	any	compromise	between	the	two	
previous	 ones.	 This	 last	 category	 comprehends,	 for	 instance,	 situations	where	 critical	
services	are	kept	on	premises	and	complementary	services	are	deployed	in	the	cloud	for	
economical	benefits.	

Considering	 the	 third	 category	 of	 services,	 different	 trade-offs	 are	 possible	
between	what	to	deploy	on	premises	and	on	the	cloud.	These	are	security	trade-offs	but	
also	 performance	 trade-offs.	 For	 instance,	 if	 the	 necessary	 computational	 and	 storage	
resources	 exist	 on	 premises,	 doing	 all	 the	 computation	 there	 may	 result	 in	 better	
performance	due	 to	 the	 fact	 that	 security	mechanisms	benefit	 from	having	a	powerful	
trusted	environment,	and	do	not	have	a	heavy	impact	over	the	processing	mechanisms	
themselves.	 On	 the	 other	 hand,	 the	 cloud	 computing	model	 can	 be	more	 attractive	 in	
terms	 of	 cost	 since	 the	 pay-as-you-go	 model	 allows	 the	 allocation	 of	 computational	
resources	 only	 when	 they	 are	 required	 and,	 for	 large-scale	 applications,	 the	 cloud’s	
elasticity	characteristics	make	it	an	ideal	choice.			

However,	 offloading	 data	 storage	 and	 processing	 to	 an	 untrusted	 environment	
while	 keeping	data	private,	 requires	 complex	 security	mechanisms	 that	may	 lead	 to	 a	
decrease	in	applications	performance	[CK08].	

Figure	3	depicts	an	overview	of	such	a	deployment.	Typically,	a	proxy	is	required	
to	integrate	both	the	local	and	the	remote	deployments.	This	proxy	is	still	considered	to	
be	located	on	premises.	

	

	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 12	

	

Figure	3:	Deployment	scenario	

Given	 the	 distinct	 advantages	 of	 deploying	 applications	 in	 an	 on	 premises	
infrastructure	and	on	a	cloud	infrastructure,	in	SafeCloud	we	assume	the	following	trust	
considerations.	 The	 on	 premises	 infrastructure	 is	 assumed	 to	 be	 completely	 trusted,	
which	implies	that	it	is	allowed	to	receive,	handle	and	process	sensitive	data	in	the	clear	
(this	does	not	mean	that	it	cannot	be	attacked	or	have	malicious	insiders,	only	that	these	
are	not	the	problems	SafeCloud	aims	to	solve).	On	the	other	hand,	cloud	providers	are	
not	 allowed	 to	 deviate	 from	 the	 system’s	 specified	 behavior,	 but	 may	 attempt	 to	
compute	over	 collected	data	 to	ascertain	additional	 information.	This	assumption	 that	
cloud	 providers	 can	 compromise	 the	 privacy	 of	 data	 stored	 and	 computed	 at	 their	
infrastructures	is	a	core	concern	of	the	SafeCloud	project	and	of	this	work	package.	As	a	
consequence,	 data	 processing	 on	 premises	 can	 be	 done	 over	 in	 the	 clear	 data	 and	
without	access	restrictions.	In	the	cloud,	however,	sensitive	data	needs	to	be	protected	
and	processing	may	be	impaired	in	order	to	achieve	such	protection.			

As	 an	 example,	 take	 a	 clinical	 analysis	 laboratory	 that	 processes	 and	 stores	
sensible	data	 from	patients,	and	where	an	on	premises	cluster	 infrastructure,	with	the	
necessary	security	mechanisms	to	be	safe	against	external	attackers,	 is	available.	If	the	
number	 of	 patients	 is	 very	 large	 or	 grows	 significantly,	 and	 the	 on	 premises	 cluster	
storage	and	processing	capabilities	are	no	 longer	sufficient,	 it	may	be	desirable	 to	off-
load	 the	 data	 and	 some	 of	 the	 processing	 capabilities	 to	 a	 third-party	 infrastructure,	
such	as	 a	 cloud	 infrastructure.	However,	 this	 infrastructure	 is	no	 longer	 controlled	by	
the	 applications	 and	 data	 rightful	 owners,	 which	 may	 lead	 to	 security	 breaches	 and	
undesired	 information	disclosure.	These	 concerns	were	very	 recently	 confirmed	 to	be	
well	 justified	after	the	recent	media	hype	surrounding	the	revelations	made	by	former	
NSA	 contractor	 Edward	 Snowden	 and	 high-profile	 security	 vulnerabilities	 such	 as	 the	
Heartbleed[D+14]	 bug	 in	 OpenSSL[L13].	 In	 SafeCloud,	 cloud	 infrastructures	 are	
considered	untrusted	environments.	

2.2 General	solution	API	

Having	described	the	deployment	scenario	considered	by	SafeCloud’s	secure	processing	
solutions,	we	now	focus	on	the	interfaces	that	will	be	offered	to	the	applications.		

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 13	

A	major	goal	for	any	component	in	the	SafeCloud’s	stack	is	applicability	and	practicality.	
SafeCloud	 aims	 at	 developing	 software	 components	 that	 can	 have	 immediate	 and	
widespread	adoption	from	the	industry.	Accordingly,	it	becomes	inevitable	to	pursue	the	
definition	 of	 system	 interfaces	 that	 can	 accommodate	 current	 practices,	 that	 relieve	
current	systems	and	applications	of	any	kind	of	refactoring,	while	remaining	compatible	
with	SafeCloud’s	goals.		

Looking	at	the	current	landscape	in	terms	of	data	management	systems	it	is	possible	to	
categorize	 systems	 into	 two	 major	 groups	 according	 to	 their	 interface	 (API).	 On	 one	
hand,	 we	 have	 traditional	 relational	 database	 systems	 that	 rely	 on	 a	 query	 language,	
typically	SQL,	as	 their	 interface.	SQL	 is	a	widely-used	programming	 language	designed	
for	managing	data	stored	at	relational	database	systems	[LCW93].	The	relational	model	
used	 in	 these	 traditional	 SQL	 databases	 is	 well-studied	 and	 understood,	 and	 SQL	 is	
supported	 as	 the	 main	 query	 language	 of	 the	 most	 successful	 commercial	 database	
systems.		

On	the	other	hand,	we	have	the	so-called	NoSQL	databases	[HHL+11].		NoSQL	databases	
are	 becoming	 increasingly	 popular	 among	 applications	 that	 must	 scale	 for	 large	
amounts	 of	 data	 and	 clients.	 A	 major	 advantage	 of	 NoSQL	 over	 traditional	 relational	
databases	 is	 that	 scalability	 can	 be	 achieved	 in	 a	 distributed	 environment	 with	
commodity	hardware,	 thus	not	 requiring	expensive	dedicated	hardware,	which	allows	
to	lower	data	storage	and	processing	costs.	On	the	other	hand,	NoSQL	databases	have	a	
limited	 set	 of	 operations	when	 compared	 to	 relational	 databases.	 Even	 though	NoSQL	
databases	are	now	focused	on	offering	richer	query	languages	and	that	under	the	NoSQL	
designation	we	can	find	different	data	models	(document	based,	key-value,	graphs,	etc.),	
the	most	 successful	and	widespread	NoSQL	databases,	 in	 their	 core	can	be	 seen	as	an	
dictionary	 composed	 by	 several	 unique	 keys	 that	 are	 associated	 with	 one	 or	 more	
values.	It	is	possible	to	insert	new	keys	and	values,	to	update	the	value	of	a	specific	key	
(put),	to	get	the	value	for	a	specific	key	(get),	to	get	the	values	for	a	determined	range	of	
keys	(scan)	and	to	delete	existing	keys	(delete).		

Notwithstanding	 the	 fact	 that	 NoSQL	 databases	 are	 successfully	 deployed	 in	 many	
contexts	 and	 applications	 and	 have	 undeniable	 popularity,	 a	 significant	 slice	 of	 the	
world’s	systems	are,	and	arguably	will	continue	to	be,	heavily	rooted	on	SQL	interfaces	
and	the	relational	model.	This	situation	can	be	partially	explained	by	the	abundance	of	
legacy	 applications	 or	 simply	 because	 SQL	 is	 a	 significantly	 richer	 API	 in	 terms	 of	
expressiveness.	 Additionally,	 many	 applications	 require	 ACID	 guarantees	 and	
transactional	 support,	 which	 are	 key	 to	 enable	 support	 for	 multiple	 and	 concurrent	
client	access	to	the	same	database.	This	kind	of	guarantees	are	also	typical	of	traditional	
relational	databases	and	lacking	in	NoSQL	databases.	Due	to	the	distinct	advantages	of	
SQL	and	NoSQL	approaches,	 this	work	package	will	 support	both	 types	of	APIs,	which	
are	further	detailed	next.	

2.2.1 SQL	API	

In	 the	design	of	 the	secure	data	storage	and	processing	solutions	we	will	 consider	 the	
SQL	language	specification	as	it	is	defined	by	the	American	National	Standards	Institute	
(ANSI),	which	adopted	it	as	a	standard	in	1986	[DD+93,ANSI16].	Although	this	standard	
is	 still	 being	 improved,	 most	 relational	 database	 solutions	 try	 to	 follow	 the	 same	
specification	of	 the	SQL	 language.	Since	 this	 is	a	very	rich	 language,	having	a	standard	
specification	 is	 key	 for	 the	 interoperability	 of	 distinct	 database	 products.	 The	 SQL	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 14	

language	 allows	 the	 expression	 of	 statements	 to	 change	 the	 schema	 of	 relational	
databases,	 to	 insert,	update	and	delete	data	 from	 the	databases	and	also	 to	perform	a	
vast	range	of	queries	over	the	data	stored	at	these	databases.		

As	mentioned	 previously,	 transactional	 support	 is	 another	 important	 characteristic	 of	
SQL	 databases	 that,	 for	many	 applications,	 is	 key	 for	maintaining	 data	 integrity,	 thus	
ensuring	that	multiple	clients	accessing	the	same	database	see	a	consistent	state	of	the	
database	at	all	times.	

2.2.2 NoSQL	API	

Under	 the	NoSQL	 term	 it	 is	 possible	 to	 find	 a	 diverse	 set	 of	 scalable	 and	widespread	
database	 technologies.	 In	 SafeCloud,	we	will	 focus	 on	 Apache	HBase,	 one	 of	 the	most	
successful	and	widely	used	NoSQL	databases	[APACHE16].	Not	only	it	is	considered	one	
of	 the	most	mature	NoSQL	databases	 in	 the	market	 but	 it	 is	 also	 the	NoSQL	database	
with	which	 the	SafeCloud	partners	have	a	 longer,	continued	and	extensive	knowledge.	
This	 is	 a	 clear	 advantage	 for	 the	 success	 of	 the	 project.	 Consequently,	 the	 NoSQL	
interface	offered	by	SafeCloud’s	solution	will	be	heavily	inspired	by	the	HBase	API	which	
we	now	describe	in	detail.		

Apache	 HBase	 is	 a	 distributed,	 scalable	 and	 open-source	 non-relational	 database.	
Inspired	by	Google's	BigTable,	 it	can	be	 thought	as	a	multi-dimensional	sorted	map	or	
table.	Each	row	is	identified	by	a	unique	key	and	may	be	composed	of	several	columns	
(values).	 HBase	 exposes	 a	 set	 of	 operations	 for	 data	 access	 that	 are	 quite	 similar	 to	
operations	used	in	other	key-value	data	stores:	

GET	-	Get	key-value	pairs	of	a	given	row;	

PUT	-	Insert	a	key-value	pair	for	existing	or	new	row;	

SCAN	-	Get	all	key-value	pairs	of	a	row	range;	

DELETE	-	Remove	one	or	more	key-value	pairs	of	rows;	

This	set	of	operations	will	constitute	the	SafeCloud	secure	processing	NoSQL	API.		

2.2.3 Discussion	

All	the	solutions	described	in	this	work	package	will	provide	a	SQL	interface,	in	its	ANSI	
definition,	along	with	transactional	support.	Nevertheless,	it	is	important	to	notice	that,	
in	 order	 to	 provide	 certain	 security	 and	 privacy	 guarantees	 while	 maintaining	
acceptable	performance	levels,	some	of	the	solutions	may	not	offer	complete	coverage	of	
the	SQL	language	features.	Whenever	this	is	the	case,	we	will	detail	the	actual	language	
coverage	of	the	solution	and	the	motivations	behind	those	limitations.		

While	 offering	 a	 SQL	 interface	 allows	 SafeCloud	 solutions	 to	 be	 attractive	 and	 highly	
applicable	 for	 nowadays	 systems	 and	 applications,	 specific	 classes	 of	 applications	 are	
left	 out.	 In	 particular,	 applications	 to	 which	 NoSQL	 databases	 completely	 fulfill	 their	
requirements.	Accordingly,	 it	 should	also	be	a	concern	 for	SafeCloud	to	offer	solutions	
with	 this	 type	 of	 interface,	 as	 it	 expands	 its	 scope	 to	 a	 larger	 set	 of	 applications.	 By	
leveraging	 previous	 research	 developed	 on	 INESC	 TEC	 in	 the	 context	 of	 several	 EU	
research	projects,	we	provide	solutions	capable	of	fulfilling	both	demands:	a	SQL	and	a	
NoSQL	interface.	More	precisely,	we	aim	to	provide	a	system	that	offers	a	full	ANSI	SQL	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 15	

API	 along	 with	 transactional	 support,	 built	 on	 top	 of	 a	 NoSQL	 database	 in	 an	 ultra-
scalable	design	[CNIMBO09,CPAAS14].		

2.3 General	Solution	Architecture	

In	this	section	we	describe	the	high	level	architecture	for	SafeCloud’s	privacy-preserving		
processing	 solutions.	 The	 goal	 of	 providing	 this	 overview	 is	 to	 allow	 for	 the	
establishment	of	 clear	 relationships	between	 the	different	 solutions,	highlighting	 their	
differences	and	similarities.	We	consider	this	exercise	essential	for	the	rigorous	analysis	
of	 each	 individual	 solution,	 and	 for	 the	evaluation	of	 its	 feasibility	with	 respect	 to	 the	
associated	application	requirements.		

From	a	very	high	level	perspective	and	considering	the	deployment	scenario	of	Section	
2.1,	we	can	identify	two	major	system	environments:	an	on-premises	infrastructure	and	
an	external	infrastructure,	typically	a	Cloud	provider.	In	both	environments,	the	choice	
of	 system	 components	 deployed	 and	 tasks	 performed	 leads	 to	 different	 compromises	
among	cost,	performance,	security	and	privacy.	

To	the	set	of	components	running	on-premises	we	will	call	trusted	deployment,	and	to	
the	 set	 of	 components	 offloaded	 to	 third-party	 premises	 we	 will	 call	 untrusted	
deployment.	 It	 is	 intuitive	 to	 visualize	 the	 systems	 that	 lie	 at	 the	 extremes	 of	 this	
notation	scheme:	on	one	side,	we	have	a	 trusted	deployment	 that	encompasses	all	 the	
desired	 functionalities,	 thus	not	 requiring	any	offloading	of	 storage	or	 computation	 to	
the	untrusted	deployment;	on	the	other	side,	a	system	where	all	computation	is	done	in	
the	untrusted	deployment,	possibly	due	to	lack	of	system	resources	at	the	trusted	side.	
The	 SafeCloud	 solutions	 represent	 compromises	 lying	 in	 between	 these	 extreme	
scenarios.	

An	important	aspect	to	notice	is	that	both	the	trusted	and	the	untrusted	deployment	can	
be	composed	by	one	or	more	infrastructures.	For	instance,	we	might	consider	a	scenario	
in	which	 trust	 is	 distributed	 among	 several	 cloud	providers,	 so	 as	 to	 avoid	 offloading	
data	storage	and	computation	to	a	single	entity’s	superintendence.	Having	this	in	mind,	
we	 propose	 a	 SafeCloud	 general	 architecture	 for	 privacy-preserving	 data	 storage	 and	
processing	 depicted	 in	 Figure	 4.	 We	 make	 use	 of	 squares	 to	 represent	 processing	
components,	rounded	edge	rectangles	to	represent	interfaces	and	cylinders	to	represent	
storage	components.	Storage	components	can	also	offer	processing	capabilities.	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 16	

	

Figure	4:	General	Architecture	

	

We	 consider	 a	 set	 of	 components	 in	 each	 one	 of	 the	 deployments.	 Each	 solution	will	
offer	a	specific	interface	to	the	application	employing	it,	the	Client	Interface	component.	
As	 described	 in	 previous	 sections,	 this	 interface	 will	 typically	 expect	 SQL	 queries,	
although	a	NoSQL	interface	will	also	be	available	for	applications.	At	the	same	time,	an	
interface	 to	 the	untrusted	deployment	 is	 also	defined	 for	 each	 solution.	Note	 that	 this	
can	also	correspond	to	a	SQL	interface,	to	a	NoSQL	interface,	or	to	a	subset	of	either	one	
of	 those.	 Additionally,	 we	 consider	 that	 some	 processing	 and	 storage	 capabilities	
(namely	 the	processing	and	storage	components)	 can	be	deployed	 in	both	 the	 trusted	
and	untrusted	sides.	Finally,	we	consider	a	proxy	component	that	is	responsible	for	the	
communication	between	the	trusted	and	untrusted	deployment.		

In	the	next	sections	we	will	describe	in	detail	the	three	SafeCloud	solutions	for	privacy-
preserving	data	storage	and	processing.	For	each	of	these	proposed	solutions,	we	define	
the	processing	responsibilities	assigned	to	the	trusted	deployment	and	to	the	untrusted	
one.	We	will	also	instantiate	the	components	of	this	general	architecture	with	concrete	
software	protocols,	and	detail	the	interfaces	required	for	the	solution	deployment.	

	

3 Solution	1:	Secure	processing	in	a	single		untrusted	domain	

3.1 Introduction	

The	 first	 solution	 we	 consider	 is	 expected	 to	 achieve	 the	 highest	 performance	 when	
compared	 to	 the	 alternatives	 described	 in	 this	 document.	 At	 the	 same	 time,	 it	 is	 the	
solution	where	 the	 trust	model	 is	 the	 strongest	and	where	 the	amount	of	 storage	and	
processing	 capabilities	 delegated	 to	 the	 untrusted	 deployment	 is	 the	 lowest.	 Briefly,	
solution	 1	 assumes	 a	 deployment	 setting	 where	 the	 trusted	 deployment	 has	 some	
computational	power	but	scarce	storage	resources,	while	 the	untrusted	deployment	 is	
assumed	to	have	both	complementary	computational	power	and	the	necessary	storage	
capabilities.			

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 17	

As	 an	 application	 example	 for	 this	 solution,	 consider	 a	 laboratory	 that	 owns	 or	
completely	 trusts	a	private	cloud	with	some	computational	power,	but	 is	 interested	 in	
offloading	most	 of	 the	 storage	 effort	 into	 an	 untrusted	 cloud	 domain.	 The	 laboratory	
manages	sensitive	data,	so	it	is	not	acceptable	to	have	it	stored/processed	it	in	the	clear	
outside	of	what	the	laboratory	considers	to	be	its	trusted	domain.	

As	mentioned	above,	we	aim	at	offering	both	a	SQL	and	a	NoSQL	interface	to	SafeCloud	
clients.	Leveraging	work	 from	previous	projects	 it	 is	possible	 to	offer	a	 fully	ANSI	SQL	
compliant	database	system	on	top	of	a	NoSQL	database,	 in	particular,	on	top	of	HBase.	
This	 is	 achieved	 by	 decomposing	 the	 database	 functionality	 into	 several	 components	
that	 address	 self-contained	 challenges	 and	 allow	 the	whole	 system	 to	 scale.	 In	 detail,	
SQL	 queries	 are	 issued	 to	 an	 engine	 component	 that	 translates	 them	 to	 NoSQL	
statements	handled	by	HBase.	At	the	same	time,	transactional	support	is	guaranteed	by	
a	 separate	 component.	Building	on	 such	architecture	we	will	be	able	 to	offer	a	 secure	
NoSQL	interface	to	SafeCloud	client	applications	and,	on	top	of	such	 interface,	offer	an	
ANSI	SQL	one.		

In	 this	 first	 solution	we	 assume	 that	 the	 SQL	 query	 processing	 and	 the	 transactional	
support	processing	can	be	done	entirely	on	the	trusted	deployment.		The	cryptographic	
techniques	are	applied	over	the	underlying	NoSQL	engine,	in	the	sense	that	the	trusted	
deployment	will	be	responsible	for	the	encryption	of	data	before	sending	it	to	the	cloud	
provider,	to	be	handled	by	the	untrusted	deployment.	Note	that	it	is	imperative	for	these	
techniques	to	allow	the	NoSQL	system	to	provide	the	necessary	functionality	to	support	
the	aforementioned	ANSI	SQL	database	system.	

In	the	next	section,	we	describe	in	detail	the	design	and	architecture	of	Solution	1,	and	
discuss	the	tradeoffs	between	security	and	performance	that	it	entails.	

	

3.2 Architecture	and	API	

In	 Figure	 5	we	 depict	 the	 instantiated	 architecture	 for	 Solution	 1.	 It	 is	 observable	
that	most	of	the	processing	is	done	in	the	trusted	deployment.	Almost	all	storage,	on	the	
other	 hand,	 is	 left	 under	 the	 responsibility	 of	 the	 cloud	 provider.	 In	 detail,	
responsibilities	are	assigned	as	follows.	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 18	

	

Figure	5:	Solution	1	architecture	

	

	

3.2.1 Trusted	deployment	

In	 the	 trusted	 domain,	 the	 SafeCloud	 SQL	 engine	 will	 process	 full	 ANSI	 SQL	 with	
transactional	 support	 and	 translate	 SQL	 queries	 into	 NoSQL	 statements.	 These	
statements	are	handed	over	to	a	proxy	component	that	 is	responsible	 for	applying	the	
required	security	mechanisms	to	the	data.		

A	straightforward	solution	regarding	security	could	 involve	simply	encrypting	all	data	
with	 standard	 cryptographic	 techniques,	 and	 therefore	 achieve	 a	 very	 strong	 level	 of	
security.	 However,	 this	 prevents	 the	 NoSQL	 database	 to	 be	 able	 to	 perform	 any	
meaningful	 computation	 over	 the	 data,	 implying	 the	 unfeasible	 scenario	 in	which	 any	
query	 over	 the	 encrypted	 information	 requires	 the	 proxy	 to	 retrieve	 the	 whole	
encrypted	database,	decrypt	it	and	process	over	it.	

One	 approach	 would	 be	 to	 apply	 cryptographic	 techniques	 only	 over	 sensitive	
information,	 in	 a	 way	 that	 allows	 for	 the	 NoSQL	 database	 to	 perform	 the	 basic	
computations	required.	For	instance,	the	client	might	consider	the	values	of	its	database	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 19	

to	be	sensitive,	but	allow	identifiers	to	be	left	in	the	clear.	Obviously	this	simple	scenario	
is	not	feasible	in	all	cases,	as	the	data	that	the	user	considers	to	be	non-sensitive	might	
not	suffice	for	our	underlying	NoSQL,	e.g.	identifiers	can	be	left	in	the	clear,	but	most	of	
the	 required	 system	queries	 are	made	over	 the	 sensitive	data.	One	way	 to	 extend	 the	
amount	of	non-sensitive	 information	could	be	to	apply	anonymization	techniques	over	
some	parts	of	 the	sensitive	data.	Assuming	that	the	client	considers	these	measures	to	
be	sufficient	for	allowing	parts	of	its	sensitive	data	to	be	revealed	to	the	cloud	provider,	
this	would	allow	for	a	greater	portion	of	information	to	be	stored	in	the	clear.	

Alternatively,	we	can	also	apply	different	cryptographic	techniques	over	different	levels	
of	 data	 sensitivity.	 As	 an	 example,	 consider	 order-preserving	 encryption	 (OPE)	
[BCL+09].	 OPE	 is	 a	 deterministic	 encryption	 scheme	 whose	 encryption	 function	
preserves	 the	 numerical	 order	 of	 the	 plaintexts.	 In	 brief,	 if	 plaintexts	m1	 and	m2	 are	
encrypted	into	ciphertexts	c1	and	c2	(respectively)	with	OPE,	and	m1	>	m2	,	then	c1	>	c2.	
This	means	 that	a	database	holding	OPE	ciphertexts	can	efficiently	 (logarithmic	 in	 the	
size	of	the	database)	perform	range	queries	over	its	data.	Techniques	such	as	OPE	reveal	
some	 properties	 of	 the	 data	 they	 are	 encrypting,	 but	 conceal	 the	 actual	 values.	 This	
technique	 is	 suitable	 when	 the	 client	 does	 not	 want	 to	 disclose	 its	 data	 but	 is	 not	
concerned	about	disclosing	some	of	its	properties	(the	order,	in	our	example).	

3.2.2 Untrusted	deployment	

The	untrusted	deployment	mainly	consists	of	a	NoSQL	database,	in	particular	an	HBase	
store.	 Data	 stored	 in	 this	 HBase	 deployment	 can	 be	 accessed	 via	 the	 previously	
described	 put,	 get	 and	 scan	 interface.	 	 Note	 that	 in	 order	 to	 achieve	 the	 desired	
performance,	 the	 database	 system	 takes	 advantage	 of	 HBase	 processing	 capabilities.	
Namely,	HBase	allows	querying	 its	data	according	to	a	set	of	criteria	 that	 is	 translated	
into	data	filters	running	close	to	the	data	itself.	The	ability	to	perform	these	processing	
steps	 is	directly	 impacted	by	the	type	of	security	mechanisms	deployed	by	the	trusted	
proxy.	Depending	on	the	security	 technique	used,	more	or	 less	data	processing	can	be	
delegated	to	the	HBase	layer.	The	chosen	technique	will,	naturally,	depend	not	only	on	
the	desired	performance	but	also	on	the	trust	model	required	by	the	application	and	its	
data.	

3.3 Discussion	

Briefly,	 the	solution	described	 in	this	section	offloads	some	of	 the	data	processing	and	
storage	 done	 at	 the	 trusted	 domain	 to	 the	 untrusted	 domain	 by	 deploying	 a	 NoSQL	
database	 in	 the	 remote	 site.	 Depending	 on	 the	 security	 mechanisms	 deployed	 the	
amount	 of	 processing	 done	 on	 the	 untrusted	 site	 varies.	 Considering	 that	 doing	 such	
processing	closer	to	the	data	allows	for	better	performance,	it	naturally	follows	that	the	
stronger	the	security	required,	the	less	processing	can	be	done	at	the	untrusted	site,	and	
the	 lowest	 the	 performance	 is	 expected	 to	 be.	 By	 considering	 different	 cryptographic	
techniques	for	the	different	levels	of	sensitive	data,	we	are	maximizing	our	performance	
possibilities,	which	could	lead	to	solutions	that	are	a	step	forward	with	respect	to	state	
of	the	art	private	data	processing	solutions.		

An	application	example	for	this	solution	is	a	laboratory	that	owns	a	private	cluster	with	
some	computational	power,	but	is	interested	in	offloading	most	of	the	storage	effort	into	
an	untrusted	cloud	domain.	The	laboratory	storage	system	deals	with	a	certain	amount	
of	confidential	information	for	each	patient	(a	set	of	columns	and	respective	values,	for	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 20	

instance),	 which	 is	 identified	 by	 a	 unique	 identifier	 (key).	 Publicly	 disclosing	 this	
identifier	is	not	an	issue	because	either	it	is	already	public,	or	the	information	required	
to	disclose	the	actual	person	referred	by	that	identifier	is	safely	stored	at	the	trusted	on-
premises	 deployment.	 Considering	 this	 scenario,	 offloading	 the	 data	 to	 the	 untrusted	
deployment	 demands	 for	 mechanisms	 that	 ensure	 the	 privacy	 of	 the	 patient	 data.	 In	
other	 words,	 mechanisms	 that	 render	 all	 values	 to	 become	 opaque	 for	 the	 cloud	
provider.	This	can	be	achieved	by	storing	data	in	the	NoSQL	database	using	keys	in	the	
clear	 and	 values	 that	 completely	 hidden	 from	 the	 cloud	 provider	 using,	 for	 instance,	
standard	 cryptographic	 techniques.	 As	 a	 consequence,	 in	 this	 example,	 security	
mechanisms	are	quite	inexpensive	and,	because	data	keys	are	stored	in	the	clear,	all	the	
processing	mechanisms	 of	HBase	 are	 preserved.	 In	 particular,	 the	 ability	 to	 scan	data	
according	 to	 user	 defined	 criteria	 is	 preserved.	 Moreover,	 as	 HBase	 is	 deployed	 in	 a	
cloud	environment,	this	solution	also	allows	the	user	to	take	advantage	of	its	scalability	
and	elasticity	potential.	In	more	detail,	by	allowing	data	keys	to	be	stored	in	the	clear	at	
the	 untrusted	 NoSQL	 database,	 it	 is	 possible	 to	 retrieve	 specific	 keys	 and	 to	 perform	
filters	 over	 these	 keys	 in	 an	 efficient	 way	 and	 using	 the	 untrusted	 deployment	
computational	power.	Additionally,	since	NoSQL	allows	storing	the	data	for	each	patient	
in	a	distinct	column,	and	since	these	columns	may	be	grouped	in	families,	it	is	possible	to	
have	 different	 encryption	 keys	 for	 each	 column	 family.	 This	 distinction	 allows	 us	 to	
establish	access	control	over	users	with	different	permission	levels	(roles).	For	instance,	
in	the	clinical	analysis	 laboratory	example,	suppose	that	a	patient	has	a	set	of	analysis	
that	can	only	be	seen	by	its	personal	doctor,	but	also	has	another	set	of	documents	that	
are	visible	to	all	the	clinical	staff.	 	These	documents	may	be	stored	in	different	column	
families	and	with	different	encryption	keys,	so	that	one	key	is	available	to	all	the	clinic	
and	allows	access	to	one	set	of	documents,	while	the	other	key	is	only	available	for	the	
patient’s	personal	doctor,	 that	has	 the	permission	 to	access	 the	other	analysis	set.	 	On	
the	other	hand,	 if	we	 consider	 an	 identical	 example	with	 the	exception	 that	keys	now	
may	leak	sensitive	information	and	cannot	be	stored	in	the	clear	at	the	NoSQL	untrusted	
deployment,	 this	 solution	 also	 allows	 applying	 cryptographic	 techniques	 to	 the	 keys,	
such	 as	OPE,	while	 still	 preserving	 the	 computation	 capabilities	 of	HBase.	 To	 sum	up,	
this	 solution	 will	 allow	 testing	 several	 cryptographic	 techniques	 in	 order	 to	 perform	
secure	and	efficient	processing	on	a	single	untrusted	NoSQL	deployment.	Moreover,	the	
solution	will	 leverage	 the	 processing	 capabilities	 available	 in	 a	 trusted	deployment	 to	
provide	a	full	ANSI	SQL	along	with	transactional	support	to	applications.	

The	major	drawback	of	Solution	1	is	the	dependence	on	a	single	cloud	provider	(single	
untrusted	 deployment),	 which	 limits	 the	 security	 techniques	 that	 can	 be	 applied.	 In	
Solution	2,	SafeCloud	addresses	this	issue	by	considering	that	data	will	now	be	stored	in	
multiple	untrusted	domains.	

4 Solution	2:	Secure	processing	in	multiple	untrusted	domains	

4.1 Introduction	

The	 major	 difference	 from	 the	 previous	 solution	 is	 that	 this	 approach	 assumes	 the	
existence	of	multiple	untrusted	non-colluding	deployments.	Leveraging	the	trust	model	
in	 this	 way	 allows	 for	 the	 usage	 of	 other	 security	 mechanisms	 incompatible	 with	
solution	 1,	 such	 as	 secret	 sharing	 schemes.	 Spreading	 data	 and	 computation	 across	
several	domains	so	that	a	single	domain	cannot	compromise	the	privacy	of	the	data	held	
by	it	is	one	of	the	core	concepts	of	SafeCloud	that	will	be	investigated	in	this	solution.	As	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 21	

such,	 solution	2	 is	based	on	 the	 assumption	 that	 the	 trusted	deployment	 continues	 to	
have	 scarce	 storage	 resources,	 while	 still	 having	 computational	 capabilities.	 The	
untrusted	deployments	continue	to	complement	the	trusted	domain	with	the	necessary	
storage	capabilities	and	additional	computational	capabilities.	In	summary,	this	solution	
aims	 at	 providing	 similar	 processing	 capabilities	 for	 the	 trusted	 and	 untrusted	
deployments	 while	 reducing	 the	 information	 leakage	 that	 a	 single	 untrusted	
infrastructure	could	exploit.	

The	untrusted	deployment	will	be	composed	of	more	 than	one	NoSQL	database,	while	
each	 database	will	 be	 deployed	 in	 different	 cloud	providers.	Moreover,	 each	 database	
will	only	contain	a	part	of	 the	original	 information,	which	will	avoid	disclosing	private	
information	to	the	untrusted	provider.	In	particular,	the	information	is	partitioned	in	a	
way	 that	 prevents	 a	 single	 provider	 to	 retrieve	 any	meaningful	 information	 from	 the	
stored	data.	Additionally,	special	secure	multiparty	computation	protocols	can	run	over	
this	 data,	 enabling	 for	 NoSQL	 operations	 to	 be	 performed	 in	 a	 secure	 fashion	 at	 the	
untrusted	 deployments.	 This	 is	 key	 to	 support	 the	 desired	 functionality	 of	 delegating	
computation	to	the	untrusted	domain.	

The	 architecture	 for	 this	 solution	 presents	 several	 challenges,	 both	 in	 terms	 of	
distributed	systems	and	cryptography.	Nonetheless,	similarly	to	solution	1,	the	objective	
is	 to	 offer	 both	 a	 SQL	 and	 NoSQL	 interface	 to	 the	 SafeCloud	 client	 applications.	 To	
achieve	such	goal,	the	untrusted	deployment	will	offer	a	virtual	NoSQL	interface	on	top	
of	 three	HBase	databases.	Applications	using	this	 interface	will	be	abstracted	from	the	
underlying	 data	 partitioning	 and	 from	 the	 number	 of	HBase	 replicas	 being	 used,	 thus	
seeing	a	regular	single	node	Hbase	API.	On	top	of	the	NoSQL	API,	and	by	recurring	to	the	
trusted	deployment	processing	capabilities,	this	solution	will	be	able	to	offer	a	fully	ANSI	
SQL	 compliant	 database	 system	 with	 transactional	 support.	 Following	 the	 same	
structure	 of	 the	 previous	 section,	 we	 now	 describe	 in	 more	 detail	 the	 design	 and	
architecture	of	solution	2.	

4.2 Architecture	and	API	

Figure	6	depicts	the	architecture	for	solution	2.	The	major	architectural	difference	from	
solution	1	 is	 that	now	there	are	several	HBase	 instances	hosted	 in	different	untrusted	
infrastructures,	while	the	trusted	proxy	is	now	responsible	for	collecting	and	processing	
responses	from	all	these	instances.	

	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 22	

	

Figure	6:	Solution	2	architecture	

4.2.1 Trusted	deployment	

The	trusted	deployment	remains	very	similar	to	the	one	described	in	solution	1,	with	the	
SafeCloud	 SQL	 engine	 processing	 full	 ANSI	 SQL	 with	 transactional	 support	 and	
translating	SQL	queries	 into	NoSQL	statements.	The	greatest	 change	 in	 this	 layer	 is	 in	
the	trusted	proxy	component.	The	proxy	mechanism	is	responsible	for	not	only	applying	
the	 required	 security	 mechanisms	 to	 the	 data	 but	 also	 to	 create	 a	 virtual	 and	
transparent	NoSQL	interface	over	the	NoSQL	database	instances.		

This	 architecture	 with	 several	 database	 instances	 responsible	 for	 performing	 secure	
computation	 expands	 the	 range	 of	 cryptographic	 techniques	 that	 can	 be	 applied.	 One	
way	 to	 benefit	 from	 this	 would	 be	 to	 use	 secret	 sharing	 and	 secure	 multi-party	
computation	 protocols	 over	 the	 stored	 data.	 Loosely	 explaining,	 secret	 sharing	 is	 a	
method	 for	 distributing	 a	 secret	 among	 several	 participants:	 each	 one	 will	 receive	 a	
share	of	this	secret,	each	share	does	not	reveal	any	information	by	itself,	but	a	sufficient	
number	 of	 shares	 allow	 for	 the	 secret	 to	 be	 reconstructed	 [DPS+08].	 In	 this	 specific	
implementation,	 the	 proxy	 is	 responsible	 for	 generating	 and	 distributing	 the	 shares	
associated	 with	 sensitive	 data,	 as	 well	 as	 gathering	 and	 interpreting	 the	 shares	 it	
receives	from	the	untrusted	domains.	

From	 the	 client	 perspective,	 we	 expect	 the	 usability	 experience	 (modulo	 the	
performance	 toll	 these	measures	may	 take	on	 the	 system)	 to	be	 the	 same	as	 if	 it	was	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 23	

interacting	with	a	regular	SQL/NoSQL	database,	depending	on	the	API	provided	 in	the	
client	interface.	

4.2.2 Untrusted	deployment	

One	of	the	SafeCloud	objectives	is	to	explore	the	possibilities	of	running	SQL	or	NoSQL	
queries	 on	 data	 that	 is	 divided	 in	 several	 databases.	 Accordingly,	 in	 the	 solution	
presented	 in	 this	 section,	 the	untrusted	deployment	now	encompasses	 several	NoSQL	
databases,	in	this	case	HBase	stores,	running	in	different	clouds.	Again,	we	cannot	trust	
any	of	the	cloud	providers,	but	we	assume	they	are	not	willing	to	collude.	 	Each	HBase	
instance	will	 be	 able	 to	perform	computation	over	 stored	data	without	disclosing	 any	
meaningful	information	about	that	data.	For	instance,	if	secret	sharing	is	being	used,	the	
HBase	instances	will	be	able	to	translate	NoSQL	queries	into	protocols	that	are	aware	of	
the	underlying	secret	sharing	schemes.	This	will	allow	each	instance	to	process	data	and	
answer	the	queries	while	still	being	unable	to,	individually,	extract	any	knowledge	from	
it.	

Some	 computation	 is	 already	 possible	 in	 the	 distributed	 secret	 shared	 scenario	when	
using	additive	secret	sharing	[BNT+12].	This	secret	sharing	scheme	already	has	several	
secure	 protocols	 that	 can	 compare	 values	 and	do	 arithmetic	 operations	 on	 shares.	 To	
achieve	this,	the	databases	go	through	several	steps	of	information	sharing,	which	allow	
them	 to	 reach	 consensus	 about	 the	 stored	 data	 without	 ever	 knowing	 which	 are	 the	
original	secrets.		In	SafeCloud	the	aim	is	to	extend	these	techniques	to	HBase	databases	
to	allow	secure	data	processing	in	such	systems.	

It	 is	 of	 special	 relevance	 that	 these	mechanisms	 can	be	 included	 in	 the	HBase	 system	
without	modifying	 its	 core	 implementation.	 This	 can	 be	 achieved	 by	 using	 HBase	 co-
processors	that,	for	simplicity,	can	be	seen	as	plugins	that	are	implemented	and	added	
to	HBase	instances,	and	that	allow	extending	the	computation	done	when	NoSQL	queries	
are	performed	[APACHE12].		

4.3 Discussion	

In	summary,	the	solution	presented	in	this	section	no	longer	assumes	that	data	is	stored	
in	 a	 single	 untrusted	 entity.	 This	 assumption	 allows	 increasing	 the	 provided	 security	
guarantees	 and	 to	 employ	 new	 cryptographic	 techniques	 like	 secret	 sharing	
mechanisms.	In	particular,	these	multi-party	computation	algorithms	over	sensitive	data	
don’t	require	for	significant	properties	of	the	data	to	be	revealed,	as	was	the	case	with	
order-preserving	encryption.	

On	the	other	hand,	secret	sharing	techniques	will	add	extra	storage	and	communication	
overhead	 that	 will	 negatively	 impact	 the	 performance	 of	 solution	 2,	 at	 least	 when	
compared	with	the	performance	achievable	by	solution	1.	

Returning	 to	 the	 clinical	 laboratory	 example,	 this	 time	 the	 laboratory	 owns	 a	 private	
cluster	 with	 limited	 computational	 power,	 and	 wants	 to	 offload	 storage	 and	
computational	power	to	several	cloud	providers.	Much	like	in	the	previous	scenario,	the	
laboratory	is	not	willing	to	disclose	patient	sensitive	information,	but	now	the	order	of	
the	 sensitive	 information	 follows	 a	 predictable	 pattern,	 so	 the	 laboratory	 is	 not	
interested	in	order-preserving	security	mechanisms.	Moreover,	the	laboratory	does	not	
trust	a	single	cloud	provider	to	hold	and	process	all	the	data.	However,	it	considers	the	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 24	

scenario	 of	 colluding	 competing	 cloud	 providers	 highly	 unlikely,	 so	 it	 is	 comfortable	
with	assuming	it	will	not	occur.	

By	 spreading	 the	 information	 in	 parts	 according	 to	 provably	 secure	 mechanisms	 of	
secret	sharing,	it	has	assurances	that	each	cloud	provider	will	not	be	able	to	retrieve	the	
sensitive	 information	 from	 what	 is	 stored	 within.	 Furthermore,	 the	 homomorphic	
properties	of	these	shares	allow	for	computation	over	them,	so	the	laboratory	also	has	
access	to	provably	secure	protocols	for	processing	over	the	securely	stored	shares,	in	a	
way	that	the	secrecy	of	data	is	kept	at	all	times.	

For	a	broader	scope	of	real-world	applications,	we	might	be	 interested	 in	allowing	 for	
several	untrusted	clients	 to	query	over	potentially	 sensitive	data.	 In	 solutions	1	and	2	
there	 is	 a	 single	 trusted	 domain	 that	 manages	 data	 in	 the	 clear,	 decides	 what	
encryptions	 schemes	 to	 apply	 and	 that	 handles	 the	 translation	 of	 SQL	 to	NoSQL.	 This	
does	 not	 consider	 the	 scenario	 in	 which	 several	 laboratories	 (with	 independent	
databases	holding	sensitive	data)	want	to	jointly	compute	over	their	data	sets.	This	is	a	
very	 common	 use	 case	 when	 considering	 the	 relevance	 of	 subjects	 such	 as	 big	 data,	
where	 these	 laboratories	 could	 ascertain	 valuable	 statistical	 information	 from	 huge	
quantities	of	data.	Such	use	case	is	explored	in	solution	3	presented	next.	

	

5 Solution	 3:	 Secure	 processing	 in	 multiple	 untrusted	 domains	

with	untrusted	clients	

5.1 Introduction	

In	 the	 first	 two	solutions	 it	 is	assumed	 that	 there	 is	only	one	entity,	who	owns	all	 the	
data	stored	in	the	untrusted	domain.	In	this	third	solution	this	assumption	is	dropped.	
The	motivation	for	getting	rid	of	this	assumption	comes	from	the	need	to	analyze	data	
from	multiple	sources	while	keeping	it	private.	A	well	known	example,	where	there	are	
many	 data	 owners	 and	 shared	 analytics	 is	 needed,	 is	 the	 Yao's	Millionaires'	 problem	
[YAO+82].	In	this	simplified	case	there	are	two	millionaires,	who	want	to	know	who	is	
richer.	The	problem	is	that	they	do	not	want	to	reveal	their	net	worth	to	anyone.	In	this	
simplified	case,	we	have	two	data	owners,	the	millionaires	and	the	need	for	analytics	on	
the	shared	data	of	both:	who	is	richer.	One	extra	requirement	is	that	the	system	should	
give	 the	 answer	 to	 only	 authorized	 users,	 in	 this	 case	 the	millionaires	 themselves.	 A	
third	party,	for	example	the	local	newspaper,	should	not	learn	which	of	the	millionaires	
is	richer.	

This	 means	 that	 even	 the	 authorized	 users	 should	 not	 be	 able	 to	 see	 all	 the	 data.	
Therefore,	data	is	processed	in	the	untrusted	domain	in	encrypted	form	on	the	backend	
components.	 Users	 cannot	make	 direct	 queries	 for	 data:	 only	 aggregation	 results	 are	
returned.	It	might	be	the	case	that	for	real	world	applications	more	fine-grained	access	
policies	are	needed.	For	an	example	computing	minimum	of	some	table	column	would	
reveal	too	much	and	is	not	allowed,	but	computing	mean	of	the	same	column	is	allowed.	

Millionaires’	problem	is	a	classical	toy	example,	but	there	are	many	more	cases,	where	
different	 entities,	 who	 own	 sensitive	 data,	 could	 leverage	 the	 results	 of	 joint	 data	
analysis.	 Examples	 can	 be	 found	 where	 personal	 data	 is	 stored.	 For	 an	 example	 a	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 25	

hospital	has	medical	 records,	which	are	highly	sensitive.	However,	 to	 track	 large	scale	
viral	 outbreaks,	 different	 hospitals	 need	 some	 way	 to	 combine	 their	 data,	 while	
preserving	their	confidentiality.	

5.2 Architecture	

The	architecture	for	Solution	3	is	depicted	in	Figure	7.	In	previous	solutions	the	trusted	
domain	processing	did	some	actual	processing	of	 the	data.	 In	 this	solution	 the	 trusted	
deployment	 is	 responsible	 for	 only	 encrypting	 the	 query	 parameters,	 decrypting	 the	
results	 and	 orchestrating	 the	work	 done	 in	 the	 untrusted	 domain.	 The	 front-end	 still	
deals	with	processing	 the	query	and	executing	 it	on	 the	backend,	but	unlike	 the	other	
solutions,	only	the	queried	data	is	sent	to	the	trusted	domain.	The	only	data	processing	
that	happens	in	the	trusted	domain	is	encryption/decryption	of	the	data.	

In	 the	 sense	 of	 the	 general	 architecture	 in	 Section	 2,	 there	 are	 no	 trusted	 domain	
processing	or	storage	involved.	The	proxy	component	does	encryption,	decryption	and	
query	translation	in	addition	to	communicating	with	the	untrusted	domain	components.	
The	 solution	will	 be	built	 on	 top	of	 the	 Sharemind	 framework	 [SHAREMIND+08].	The	
Sharemind	 framework	 is	 a	 programmable	 system	 for	 doing	 privacy-preserving	
computations.	 Although	 Sharemind	 supports	 different	 deployment	 schemes,	 the	most	
evolved	protocol	suite	is	based	on	secret-sharing	between	three	parties.	Therefore,	the	
untrusted	 deployment	 consists	 of	 three	 Sharemind	 servers,	 each	 holding	 part	 of	 the	
secret-shared	data.	

	

Figure	7:	Solution	3	architecture.	

It	 is	 required	 that	 three	 Sharemind	 Application	 Servers	 are	 hosted	 in	 different	
administrative	domains.	Three	domains	just	need	to	be	different,	they	all	can	be	in	the	
untrusted	cloud.	This	is	to	avoid	collaboration	between	entities	that	host	the	Sharemind	
servers.	 Collaboration	 would	 break	 the	 confidentiality	 guarantees	 offered	 by	 secret	
sharing.	

5.2.1 Proxy	component	

The	 proxy	 component	 provides	 a	 SQL	 interface	 to	 the	 secure	 processing	 system.	 It	
parses	the	queries	and	translates	them	to	a	series	of	operations	that	need	to	be	done	on	
the	 back-end.	 Some	 of	 these	 operations,	 like	 filtering,	 require	 input	 parameters.	 The	
front-end	component	will	encrypt	these	parameters	when	executing	the	operations.	The	
results	of	the	operations	are	stored	in	temporary	tables,	which	stay	in	the	back-end.	The	
proxy	 component	 only	 gets	 references	 to	 these	 tables.	 A	 special	 operation	 is	 used	 to	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 26	

return	 the	 final	 result	of	a	query	back	 to	 the	proxy	component.	The	proxy	component	
will	then	decrypt	the	result	and	outputs	it	to	the	SQL	interface.	

In	 Sharemind	 context	 the	Proxy	 component	 is	 just	 a	 specific	 application	 that	 uses	 the	
Sharemind	 Controller	 library.	 The	 controller	 library	 has	 simple	 functions	 to	 run	
programs	 on	 Sharemind	 deployment.	 The	 programs	 are	 written	 in	 a	 domain	 specific	
language	 called	 SecreC.	 Programs	written	 in	 SecreC	have	 special	 data	 types	 for	 secret	
shared	 data,	 and	 operations	 run	 on	 the	 data	will	 automatically	 use	 secure	multiparty	
computation	protocols.	

5.2.2 Back-end	Component	

The	back-end	component	 is	a	suite	of	 functions	written	in	SecreC,	which	run	on	top	of	
the	 Sharemind	 Application	 Server.	 The	 suite	 has	 functions	 for	 basic	 operations	 like	
filtering	and	grouping	 tables.	All	 the	operations	are	executed	using	secure	multi-party	
computation	protocols	based	on	additive	secret-sharing	scheme.	

Sharemind	Application	Server	has	a	database	component	which	stores	encrypted	data.	It	
currently	uses	a	simple	HDF5	based	backend	as	the	storage	component.	HDF5	is	a	data	
model,	 hierarchical	 file	 format	 and	 a	 library	 used	 mostly	 for	 scientific	 experiments	
[HDF5].	 However,	 other	more	 interesting	 storage	 backends	 can	 also	 be	 implemented	
easily	thanks	to	Sharemind	Application	Server’s	modular	design.	

5.3 Discussion	

The	 solution	will	 not	 implement	 the	 full	 ANSI	 SQL	 standard,	 because	 some	parts	 of	 it	
would	be	 inefficient	or	difficult	 to	 implement	securely.	For	some	operations	 like	Equi-
joins	 we	 have	 efficient	 implementations.	 However,	 the	 ANSI	 SQL	 standard	 has	 some	
obscure	parts	that	do	not	fit	into	the	secure	processing	model	very	well.	

The	 performance	 of	 the	 solution	 will	 be	 highly	 dependent	 on	 the	 network	 latency	
between	 Sharemind	 servers.	 The	 latency	 and	 bandwidth	 between	 the	 proxy	 and	
Sharemind	servers	will	not	be	as	important	factor,	as	is	the	the	latency	and	bandwidth	
between	Sharemind	servers.		

This	 solution	 covers	 an	 important	 use	 case,	where	 something	 has	 to	 be	 computed	 on	
confidential	 data	 belonging	 to	multiple	 parties,	who	 cannot	 trust	 each	 other	with	 the	
data.	Sometimes	the	legal	aspects	prevent	giving	out	data	to	other	parties.	Other	times	
business	 secrets	 cannot	 be	 revealed	 to	 competitors.	 However	 useful	 statistical	
information,	that	all	parties	would	benefit	from,	can	be	obtained	from	shared	data.	This	
solution	makes	it	possible	to	obtain	the	benefits,	while	preserving	the	confidentiality	of	
data.	

	

	

	

	

	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 27	

6 Conclusion	

This	first	deliverable	of	WP3	aims	for	two	major	goals.	First,	it	presents	and	details	
the	unifying	general	architecture	of	SafeCloud.	Second,	it	proposes	three	main	solutions	
for	privacy-preserving	storage	and	computation	based	on	this	architecture	and	focused	
on	providing	feasible	deployments	to	meet	the	requirements	of	SafeCloud’s	use	cases.	

Our	 proposed	 architecture	 is	 heavily	 rooted	 in	 the	 cloud	 computing	 paradigm,	
therefore	making	 the	explicit	distinction	between	on	premises	infrastructure	 and	cloud	
infrastructure.	 This	 led	 to	 a	 general	 solution	 architecture	 comprised	 of	 two	 main	
components:	the	trusted	deployment	and	the	untrusted	deployment,	communicating	with	
the	 client	 via	 a	 client	 interface,	 and	 to	 each	 other	 via	 a	 proxy.	 By	 having	 these	 clear	
distinctions,	we	can	specify:	

• The	API	 our	 solutions	provide	 to	 the	 client,	 being	 either	 SQL	or	NoSQL	 -	 client	
interface.	

• The	computational	requirements	delegated	to	the	local	and	remote	components	-	
trusted/untrusted	deployment.	

• How	the	client	side	is	to	interact	with	the	cloud	provider	-	proxy.	

Our	 privacy-preserving	 solutions	 follow	 the	 described	 structure,	 and	 are	 derived	
from	a	comprehensive	analysis	of	security	and	performance	trade-offs.	SafeCloud	avoids	
the	 problems	 inherent	 to	 a	 single-scenario	 focused	 approach	 by	 providing	 several	
solutions	 that	 meet	 different	 functional	 and	 security	 requirements.	 Our	 first	 solution	
assumes	 a	 single	 untrusted	 cloud	 provider,	 and	 proposes	 the	 usage	 of	 different	
techniques	for	various	levels	of	data	sensitivity.	The	second	solution	attempts	to	extend	
the	 functionalities	 of	 the	 first	 one	 by	 assuming	 a	 setting	 with	multiple	 non-colluding	
untrusted	 cloud	 providers,	 employing	 security	 mechanisms	 that	 rely	 on	 this	 new	
deployment	 to	 provide	 higher	 levels	 of	 security	 for	 storage	 and	 processing.	 Our	 third	
and	final	solution	extends	the	scope	of	the	second	by	considering	multiple	clients	with	
sensitive	data,	which	allows	for	computations	relying	on	huge	amounts	of	data,	such	as	
data	analytics,	to	be	run	over	several	datasets	of	data	without	revealing	sensitive	data	to	
the	 party	 requesting	 the	 computation	 (other	 than	 what	 would	 be	 revealed	 by	 the	
computation	result	itself).	

To	 sum	up,	 this	work	package	 aims	 to	 go	beyond	 the	 state	 of	 the	 art	 to	 provide	 a	
range	of	solutions	that	fit	applications	with	different	requirements	in	terms	of	security	
and	 efficiency,	 while	 allowing	 secure	 and	 private	 data	 processing	 in	 untrusted	
environments.		

	

	

	

	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 28	

7 References	

[MSL+11]	 Martin	 Mulazzani,	 Sebastian	 Schrittwieser,	 Manuel	 Leithner,	 and	 Markus	
Huber	(2011).	"Dark	Clouds	on	the	Horizon:	Using	Cloud	Storage	as	Attack	Vector	and	
Online	Slack	Space".	USENIX	Security	Symposium.	

[AFG+10]	 Michael	 Armbrust,	 Armando	 Fox,	 Rean	 Griffith,	 Anthony	 D.	 Joseph,	 Randy	
Katz,	Andy	Konwinski,	Gunho	Lee,	David	Patterson,	Ariel	Rabkin,	 Ion	Stoica,	and	Matei	
Zaharia	(2010).	A	view	of	cloud	computing.	Commun.	ACM	53.	

[Dropbox12]	Dropbox	(2012).	 ”Dropbox	has	become	"problem	child"	of	cloud	security	
…”,(http://venturebeat.com/2012/08/01/dropbox-has-become-problem-child-of-
cloud-security/)	

[CK08]	 Octavian	 Catrina,	 and	 Florian	 Kerschbaum	 (2008).	 "Fostering	 the	 uptake	 of	
secure	 multiparty	 computation	 in	 e-commerce”.	 Third	 International	 Conference	 on	
Availability,	Reliability	and	Security.	

[L13]	Susan	Landau(2013).	"Making	sense	from	Snowden:	What's	significant	in	the	NSA	
surveillance	revelations”.	IEEE	Security	&	Privacy.	

[D+14]	Zakir	Durumeric	et	al	(2014).	"The	matter	of	heartbleed”.	Conference	on	Internet	
Measurement	Conference.	

[LCW93]	Hongjun	Lu,	Hock	Chuan	Chan,	and	Kwok	Kee	Wei.	1993.	“A	survey	on	usage	of	
SQL”.	SIGMOD	Rec.	22.	
[HHL+11]	 Jing	 Han,	 E.	 Haihong,	 Guan	 Le,	 and	 Jian	 Du	 (2011).	 "Survey	 on	 NoSQL	
database”.	Pervasive	computing	and	applications.	

[ANSI16]	American	National	Standards	Institute.	ANSI	Web	page.	(http://www.ansi.org)	
[DD+93]	Chris	J.	Date,	and	Hugh	Darwen	(1993).	“A	guide	to	the	SQL	Standard:	a	user's	
guide	to	the	standard	relational	language	SQL”.	Vol.	55822.	Addison-Wesley	Longman.	
[APACHE16]	 Apache	 HBase	 Team	 (2016).	 “Apache	 HBase	 ™	 Reference	 Guide”.	
(https://hbase.apache.org/book.html)	

[BCL+09]	Alexandra	Boldyreva,	Nathan	Chenette,	Younho	Lee	and	Adam	O’Neill	(2009).	
"Order-preserving	symmetric	encryption”.	Advances	in	Cryptology-EUROCRYPT.	

[DPS+08]	Mahir	Doganay,	Thomas	Pedersen,	Yücel	Saygın,	Erkay	Savas	̧		and	Albert	Levi	
(2008).	 "Distributed	 privacy	 preserving	 k-means	 clustering	 with	 additive	 secret	
sharing."	International	workshop	on	Privacy	and	anonymity	in	information	society.	

[APACHE12]	 Apache	 HBase	 Team	 (2012).	 “Coprocessor	 Introduction”.	
(https://blogs.apache.org/hbase/entry/coprocessor_introduction)	

[CNIMBO09]	 CumuloNimbo	 european	 project	 partially	 funded	 by	 the	 European	
Commission	under	the	7th	European	Framework	contract	number	FP7-257993	(2009).	
(http://www.cumulonimbo.eu/node/20)	

[CPAAS14]	 CoherentPaaS	 european	 project	 funded	 by	 the	 European	 Union's	 Seventh	
Framework	 Programme	 for	 research,	 technological	 development	 and	 demonstration	
under	grant	agreement	no	611068	(2014).	(http://coherentpaas.eu)	

[YAO+82]	 Yao,	 Andrew	 C.	 "Protocols	 for	 secure	 computations."	 Foundations	 of	
Computer	Science,	1982.	SFCS'08.	23rd	Annual	Symposium	on.	IEEE,	1982.	

	 WP3	–	Privacy	preserving	storage	and	computation	architecture	 29	

[BNT+12]	 Dan	 Bogdanov,	 Margus	 Niitsoo,	 Tomas	 Toft,	 Jan	 Willeson	 (2012).	 “High-
performance	secure	multi-party	computation	for	data	mining	application”.	International	
Journal	of	Information	Security.	
[SHAREMIND+08]	Dan	Bogdanov,	 Sven	Laur,	 Jan	Willemson.	 Sharemind:	 a	 framework	
for	fast	privacy-preserving	computations.	In	Proceedings	of	13th	European	Symposium	
on	 Research	 in	 Computer	 Security,	 ESORICS	 2008,	 LNCS,	 vol.	 5283,	 pp.	 192-206.	
Springer,	Heidelberg.	2008.	

[HDF5]	HDF5	home	page.	(https://www.hdfgroup.org/HDF5/),	2016	
	

