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1 ExecuƟve Summary
File storage is one of themost successful use cases for cloud computing. Services like Drop-
box, Google Drive, Amazon S3, Microsoft OneDrive, and Apple iCloudDrive arewidely used
worldwide to store both personal and professional ϐiles. However, there have been secu-
rity issues with these services and they cannot stand against the strong adversaries that
project SafeCloud is concerned with. Therefore, it makes sense to provide the security as-
surances of SafeCloud to ϐiles stored in cloud computing services.

Some of these cloud storage services provide a web interface, often a RESTful interface,
but this is not the usual interface for ϐile storage. In fact, usually users access ϐiles through
the interface provided by the operating system (e.g., through a windows interface or a
command line console) or through applications that process these ϐiles (e.g., a text editor,
spreadsheet editor, etc.). Several of the cloud storage services, e.g., Dropbox and Google
Drive, recognise that this integration with the operating system is the natural way of ac-
cessing ϐiles, so they provide client software that provides such integration. Speciϐically,
from the point of view of the user, the cloud storage space appears as if it is yet another
folder in his disk. This integration is possible by mimicking a (local) ϐile system by pro-
viding a Portable Operating System Interface (POSIX) ϐile system interface, which is the
standard in most current operating systems (e.g., Linux, Mac OS X, and Windows).

The objective of WP2’s Task T2.3 is to provide a secure cloud-backed ϔile system, more ex-
actly a ϐile system that stores ϐiles in clouds and provides SafeCloud’s high degree of pro-
tection from strong adversaries. This deliverable presents the design of this ϐile system.
The ϐinal design will be presented in deliverable D2.8.

The SafeCloud ϐilesystem – SafeCloud-FS – provides a POSIX interface and stores ϐiles in a
set of clouds – in a cloud-of-clouds – in such away that the ϐiles integrity and availability are
guaranteed even if some clouds are compromised. These cloudsmayprovide the SafeCloud
block storage abstraction. The ϐile system stores both the ϐiles and their metadata (e.g., ϐile
name, modiϐication date, and directory) encrypted for conϔidentiality and privacy. Keeping
metadata encrypted is particularly challenging as this data must be accessed by the cloud
(e.g., to return a ϐile with a certain name), so the ϐile system has to resort to homomorphic
encryption to support some operations without decrypting the data [Gen09]. Moreover,
the ϐile system allows amechanism to audit if the ϐiles are actually stored and notmodiϐied
in the cloudswithout the need to download the ϐiles, whichmay be costly. Thismechanism
provides a second layer of integrity and availability. Finally, SafeCloud-FS provides a set
of mechanisms for protection from client-side attacks, e.g., ransomware that encrypts the
user credentials or temporarily gets access to these credentials and modiϐies some ϐiles
at the cloud. Communication may be done over SafeCloud’s middleware (WP1) for higher
security also at that level.

This deliverable is organized as follows:

• Chapter 2 describes the overall design of the ϐile systemand how it provides themain
security properties by leveraging the notion of cloud-of-clouds.

• Chapter 3 details the coordination service used in the ϐile system – Homomorphic-
Space – and the library in which it is based – MorphicLib.
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• Chapter 4 presents SafeAudit, which is the service that allows verifying if ϐiles stored
in the cloud have not been modiϐied.

• Chapter 5 presents the main client-side protection mechanisms, which protect from
ransomware and support ϐile recovery.

• Chapter 6 presents client-side protection mechanisms for clients running in mobile
devices.

• Chapter 7 concludes the deliverable.

SafeCloud-FS is available online, at the SafeCloud project website.1

1http://www.safecloud-project.eu/results/platform/ss3

Deliverable 2.8 2



2 Secure file system design
SafeCloud’s secure ϐile system – SafeCloud-FS – is based on some of the design principles
of the Shared Cloud-backed File System (SCFS) [BMO+14b]. In fact, SafeCloud-FS can be
considered to be an extension of SCFS with several new mechanisms and attributes.

SafeCloud-FS is a distributed, POSIX-compliant, distributed ϐile system that guarantees
data conϐidentiality, integrity, and availability. It allows users to store ϐiles in a cloud or a
set of clouds (a cloud-of-clouds) with the usual consistency of a ϐile system, atomic consis-
tency or linearizability [HW90], even if weak consistency storage cloud services are used.
This is important as public clouds normally provide only eventual consistency [Vog09].

To use the ϐile system, users mount it on a folder of their computer or device, and the
SafeCloud-FS client-side library synchronizes ϐiles with the cloud storage services. SCFS
supports data sharing among several users, automatically propagating users’ modiϐica-
tions between them.

In SafeCloud-FS ϐiles are storedon several cloudsusing theDepSky software library [BCQ+13].
DepSkyprovides anAPI for uploading andoperatingwith a set clouds,while enforcing fault
tolerance, lock-in resilience, conϐidentiality, and integrity as long as the clouds affected
with the aforementioned problems do not reach the majority of the cloud set.

2.1 Features

The main features of SafeCloud-FS are the following:

• It stores every ϐile in a set of clouds, forming a cloud-of-clouds;

• It provides a POSIX interface, so ϐiles are manipulated using the standard functions,
e.g., open, read, write, chmod, mkdir, ϐlush, fsync, link, rmdir, symlink, chown, etc.;

• Similarly to local ϐile systems, each ϐile has an owner, but may be shared with other
users that may also read and modify it;

• It provides controlled sharing, in the sense that it provides access control mecha-
nisms that allow controlling who can use each ϐile;

• It provides a pay-per-ownership cost model, meaning that each user pays for the stor-
age of his ϐiles;

• It runs mostly at the client and does not require a cloud storage gateway (CSG);

• It uses unmodiϔied storage clouds for storing the ϐiles;

• It provides strong consistency by leveraging a consistency anchor, which in imple-
mented using a coordination service;

• It is modular in the sense that the service is composed by a set of parts that work
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together but can be exchanged by others with similar functionality – coordination
service, veriϐier, storage clouds;

• It uses caching extensively in order to provide a performance as close as possible to
a local ϐile system and to reduce monetary costs;

• It provides consistency-on-close semantics, i.e., when a user closes a ϐile, all updates
he did becomeobservable to the rest of the users, and it provides locks to avoidwrite-
write conϐlicts;

• It allows doing integrity veriϔication of the ϐiles stored in the individual clouds with-
out downloading them.

• It protects the clients’ credentials from ransomware and other attacks against their
integrity and availability.

• It protects the clients’ cache conϐidentiality by encrypting the ϐiles stored there.

• It allows recovering ϐiles illegally modiϐied in clouds using an intrusion recovery
scheme.

SafeCloud-FS provides the following security and dependability properties:

• Availability – ϐiles continue to be usable even if some clouds stop working (the other
clouds are still there) or user credentials are compromised (they can be recovered);

• Integrity – ϐiles continue to be usable even if some clouds corrupt them (the ϐiles are
still at the other clouds and can be recovered);

• Disaster-tolerance – ϐiles continue to be usable even if some clouds suffer disasters
suchas earthquakes and ϐloods (ϐilesmaybe stored in clouds geographically far apart);

• Conϔidentiality (from clouds) –neither ϐiles not theirmetadata can be readby external
intruders or malicious insiders (they are encrypted);

• Conϔidentiality/integrity (from users) – ϐiles cannot be read or modiϐied by unautho-
rized users (there is access control) and they can be recovered in case users are im-
personated (using an intrusion recovery scheme).

SafeCloud-FS essentially adds several mechanisms to SCFS:

• Encryption of ϔile metadata – ϐile metadata such as names, directories, and times-
tamps may be private. Although encrypting metadata may seem as a trivial exten-
sion of ϐile encryption, this is not the case. In fact it involves using homomorphic en-
cryption because metadata must be searched and it is impractical to download and
decrypt all metadata before accessing ϐiles. This encryption is supported by an ho-
momorphic encryption library (MorphicLib) and an homomorphic tuple space (Ho-
momorphicSpace) that are presented in Chapter 3.

• Integrity veriϔication mechanism – if ϐiles are deleted or corrupted in a cloud, either
due to accidental or intentional reasons, the degree of redundancy becomes lower
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and ϐiles becomemore vulnerable to other issues. SCFS allows doing this veriϐication
but it requires downloading the ϐiles and checking a signature, which is both slow
and expensive (downloading ϐiles from a cloud has a cost). The integrity veriϐication
mechanism (SafeAudit) is presented in Chapter 4.

• Client-side protections – user cloud-cloud access credentials are protected, cached
ϐiles are encrypted, and a new mechanism allows recovering ϐiles in case they are
compromised, e.g., due to stolen credentials (Chapter 5). Moreover, a mechanism
allows assessing the security status of a mobile client (Chapter 6).

2.2 Architecture

Figure 2.1 presents the overall architecture of SafeCloud-FS. This architecture has mainly
three parts: storage clouds, computing clouds, and clients.

In SafeCloud-FS, ϐiles are envisaged to be stored in public storage cloud services, such as
Windows Azure, Google Files, rackspace, and Amazon S3. These services are not modiϐied,
i.e., there is no SafeCloud-FS code running in that part of the system. Alternatively, any de-
vice that provides the SafeCloud block storage abstraction can be used. This part is shown
in the bottom-right of the ϐigure.

SafeCloud-FS needs some code to run in the cloud, so it also resorts to computing cloud
services like Windows Azure or Amazon EC2 (top of the ϐigure). SafeCloud-FS runs two
components in those services. First, it permanently runs a coordination service called Ho-
momorphicSpace replicated in several of these services in order to support locks, access
control, and storing ϐile metadata. Second, when a user requires ϐile integrity veriϐication,
they run a veriϐier (auditor).

The rest of the logic of SafeCloud-FS is implemented at the clients: FS Client in the ϐigure
(left). The clients do mainly four tasks. First, they manage ϐile caching, which is extremely
important from the point of view of performance and cost. Second, they access the storage
clouds to read and write ϐiles. Third, they access the coordination service for reading and
writing ϐile metadata, and to access the ϐiles in a controlled way (locks, access control).
Four, they launch and access veriϐiers in the computing clouds to do integrity veriϐication.

2.3 FuncƟons

In this sectionwedescribehow ϐive importantPOSIX functions are implemented in SafeCloud-
FS: open, read, write, ϐlush, and close.

Open Before a ϐile is readorwritten, itmust be openedusing functionopen. This function
involves three main steps:

1. Access the coordination service to read the ϐile metadata;
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Figure 2.1: SafeCloud-FS architecture.

2. If the ϐile is being opened for writing, access the coordination service to create a lock
for the ϐile and wait for the lock to be granted;

3. Access the storage cloud-of-clouds to read the ϐile to the local cache.

The reading of the ϐile in the last step is done using DepSky’s read protocol (see Figure 2.2).
In this protocol, the client accesses all storage clouds and gets the storage metadata of the
ϐile stored fromamajority of them. Then it reads the ϐile fromone of the clouds that has the
highest version of the ϐile. If there is some problem with the ϐile (e.g., the signature does
not match the ϐile or the cloud does not provide it), the ϐile is read from another storage
cloud.

Readandwrite Asmentionedabove,when the ϐile is opened it is downloadedand stored
in the local cache. Reads and writes are done in the version of the ϐile stored locally, there-
fore they do not involve interactions with the computing clouds or the storage clouds.

A concern may be raised about the fact that writes done locally will not become visible to
other users accessing the same ϐile. However, this is not a problem, but a direct conse-
quence of the consistency-on-close semantics provided by SafeCloud-FS.

Flush and close Flushing and closing a ϐile involve pushing it from the local cache to the
cloud. The main steps are:

1. Write the ϐile to the storage cloud-of-clouds;

2. Access the coordination service to update its metadata (e.g., the version);
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FILE
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(+fastest	or	cheapest	cloud)

time

Figure 2.2: DepSky read protocol.

3. If the operation is close, access the coordination service to unlock the ϐile.

The writing of the ϐile to the cloud is done using DepSky’s write protocol (see Figure 2.3).
The client essentially uploads the ϐile to all clouds, then writes the storage metadata.

Cloud A

Cloud B

Cloud C

Cloud D

WRITE
FILE

D

ACK

D

D

D

D

WRITE
METADATA

qwjda
sjkhd
ahsd

ACK

qwjda
sjkhd
ahsd

qwjda
sjkhd
ahsd

qwjda
sjkhd
ahsd

qwjda
sjkhd
ahsd

time

Figure 2.3: DepSky write protocol.

2.4 Summary

This chapter presented the overall design of SafeCloud-FS: its features, the properties it
enforces, the architecture, and the operation of its main functions. All these functions are
similar to SCFS’. The main difference is that metadata is stored encrypted in the coordi-
nation service, which is the topic of the following chapter. Later, Chapter 4 presents the
integrity veriϐication scheme.
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3 Homomorphic coordinaƟon service
This chapter presents HomomorphicSpace, a coordination service that provides a tuple
space abstraction [Gel85].

The HomomorphicSpace is based on a new library of homomorphic functions that we de-
signed called MorphicLib, so we present it ϐirst (Section 3.1). The HomomorphicSpace is
an extension of theDepSpace coordination service, sowe introduce that systemafterwards
(Section 3.2). The rest of the chapter presents HomomorphicSpace itself.

3.1 MorphicLib

MorphicLib is a novel library of partial homomorphic cryptographic functions written in
Java and providing a Java API. MorphicLib was not developed from scratch, but based on
existing source code whenever possible. The objective was both to simplify the task and
to avoid introducing bugs, which tend to appear due to the complexity of cryptographic
code. This library can be used both at the client-side to encrypt and decrypt data, and at
the server-side to do operations over encrypted data.

The code of the library is organized in classes, one per homomorphic property. One crucial
difference between partial homomorphic encryption (PHE) and fully homomorphic encryp-
tion (FHE) is that in PHE data has to be encrypted taking into account the kind of operation
that will be supported over the encrypted data. With FHE, on the contrary, arbitrary com-
putation is possible over encrypted data (at a huge cost, in terms of performance). As we
opted for PHE for efϐiciency (FHE is extremely slow), for each homomorphic operation we
have four kinds of functions (or methods):

• Key generation function, typically used at client-side;

• Encryption function, typically used at client-side;

• Decryption function, typically used at client-side;

• Homomorphic operation functions, which allow doing operations over encrypted
data, typically used at the server-side.

Next we explain the implementation of the functions for each homomorphic property. In-
formation about the properties of the PHE algorithm, the operations supported, and the
classes are in Table 3.1. Figure 3.1 shows a summary of the library API.

Random – Class HomoRand The cryptographic Random scheme is not homomorphic,
but was included in the library for completeness. This scheme, is called Random because
every time a given value is encrypted, it gives a different cyphertext. In fact, it is not an
homomorphic encryption system, but can be used in a general homomorphic aware ap-
plication precisely when no homomorphic property is required for certain data. In this
case, Random ismore secure than any of the homomorphic encryption schemes as it is not
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1 public class HomoRand {
2 public static SecretKey generateKey()
3 public static byte[] encrypt(SecretKey key, byte[] IV, byte[] plaintext)
4 public static byte[] decrypt(SecretKey key, byte[] IV, byte[] ciphertext)
5 }
6 public class HomoDet {
7 public static SecretKey generateKey()
8 public static byte[] encrypt(SecretKey key, byte[] plaintext)
9 public static byte[] decrypt(SecretKey key, byte[] ciphertext)

10 public static boolean compare(byte[] op1, byte[] op2)
11 throws UnsupportedEncodingException
12 }
13 public class HomoOpeInt {
14 public static SecretKey generateKey()
15 public long encrypt(SecretKey key, int plaintext)
16 public int decrypt(SecretKey key, long ciphertext)
17 }
18 public class HomoSearch {
19 public static byte[] wordDigest(SecretKey key, String word)
20 public static SecretKey generateKey()
21 public static String encrypt(SecretKey key, String plaintext)
22 public static String decrypt(SecretKey key, String ciphertext)
23 public static boolean searchAll(String words, String ciphertext)
24 }
25 public class HomoAdd {
26 public static PaillierKey generateKey()
27 public static BigInteger encrypt(BigInteger m, PaillierKey pk)
28 throws Exception
29 public static BigInteger decrypt(BigInteger c, PaillierKey pk)
30 public static BigInteger sum(BigInteger a, BigInteger b, BigInteger

nsquare)
31 public static BigInteger dif(BigInteger a, BigInteger b, BigInteger

nsquare)
32 public static BigInteger mult(BigInteger a, int prod, BigInteger nsquare)
33
34 }
35 public class HomoMult {
36 public static KeyPair generateKey()
37 public static BigInteger encrypt(RSAKey key, BigInteger value)
38 public static BigInteger decrypt(RSAKey key, BigInteger ciphertext)
39 public static BigInteger multiply(BigInteger op1, BigInteger op2,
40 RSAPublicKey publicKey)
41 }

Figure 3.1: MorphicLib API (summary)
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Table 3.1: MorphicLib's main classes

Property Homomorphic Operations Class Input Data Types
Random None (strong cryptanalisys resistance) HomoRand Strings, Byte Arrays
Deterministic Equality an inequality comparisons HomoDet Strings, Byte Arrays
Searchable Keyword search in text HomoSearch Strings
Order preserving Less, greater, equality comparisons HomoOpeInt 32 bit Integers
Sum Add encrypted values HomoAdd BigInteger, String
Multiplication Multiply encrypted values HomoMult BigInteger, String

vulnerable to a chosen plaintext attack [KL07].

For this scheme we have used the Advanced Encryption Standard (AES) implementation
of the javax.crypto package with CBC mode and PKCS #5 padding. This algorithm is rec-
ommended for legacy and future use by ENISA [ENI14].

What gives this scheme the randomness property (same cleartext producing different ci-
phertexts) is the use of a random Initialization Vector (IV).

Deterministic – Class HomoDet In order to make possible equality comparison opera-
tions we need deterministic encryption, i.e., encryption in which the same plaintext origi-
nates always the same ciphertext. The deterministic scheme is essentially the same as the
random encryption scheme, except that the IV takes a ϐixed value. In order to avoid that
plaintexts with the same beginning have the same beginning on the correspondent cipher-
text, we make a second encryption with the blocks in the reverse order, with the same IV.
This form of encryption is weaker than the random scheme, but necessary for equality and
inequality determinations [ENI14, PRZB11]. Needless to say, in this encryption system an
attacker will be able to notice if two equal ciphertexts correspond to the same plaintext.
Otherwise, this encryption scheme is as strong as AES encryption.

Searchable – Class HomoSearch The searchable scheme aims to produce a ciphertext
that allows searching for words within it, without having to decrypt it. The trivial op-
tion would be to encrypt the text word by word with a deterministic encryption system.
However, this approach would provide too much information to an attacker: frequency of
words, position of the words in the text, and size of the words. To avoid those drawbacks
we have built a scheme closely following the solution used in CryptDB [PRZB11]. The en-
cryption for this scheme was implemented with the following sequence of steps:

1. It builds a list of distinct words found in the text (hides the frequency);

2. It encrypts each word with deterministic encryption;

3. It obtains a SHA 256 (also recommended by ENISA [ENI14]) hash of each encrypted
word (hides the size of words);

4. It orders the obtained list randomly (hides the position in the text)

5. The text to be searched is encrypted with the random scheme and the list of hashes
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is attached.

Searching for keywords in text consists in:

• The client encrypts and hashes the keyword(s) to be searched;

• The server searches for these hashes in the list and returns the encrypted text if there
is a match.

To decrypt the text the list of hashes is not necessary.

OrderPreserving–ClassHomoOpeInt Orderpreserving encryptionaims toallowcom-
parisons of encrypted values such as greater than, less than, and greater or equal to. We
implemented this schemeby supporting the encryption of 32-bit signed integers (Java’s int
primitive type). Encryption maps each value into a positive number in the range [0, Max-
Long/2]. The algorithm implementedwas the one described by Boldyreva et al. [BCLO09].
The implementationwasbasedonCryptDB’s C++ implementationobtained inGitHub [P+15].
A challenge of the implementation was to ϐind a reverse hypergeometric pseudo-random
variate generator method, as CryptDB’s code was too complex. Instead we used a Java im-
plementation of the algorithm described in [KS85] available at GitHub [Der13].

Sum – Class HomoAdd As partial homomorphic scheme for the sum operation, we used
the Paillier cryptosystem [KL07]. In order to be able to work with numbers as large as
necessary, we decided to use as inputs big integers, namely Java’s BigInteger class. For the
implementation of Paillier we have adapted the Java code authored by Hassan found in the
web [Has09].

The Paillier cryptosystem is an asymmetric schemewith the following twokeys: public key
– the pair (n, g); private key – the pair (λ, µ). The parameters n, g, λ, and µ are generated
from twobig primenumbers p and q. The parametern= p.q, is part of the public key. So, the
security of the system is based on the fact that an attacker cannot ϐind p and q factorizing
n. This is the same problem used by RSA, so the length of n, two times the length of p and
q, should follow the recommendations for RSA, and have at least 2048 bits [ENI14].

This scheme also supports multiplication of encrypted values by constants. For that pur-
pose, we raise the encrypted value to the constant (for a sufϐiciently large n):

Enc(a+ b mod n) = Enc(a).Enc(b)mod n2

Enc(k.mmod n) = Enc(m)k mod n2

Note that in PHE the operations performed with the encrypted data do not have to be the
same that would be executed with plaintext. Those operations just need to produce the
desired result, i.e., the result obtained must be the encryption of the result that would be
obtained executing the original operation over the plaintext. This is the case with Paillier,
in which to obtain the encryption of a sum, a product is made. The same way, the multipli-
cation by a constant is determined by rising the encrypted value to that constant.
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Multiplication – Class HomoMult For multiplication we used RSA, again with big inte-
gers. We used the standard Java functions in javax.crypto for encryption, decryption, and
key generation. No padding is used to guarantee the homomorphic property.

We implemented encryption functions accepting inputs of the types BigInteger or String
(containing an integer).

Two aspects should be noted:

1. In this way of using RSA both keys must be kept secret, otherwise chosen plaintext
attacks would be possible;

2. The partial homomorphism formultiplication is valid for themodularmultiplication.
As the RSA keys have more than one thousand bits, that means that we can comfort-
ably work with 32 bit integers or even 64 bit long integers. Actually we can work
with BigIntegers of hundreds of bits provided that the multiplications do not exceed
the value of the module used in the encryption.

3.2 DepSpace

DepSpace is a fault- and intrusion-tolerant tuple space service [BACF08]. Architecturally
it is client-server system implemented in Java (see Figure 3.2). The server-side is repli-
cated in order to tolerate arbitrary faults. The client-side is a library that can be called by
applications that use the service. Clients communicate with the servers using a Byzantine
fault-tolerant total order broadcast protocol called BFT-Smart. The most recent version
supports extensions to the service [DBB+15]. A stable prototype is available online.1

Figure 3.2: DepSpace architecture with 4 server replicas

The service provides the abstraction of tuple spaces. A tuple space can be understood as
a shared memory that stores tuples, i.e., sequences of ϔields (data items) such as (1, 2, a).

1https://github.com/bft-smart/depspace
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Tuples are accessed using templates. Templates are special tuples in which some ϐields
have values and others have undeϐined values, e.g., wildcards meaning any value (“*”). A
template matches any tuple of the space that has the same number of ϐields, in which the
values in the same position are identical, and the undeϐined values match in some sense.
For example, the template (1, *, a, *), matches the tuples (1, 2, a, b) and (1, 7, a, 14), but
neither (1, 2, b, 4), where the 3rd ϐield does not match, or (1, 2, a, b, 5), where the number
of ϐields are different.

DepSpace supports a set of commands, issued by clients and executed by the servers. Here
we consider the following commands:

• out tuple – inserts a tuple in the space;

• inp template – reads and removes from the space a tuple that matches the template;

• rdp template – reads but does not remove from the space a tuple that matches the
template;

• inAll template – reads and removes from the space all tuples thatmatch the template;

• rdAll template – reads but does not remove from the space all tuples that match the
template.

DepSpace does not support homomorphic operations. However, it allows ϐields to be en-
crypted and basic equalitymatching by storing a hash jointlywith the encrypted ϐield. This
solution however is vulnerable to trivial brute force and dictionary attacks. It does support
the deϐinition of access control policies using its policy-enforcement mechanism.

3.3 HomomorphicSpace

This section presents our homomorphic tuple space service.

3.3.1 Threat model

The threat model we consider for HomomorphicSpace is similar to the threat model for
DepSpace except for one, crucial, difference: we consider that any server (or any cloud
that contains the server) may be adversarial and try to read the content of the tuples it
stores. We consider that all tuples whose ϐields’ conϐidentiality has to be preserved are
encrypted using homomorphic encryption, preventing malicious servers from doing such
an attack.

Similarly to DepSpace, adversaries may compromise up to f out of 3f +1 servers and stop
them or modify their behavior arbitrarily. This is tolerated using replication and the BFT-
Smart protocol. Network messages may also be tampered with by the adversary, but the
system tolerates this by using secure channels.
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3.3.2 Commands

HomomorphicSpace extends DepSpace to allow commands over tuples with encrypted
data items. More precisely in comparison with DepSpace, HomomorphicSpace:

• Supports the original match operations over encrypted data;

• Extends matching beyond the equality and wildcards with more complex matches,
i.e., inequality, order comparisons (lower, greater), and keyword presence in a text,
all over encrypted data;

• Allows addition and multiplication off encrypted ϐields.

Besides values and wildcards (“*”), HomomorphicSpace’s templates can include the ϐields
shown in Table 3.2.

Table 3.2: Fields that may be used in tuples in HomomorphicSpace, besides values and
wildcards.

Field Meaning
%word1…wordn matches a textual ϐield containing all the words indicated
> val matches a numeric ϐield containing a value greater than val
>= val matches a numeric ϐield containing a value greater or equal to val
< val matches a numeric ϐield containing a value lower than val
<= val matches a numeric ϐield containing a value lower or equal to val

HomomorphicSpace adds three commands to those provided by DepSpace (Section 3.2):
crypt, rdSum and rdProd.

The ϐirst is crypt id template and aims to deϐine a tuple encryption type. The command takes
as input an identiϐier (id) for the type it will create, and a template with the homomorphic
operation desired for each of the ϐields, which will determine the homomorphic property.
For example, if the template contains for a given ϐield the operation “=”, the system infers
that the encryption to be used for that ϐield is deterministic, which is the strongest that
allows that operation. If no operation is indicated, the ϐield will not be encrypted. The
complete list of interpreted operations is:

• =, <> – determinist encryption (notice that<>means “different from”)

• >,>=, <,<= – order preserving encryption

• % - searchable encryption

• + – Paillier

• & – RSA

• . – random encryption

• other value – no encryption
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Figure 3.3: HomomorphicSpace architecture

The second command is rdSum template. This command starts by collecting all the tuples
that match the template similarly to rdAll, then sums the (encrypted) ϐields with + in the
template. The function returns a single tuple with the result.

The third command is rdProd template, which works similarly to rdSum but does multipli-
cations instead of sum.

This scheme allows a single type of encryption per ϐield (unlike, e.g., CryptDB). However,
with the tuple data structure this is not a restriction. For instance, for tuples with a single
numeric ϐield, two operations like equality and sum can be supported by transforming that
ϐield in two and using the tuple encryption type (=,+).

3.3.3 Architecture and funcƟoning

Architecturaly the HomomorphicSpace is similar to DepSpace, with a client-side and a
server-side. Figure 3.3 represents the system with 4 replicas, i.e., with f = 1. From the
conϐidentiality point of view, the server-side is untrusted and the client-side trusted.

The server-side of the system is mostly DepSpace code with the server-side of the Morphi-
cLib andwith extensions to process the homomorphic operations. The client-side includes
MorphicLib’s and DepSpace’s client-side libraries. The main functions of the client are to
encrypt tuples and send them to the tuple space, and to decrypt them before they are de-
livered to the application. When a tuple is encrypted, the encryption keys are stored in a
key repository (a folder with one ϐile per key). Next we describe both sides in more detail.
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Client side. When the crypt command is issued (i.e., that method is called), the library
generates keys for every ϐield of the tuple for which homomorphic properties are desired.
These keys are stored jointly with the tuple encryption type (id and template) in the key
repository.

All the other commands (out, inp, etc.) include an id that the library uses to retrieve the
corresponding tuple encryption type and keys from the repository. If the operation indi-
cated in a ϐield is not compatible with the encryption deϐined with the crypt command, the
command returns an error.

The library uses the DepSpace client library to send to the servers the command and the
ϐields. If the command is an out, the ϐields are encrypted with the scheme deϐined in the
tuple encryption type and the keys previously stored. If the command involves reading
tuples it contains the operation and encrypted values. Note that each ϐield of each id has
its own key (or key pair for RSA), but the same ϐield for the same id is always encrypted
with the same key.

When the library receives a reply from the servers, it does the opposite, i.e., it decrypts the
encrypted ϐields using the corresponding schemes and keys.

Server side. The server-side handles different commands in different ways. The out
command is executed the same way as in DepSpace. The ϐields may be encrypted but they
come encrypted from the client so the tuple is stored unmodiϐied. The inp and rdp com-
mands were modiϐied using DepSpace’s extension mechanism in order to support the =,
<>, >, >=, <, <=, and text search operations over encrypted data, returning one of the
matching tuples. The rdall and inall commands work similarly, as rdp and inp, but return
all matching tuples. The rdSum and rdProd commands are implemented as a modiϐication
of the original rdAll command that returns a single tuple with the relevant ϐields respec-
tively added or multiplied.

3.4 Summary

This chapter presented HomomorphicSpace, a coordination service capable of storing and
processing encrypted data. The service can search encrypted data with matching opera-
tors like =, <>,>,>=, <,<=, ϐind text based on keywords, and execute sums and mul-
tiplications. All those functions are performed without any decryption of the encrypted
data.
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4 Integrity verificaƟon service
This chapter presents SafeAudit, a software library that improves the Shacham-Waters
(SW) integrity veriϐication scheme [SW08] and adapts it for use with commercial clouds
and SafeCloud-FS. SafeAudit improves the original SW scheme and provides: overall per-
formance increaseby carefully selectingpairing-friendly elliptic curves [BN05] for SWscheme
parametrization; and a storage cost decrease of 50% in relation to the original scheme us-
ing point compression [Lyn07].

Nowadays data owners resort to integrity control mechanisms based on cryptographic
hashes [Mer79, ErJ01] to protect their outsourced storage, often digital signatures for col-
laborative storage when data is shared among several cloud users, and MACs (Message
Authentication Codes) for private storage when data is used by a single cloud user. To do
so, users have some personal key: an asymmetric private/public key pair for digital sig-
natures or a symmetric key for MACs. A user stores data together either with a signature
or a MAC, computed respectively with the user’s private key or symmetric key. Whenever
the user wants to guarantee that the integrity of the data is preserved, the user must ϐirst
download the data and the corresponding signature/MAC from the cloud, then verify if the
data matches the signature/MAC. If they match, the integrity is veriϐied and the user can
rest assured.

Notwithstanding the effectiveness of thesemechanisms, if theuserdoesnot trust the cloud,
they require downloading all the data to be veriϐied. Therefore, when users are only inter-
ested in verifying the integrity of the data, not in reading it, each veriϐication requires an
unnecessary download that implies a potentially large bandwidth consumption, delay and
monetary costs (downloads have a signiϐicant cost in most cloud storage services). For
example, consider a user with 1000 ϐiles stored on the AmazonWeb Services (AWS) cloud
[Amad] in Ireland, each with 1GB of size. If the user wants to check the integrity of every
ϐile 4 times per month, he has to download a total of 4TB from the cloud monthly. In this
scenario the user is subjected to the latency of downloading 1TB every time and a charge
of 360US$ monthly.1

In order to reduce delay and bandwidth consumption some works proposed more ad-
vanced integrity mechanisms [AKK09, WWRL10, WLL15, BJO09, WRLL10, dC14, SW08].
They are an evolution of the original mechanisms that are homomorphic, i.e., the integrity
control structures they produce have the same structure as the signed data. These mech-
anisms provide veriϔiability (data integrity can be veriϐied using proofs) and unforgeabil-
ity (unauthorized modiϐications to proofs, data or control structures are always detected)
without the need of downloading the data to be veriϐied. These new mechanisms fall into
two categories: homomorphic digital signatures, that provide public veriϔiability (anyone
can perform the integrity veriϐication); and homomorphic message authentication codes,
which provide private veriϔiability (only the user that possesses the secret key can perform
the integrity veriϐication). To understand the beneϐits of these mechanisms consider the
previous example of 1000 1GB ϐiles stored at AWS. If homomorphic digital signatures with
40-byte public keys are used, an userwould have to download only 60 bytes from the cloud
to verify the data integrity. Therefore, independently of the size of the data to be veriϐied,
integrity veriϐication with these mechanism requires downloading a small proof, with the

1Considering that every 1GB read is charged approximately 0.09US$ [Amac].
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associated low communication delay and negligible cost.

On the contrary of prior works that explore the potential of compact integrity proofs by
presenting theoretical demonstrations of their feasibility and security analysis [AKK09,
WWRL10,WLL15, BJO09,WRLL10, dC14, SW08], this work explores the practical applica-
bility of these techniques for verifying data on commercial cloud storage. For that purpose,
we present a service capable of being integrated on real world storage solutions, including
commercial clouds and cloud-backed applications.

This paper presents SĆċĊAĚĉĎę, a software service that improves the Shacham-Waters
(SW) integrity veriϐication scheme [SW08] andadapts it forusewith cloud storage. SĆċĊAĚ-
ĉĎę improves the original SW scheme and provides: an overall performance increase by
carefully selecting pairing-friendly elliptic curves [BN05] for SW scheme parametrization;
and a storage cost decrease of 50% in relation to the original scheme using point compres-
sion [Lyn07]. Moreover, it leverages the Function-as-a-Service (FaaS) or serverless comput-
ingmodel [FIMS17, HSH+16] to reduce cloud costs, by using computation resources in the
cloud only when necessary. These improvements make SĆċĊAĚĉĎę the most cost-efϐicient
homomorphic veriϐication mechanism for use in commercial clouds.

SĆċĊAĚĉĎęwas designed as a practical implementation that can be easily plugged into cur-
rent commercial cloud services and cloud-backed applications. SĆċĊAĚĉĎę is simple to use,
as using it does not require advanced cryptography knowledge. Our experimental evalua-
tion has shown that using SĆċĊAĚĉĎę is 7.1% cheaper than using RSA signatures when the
integrity of the data is veriϐied monthly, and 34.9% when it is veriϐied weekly in a typical
setting in AWS.

The main contributions of this paper are: the design and implementation of the SĆċĊAĚ-
ĉĎę integrity veriϐication service; a protocol for verifying data stored in remote clouds; a
proof-of-concept integration of SĆċĊAĚĉĎę with a commercial cloud and a cloud-backed
ϐile system; and an experimental evaluation of the use of this service standalone and inte-
grated with AWS.

4.1 SafeAudit

The goal of the SĆċĊAĚĉĎę software service is to assure users that all the data they store
in the cloud is retrievable with its integrity preserved. This service is envisioned to be
easily integrated with: current commercial storage clouds (such as AWS [Amad]), for pro-
viding integrity proofs on the stored data; and cloud-backed storage applications (such
as [BCQ+11b, BMO+14b, PP13, SvDJO12, CJWH+15, ZYTT15b, PBM+17]), to generate all
the necessary digital signatures and automate the request and veriϐication of the integrity
proofs supplied by the clouds.

SĆċĊAĚĉĎę leverages homomorphic digital signatures for integrity control of the stored
data, and the computation resources of commercial clouds infrastructures for executing
code and generate compact integrity proofs based on the data and signatures present in
the cloud storage. Also, by requesting and verifying these small proofs, cloud-backed ap-
plications can perform storage integrity control without being constrained with network
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bandwidth limitations or downloading large quantities of data.

4.1.1 EnƟƟes involved in SafeAudit

In SĆċĊAĚĉĎę there is interaction among three types of entities: clouds, users and auditors
(Figure 4.1). All these entities need to run SĆċĊAĚĉĎę code at some point.

store files

User

audit file integrity

Cloud

Auditor

Figure 4.1: S�¥�Aç�®ã enƟƟes and their interacƟon.

Clouds are commercial public infrastructures that provide to their users data storage and
code execution capabilities for providing integrity proofs.

Users are the normal commercial cloud users, who store data on the cloud and perform
operations on the stored data (read, write, delete, or set access control permissions).

Auditors are entities trusted by the users for auditing the data stored in the cloud. They
are responsible for issuing and verifying integrity proof requests to the cloud.

4.1.2 Threat Model and AssumpƟons

SĆċĊAĚĉĎę was designed under a threat model where attackers have full permissions to
access the storage cloud and perform any operation on the users’ data, particularly the
operations that compromise integrity: write and delete. Under this scenario the attack-
ers can be: an external entity that managed to bypass the cloud’s access control mecha-
nisms and has obtained remote root access to one or more cloud storage machines; or an
internal entity who is trusted by the cloud and authorized to have physical access to the
machine (e.g., a cloud’s employee), has obtained control of one or more storage machines
and, moved bymalicious intent, performs several operations that compromise integrity of
the stored data. Also it is assumed that all the attackers ϐingerprints have been erased and
that the cloud either has no knowledge of the attack or, if it has, is hiding it from the user
and auditor.

Since the purpose of SĆċĊAĚĉĎę is to detect cloud integrity attacks, this service is based
on the assumption that the only way the attackers can compromise the users’ data is by
attacking the cloud. This assumption was made to isolate the threat model from problems
related with network or identity spooϐing attacks, which are outside of the scope of this

Deliverable 2.8 19



work. To do so, the threat model assumes that all communication between entities is au-
thenticated and secure at all times (e.g., all entities communicate through HTTPS and use
certiϐicates signed by certiϐicate authority trusted by all entities) and that neither the user
nor the auditor suffer Byzantine faults, i.e. users and auditors are not malicious and their
machine do not respond arbitrarily to requests from the other entities.

4.1.3 Preliminary Concepts

SĆċĊAĚĉĎę is built on top of multiplicative cyclic groups and uses pairing-based crypto-
graphic techniques, namely Boneh–Lynn–Shacham (BLS) homomorphic digital signatures
[Lyn07] and the Shacham-Waters (SW) integrity veriϐication scheme [SW08]. This section
provides mathematical background and summarizes the aforementioned cryptographic
techniques.

4.1.3.1 Multiplicative Cyclic Group

A cyclic group is composed bymembers that are generated by a single group generator ele-
ment g. In amultiplicative cyclic groupG everymember is generated by powering the gen-
erator g with integers belonging to Z (the set of all integers). Multiplicative cyclic groups
can be ϐinite of inϐinite. The inϐinite ones are generated by powering with unbounded in-
tegers from Z . The ϐinite ones of order n are generated by powering g with a bounded set
of integers belonging to Z that are modulo of p (also called group order p). For example,
consider a multiplicative cyclic group of order n = 6 and generator g = 2. The multiplica-
tive group is composed of six members [g0 = 1, g1 = 2, g2 = 4, g3 = 8, g4 = 16, g5 = 32].
Linear operations over members of the group are mapped as follows:

• gx = gxmod6, for example g6 = g0 = 1 and g7 = g1 = 2

• gx × gy = g(x+y)mod6, for example g1 × g2 = g3 = 8 and g7 × g8 = 8

Due to their modular nature, the ϐinite multiplicative cyclic groups can represent large
numbers of unbounded size into ϐinite group elements. SĆċĊAĚĉĎę relies on this technique
to represent data and signatures of unbounded sizes into small sized group elements and
uses them for creating compact proofs.

4.1.3.2 Pairing-based cryptography

SĆċĊAĚĉĎę leverages pairing-based cryptography to obtain homomorphism. In this type
of cryptography, each cryptographic function uses a pairing e (also called bilinear map) to
convert a multiplicative cyclic group (G) of prime order p, generated with the number g,
into another multiplicative cyclic group (GT ) of the same prime order (p), i.e., e : G×G →
GT . The pairing enforces the following properties: computabillity – there exists an efϐicient
algorithm to compute the pairing; bilinearity – for all u, v belonging toG, a, b belonging to
Zp and pairing e : G×G → GT , it is guaranteed that e(ua, vb) = e(u, v)ab .
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4.1.3.3 BLS Signature Scheme

In order to provide integrity control of a ϐile, SĆċĊAĚĉĎę uses the BLS signature scheme
[BB04] for constructing digital signatures over pairing-based cryptography. To do so, in-
tegrity control takes the following steps:

• Setup: Choose two distinct multiplicative cyclic groups G and GT of order p, and a
generator g forG and generate pairing e : G×G → GT .

• Key Generation: Using e and g compute an asymmetric secret/public key pair sk ∈Zp

and pk ∈G. First compute sk, by selecting a random number that belongs to Zp and
then generate pk as gsk.

• Signature: Sign the data d ∈ Zp using the secret key sk belonging to Zp and by com-
puting the signature θ = dsk belonging toG.

• Veriϔication: Using the public key pk ∈ G, the pairing e and the generator g, verify
the signature θ ∈ G of the data d ∈ Zp by testing the following hypothesis: e(θ, g) =
e(d, pk). If the hypothesis is veriϐied, the integrity is assured.

4.1.3.4 SW Scheme for Homomorphic Verifiable Integrity Proofs

The use of BLS signatures ensures the homomorphic property for integrity veriϐication and
consequently allows the construction of homomorphic veriϐication schemes, where data
and signatures are aggregated using additions and multiplications into compact veriϐiable
proofs. This is done because if each ϐile and signatures can be divided into blocks of a given
size (e.g., 128 bits) and these blocks can be mapped into multiplicative cyclic groups with
order = size (e.g., 128 bits will generate group 0...128), multiplications and additions will
always produce elements of the same order. Thus, ϐiles and signatures of unbounded size
can be aggregated into compact structures of themultiplicative cyclic group (e.g., a ϐilewith
106 bits is divided into 128bits blocksmapped tomultiplicative cyclic group andmultiplied
each block, and therefore producing 128 bit aggregation structure that represents the 106
bits ϐile). In SĆċĊAĚĉĎę, the SW integrity veriϐication scheme [SW08] is used in order to
provide homomorphic generation and veriϐication of compact integrity proofs. To do so,
under this scheme, integrity control takes the following steps:

• Setup: Choose two distinct multiplicative cyclic groups G and GT of order p, and a
generator g forG and generate the pairing e : G×G → GT .

• Key Generation: Using e and g, compute: a signature parameter w, by selecting a
random number that belongs to G; and an asymmetric secret/public key pair sk ∈
Zp and pk ∈ G. First, compute sk by selecting a random number that belongs to Zp

and then generate pk as gsk.

• Block Signature: Given a block with the identiϐier id ∈ Z and the data corresponding
to the block did ∈ Zp, an hash function that mapsH : Z → Zp, the secret key sk ∈ Zp,
and the signature parameter w, compute the signature θid = (H(id)× wd)sk ∈G.
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• Proof Generation: Given a collection of block identiϐiers id1...idn ∈Z , the correspond-
ing data d1...dn ∈Zp andnumerical challenge vector of randomnumbers chal1...chaln
∈ Zp, the hash function that mapsH : Z → Zp, and the signature parameterw, com-
pute the integrity proof:
α =

∑n
i=1 di × chali ∈ Zp and β =

∏n
i=1 θ

chali
i ∈G.

• Proof Veriϔication: given the proof (α and β), the identiϐiers i...n, the public key pk ∈
G, the signature θ ∈G, the pairing e, the generator g, and the signature parameterw,
by applying pairing verify that: e(β, g) = e(

∏n
i=1H(idi)× wα, pk). If the veriϐication

is positive, integrity is assured.

In short, the SWschemecombinespairings andBLS signatureswith standard cryptographic
hashes like SHA-1 in a single integrity veriϐication protocol. It allows users to select any ar-
bitrary sample of data stored on a remote cloud location and verify that the integrity of that
sample is kept by just downloading proofs of small and constant size that compress both
the data and signatures. This is an innovation when compared with integrity veriϐication
schemes like RSA digital signatures because the SW scheme guarantees that the amount of
data downloaded from the cloud remains constant even as the size of the selected sample
grows.

There are signiϐicant challenges in adopting the SW scheme for verifying the integrity of
clouds that SĆċĊAĚĉĎę mitigates. Namely: the SW scheme requires coordination between
the user and the cloud for selecting the several underlying parameters used in the scheme
(addressed in Section 4.1.4 by the SĆċĊAĚĉĎę protocol); and the SW scheme increases the
cloud data storage requirements (addressed in Section 4.1.5 by pairing parameter selec-
tion in SĆċĊAĚĉĎę).

4.1.4 SafeAudit Protocol

In order to preserve the integrity of the data stored on the cloud, the entities involved –
cloud, user andauditor –need to follow theSĆċĊAĚĉĎęprotocol, describedherein. Thepro-
tocol is divided into four tasks: setup (Section 4.1.4.1), store data (Section 4.1.4.2), request
and verify integrity proof (Section 4.1.4.3), and generate integrity proof (Section 4.1.4.4).

4.1.4.1 Setup

Before storing any data in the cloud, the user and auditor must perform the following pro-
tocol steps:

• The user and the auditor exchange data. The auditor provides two ϐiles2 to the user
for setting-up pairing-based cryptography: the ‘.param’ ϐile with all the secure public
initialization parameters needed for conϐiguring cyclic groupsG,GT and the pairing
for mappingG×G → GT ; and the ‘.g’ ϐile with generator g of the cyclic groupG. The
user provides conϐiguration information to the auditor about the time when each
audit should be performed (e.g., daily, weekly), and other settings.

2Data structures would be a more rigorous term than ϔiles, but the word ϔile is easier to understand as
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• The user generates his secret/public asymmetric key pair and the signature param-
eter (w) for signing and verifying data under the SW scheme, using respectively the
key and random number generators (further explained in Section 4.2).

• The user shares the public key and w with auditor and stores w on the cloud.

• The user conϐigures the cloud for listening to requests from the auditor requests and
for responding to them, with the execution of the proof generator service (further
explained in Section 4.2).

After these steps are performed users can now store their data in the cloud, as explained
next.

4.1.4.2 Store Data

When the user stores data in the cloud, all data must be divided into blocks belonging to
Zp and signed. The signature generator (further explained in Section 4.2) automates these
tasks and produces a signature equivalent to the SW Block Signature step (described in
Section 4.1.3.4). To do so, the client provides as input, for the signature generator, the
data and its identiϐier (e.g., the ϐile content of the ‘data.txt’ ϐile is used as the data and the
identiϐier is the ϐilename ‘data.txt’), alongside with the pairing cryptography parameters
(’.param’ and ‘.g’ ϐiles), secret key (‘.sk’), and the signature parameter (‘.w’), and obtains the
signature of all the data blocks.

After the signature of the data is obtained, the user stores both the data and signature in
the cloud. Data can now be veriϐied.

4.1.4.3 Request and Verify Integrity Proof

The auditor is responsible for integrity veriϐication. To do so, whenever the auditor wants
to obtain integrity proofs of a ϐile stored on the cloud, it must perform the following steps:

• Select a ϐile composed of x data elements (vector [0, ..., x− 1]).

• Generate a random challenge (number belonging to Zp) for each of the x data ele-
ments chosen, using the random number generator.

• Issue the integrityproof request to the cloud specifying the identiϐiers vector ([id0, ..., idx])
and the corresponding challenge vector ([chal0, ..., chalx]).

• Upon receiving a response from the cloud with the requested integrity proof, the au-
ditor veriϐies it using the proof veriϔier (further explained in Section 4.2). The auditor
provides the public key pk and the signature parameter w, alongside with the iden-
tiϐiers and challenges used on the integrity request; and obtains the integrity veriϐi-
cation result. This step corresponds to the Proof Veriϐication step of the SW scheme
(described in Section 4.1.3.4).

they are indeed ϐiles in our implementation.
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4.1.4.4 Generate Integrity Proof

Whenever the cloud receives an integrity proof request of a given ϐile, it performs the fol-
lowing steps:

1. Fetch all the data and signatures of the ϐile from the storage cloud corresponding to
the identiϐiers speciϐied.

2. Fetch from the storage cloud, the pairing cryptography parameters (‘.param’ and ‘.g’),
and the signature parameter (‘.w’), of the user requested.

3. Generate integrity proof, composed of: the aggregation of signatures provided (β);
and the aggregation of data provided (α), by using the proof generator (further ex-
plained in 4.2.5). The generator receives data, setup parameters (‘.g’ and ‘.param’),
signatures, challenges, pairing cryptography parameters and the random initializa-
tion parameter related to the ϐile; and produces the α and β. This step corresponds
to the proof generation step of the SW scheme.

4. Respond to the requester with the integrity proof (α and β).

4.1.5 SW Signature Size ReducƟon

The size of the block signatures produced by SĆċĊAĚĉĎę is equal to the size of the multi-
plicative cyclic group G stipulated by the auditor (e.g., if G is equal to 128 bits then the
block signatures are also 128 bits). Also, the size of the groups G are determined by the
elliptic curve selected for its initialization and are always larger than the integers used for
its generationZp. For example, when a typeA elliptic curve [Lyn07] is used for the genera-
tion of multiplicative cyclic groups, with the recommended sizes whereG andGT are 128
bytes andZp is 20 bytes, the signatures produced are 6.4 times bigger than the original ϐile,
raising the storage cost in that proportion. This large overhead would make the technique
too costly for practical use in commercial clouds. SĆċĊAĚĉĎę proposes two improvements
to the original SW scheme to address this issue.

The ϐirst is the selection of the pairing curve that produces the shortestmultiplicative cyclic
groups, which is the pairing-friendly elliptic curves of prime order [BN05] (also named
type F curves and described in [BB04]), as recommended by both BLS and SW authors in
[SW08] and [Lyn07]. This optimization allows the creation of multiplicative cyclic groups
G that are 2 times the size of the original data Zp, producing signatures with twice the size
of data.

The second improvement is to incorporate a signature compression scheme in SĆċĊAĚ-
ĉĎę using the point compression technique described in [Lyn07]. This improvement comes
from the fact that the multiplicative cyclic group G, where the signature belongs, is a two
coordinate point (x, y) where y is one of the possible results of applying the elliptic curve
function selected for pairing initialization. Due to this fact, the y coordinate of the signa-
ture can be computed solely based on the x coordinate, the elliptic function, and a one bit
value indicating which of the possible values to select. Thus, the y coordinate can be com-
pletely discarded, and the signature is compressed always by half of the original size and
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represented by its x coordinate and the one bit value necessary to recompute the y coor-
dinate. This improvement allows signatures to have half of the expected size of applying
the signature step of SW scheme and in the best case where type F elliptic curves [BN05]
are used are the same size of the original data.

With these two optimizations, SĆċĊAĚĉĎę is able to produce signatures that are the same
size of the original data, which is the lowest possible using the known homomorphic sig-
nature schemes.

4.2 ImplementaƟon of SafeAudit

The SĆċĊAĚĉĎę service is composed of several components, each one implementing a task
of the SĆċĊAĚĉĎę protocol, represented in Figure 4.2. This separation in components sim-
pliϐies the integration with cloud-backed applications, commercial clouds, and auditors.
SĆċĊAĚĉĎęwasdeveloped in Java, so each component is essentially a Java class. Thepairing-
based cryptographic mechanisms were implemented using the Java Pairing-Based Cryp-
tography Library (JPBC) [DI11], which implements multi-linear maps and the operations
that manipulate them.

Auditorsuse thePairingGenerator component to generate the setupparameters forpairing-
based cryptography. Users utilize the Key Generator component to generate their asym-
metric secret/public key pair and signature parameter (w). Users resort to the Signature
Generator component to sign their data. Both these entities use the Random Generator
component to generate random numbers belonging to any ϐield of their choosing (Zp,G or
GT ). Clouds run the Proof Generator component to generate integrity proofs. Auditors use
the Proof Veriϔier component to verify the proofs obtained from the cloud. The rest of the
section explains each component in detail.

Pairing Generator
Proof Verifier

Key Generator
Signature Generator

Random Generator

Proof Generator
store files

User

audit file integrity

Cloud

Auditor

Figure 4.2: S�¥�Aç�®ã components and enƟƟes.

4.2.1 Pairing Generator

This component allows auditors to construct setup parameters (‘.param’ and ‘.g’) for ini-
tializing pairing-based cryptography, according to the their security speciϐication.

Auditors provide as input the type of pairing curve3 to be used for pairing generation
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(type = A|B|C|D|E|F ), and the parameters needed for initializing the curves.

The Pairing Generator outputs: a speciϐier ϐile (‘.param’) detailing all the information about
the multiplicative cyclic groups G and GT , the integer range of the Z integers used for
generating elements, and thepairing speciϐications formappingG toGT ; and the generator
ϐile ‘.g’ containing the absolute value of the element used for generating the multiplicative
groupG.

4.2.2 Key Generator

The Key Generator component allows users to generate their own asymmetric key pair
and signature parameter according to the security information provided by the auditor.
The generated keys are used for the BLS and SW schemes.

The generator works as follows: the user inputs the setup parameters provided by the
auditor ‘.param’ and ‘.g’; the component initializes the pairing; generates the secret key
by selecting a random number belonging to Zp; generates the public key by computing
gsk; generates the signature parameter by selecting a random number belonging toG; and
returns the keys and w to the user.

4.2.3 Signature Generator

The Signature Generator component allows clients to sign their data using the SW scheme
and compute the digital signatures.

In the SW scheme, the data to be signed is assumed to have ϐixed sizes and belongs to Zp.
To support data sizes bigger than original data, users have to divide the data in blocks
that belong to Zp, and sign each block individually. In order to automate data division
into Zp data blocks and sign each of them with the SW scheme, the Signature Generator
supports two signingmodes: the Sign Blockmode, for signing individual data blocks inZp;
and the Sign Datamode, that converts all the input data to one or several blocks∈Zp, signs
each block using Sign Block component, and returns the concatenation of all generated
signatures from the blocks.

4.2.3.0.1 Sign Block The Sign Block mode works as follows: the user inputs the setup
parameters provided by the auditor ‘.param’ and ‘.g’, the block d, the identiϐier of the block
idd, the secret key sk and the signature parameter w; the component initializes pairing;
hashes the identiϐier to Zp; multiplies the id’s hash with wd; signs the multiplication with
the user’s secret key; and returns the signature of the block.

4.2.3.0.2 Sign Data The Sign Data mode works as follows: the user inputs the setup
parameters provided by the auditor ‘.param’ and ‘.g’, the data d, identiϐier of the data idd,
the secret key sk and the signature parameter w; the component initializes the pairing;

3See Section 4 of [Lyn07] for more information about the pairing curves and their selection.
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the component divides the data into a vector of blocks that belong to Zp; signs each block
individually with an unique id; concatenates the blocks’ signatures into one; and returns
the concatenation.

4.2.4 Random Number Generator

This component allows generation of random numbers belonging to any of Zp, G or GT

ϐields. To do so, this generator receives as inputs the desired ϐield, the pairing ‘.param’ and
the ‘.g’ and outputs the random number.

4.2.5 Proof Generator

The Proof Generator component is the only one that is executed in the cloud (cf. Figure
4.2). It allows clouds to generate integrity proofs with the ϐiles they have stored whenever
an auditor requests them. To do so, the algorithm ϐirst initializes pairing with the setup
parameters, then calculates α and β based on the data’s blocks present in the ϐile.

To simplify deployment and to reduce the cost of running theProof Generator in a cloud, we
leverage recent services that implement the FaaS, serverless computing, or lambda model
[FIMS17, HSH+16]. The alternative would be to have a virtual machine for this purpose in
a cloud compute service (e.g., Amazon EC2), but it would be costly to run it permanently
in the cloud, or to store an image there to run it when necessary.

The FaaS model allows the execution of a code component (a function) in a cloud upon a
certain event, in our case, the reception of a request through a REST API. In this model, the
users pay only for the time and resources used when the function is executed, not when it
is idle. Therefore, it is possible to have the Proof Generator component always ready to run
in the cloud without costs when it is not running.

4.2.6 Proof Verifier

The Proof Veriϔier component allows users to verify integrity proofs, using the SW proof
veriϐication step. To do so, the algorithm ϐirst initializes pairing with the setup parameters
(‘.param’ and ‘.g’); applies g pairing to β , multiplies all identiϐiers present in the proof with
wα, applies public key pairing to the identiϐier and α multiplication and veriϐies if both
pairings obtained a match. If so, the data integrity is preserved.

4.3 Extending SafeCloud-FS with SafeAudit

The SĆċĊAĚĉĎę components described in Section 4.2 were integrated with SafeCloud-FS.

In the integration we have to consider the three SĆċĊAĚĉĎę entities:
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• The user code was integrated with the client-side code of SafeCloud-FS;

• The auditor code is a standalone Java program;

• The cloud code runs in a FaaS service such as Amazon Lambda [Amaa].

Next we focus mostly on the ϐirst as it is the one truly integrated with SafeCloud-FS code.

The user components of SĆċĊAĚĉĎę were integrated in DepSky’s component responsible
for uploading data into the cloud. This component receives the data from SafeCloud-FS,
applies mechanisms that ensure conϐidentiality, integrity, and availability, then stores the
resulting data in the cloud. The logic for communicating with different commercial clouds
is implemented in subcomponents called cloud drivers. Since the integration of SĆċĊAĚĉĎę
should not compromise any of the aforementioned properties, integrating both the sys-
tems required code changes to DepSky, in a contained way. The approach followed was
the addition of a new type of cloud driver: the auditable cloud driver. With these newly
introduced cloud drivers, besides accessing and uploading data to the cloud, data is signed
using the SĆċĊAĚĉĎę’s signature generator and the signature is also stored on the cloud.
As seen in Figure 4.3, for integrating these new drivers, DepSky suffered changes in two
packages: core and drivers. Code was added to the core package of DepSky, in the DepSky
initialization function (in LocalDepSkySClient.java) and to the DepSky driver constructor
function (in DriversFactory.java).

For using SĆċĊAĚĉĎę, SafeCloud-FS has to be conϐiguredwith these auditable cloud drivers,
which implement our system’s logic. For instance, to use Amazon S3 as cloud storage, in-
stead of using the original (non-auditable) driver amazon-s3, the corresponding auditable
driver auditable-amazon-s3was used. Users can choosewhich drivers to use, bymodifying
the conϐiguration ϐile with the name of the desired drivers. The DepSky initialization func-
tion automatically reads the user’s secret key, the setup parameters (.paramand .g) and the
signature parameters (.w) provided by the auditor; and uses the initialization function of
DepSky driver for initializing the driver with that information. Regarding the driver pack-
age, the auditable drivers extend the non-auditable drivers. Whenever data is uploaded
to the commercial cloud using the auditable driver, data is signed by using SĆċĊAĚĉĎę’s
sign data component and then stored both signature and data on the commercial cloud by
invoking the superclass’ non-auditable driver upload data function.

4.4 Experimental EvaluaƟon

The cloud used during the implementation was AWS [Amad]: S3 [Amab] was used as stor-
age and Lambda for executing the Proof Veriϐier.

With the experiments we wanted to answer the following questions: (1) What is the gain
in terms of bandwidth consumption in using SĆċĊAĚĉĎę instead of RSA (Section 4.4.2)? (2)
What are the monetary costs of using SĆċĊAĚĉĎę (Section 4.4.3)? (3) What is the perfor-
mance overhead observed by the user when writing ϐiles (Section 4.4.4)? (4) How long
does it take to verify the integrity of a ϐile (Section 4.4.5)?
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Figure 4.3: Components modified and added when integraƟng DepSky client-side with
S�¥�Aç�®ã's user code are shown in grey.

4.4.1 Experimental Seƫngs

On the experiments, the user and the auditor components were executed on aWindows 10
computer with Intel Core i7-4500U CPU 1.80-2.40 GHz processor and 8 GB RAM. The user
and auditor were located in Portugal. The cloud was AWS located in Ireland. Lambda was
setup to execute with 128 MB of memory (the cheapest conϐiguration).

The evaluation was performed using one ϐile for each of the following sizes: 100 KB, 500
KB, 1 MB, and 10 MB. Each experiment was repeated 30 times.

Some of the experiments involved the execution of two schemes to serve as baseline: the
original SW integrity veriϐication scheme; and the RSA digital signature scheme. Both
SĆċĊAĚĉĎę and the original SW scheme were parameterized with type F pairing curves,
where G had 40 bytes, GT 80 bytes, and Zp 20 Bytes, with SHA-1 as hash algorithm, and
asymmetric keys used with a 20 byte secret key and a 80 byte public key. For RSA, 1024
bit keys and SHA-1 were used.

4.4.2 Bandwidth

An important goal of ourwork is to avoid the time and cost of downloading all the data from
the cloud in order to verify if it was modiϐied. In this section we measure the bandwidth
consumed downloading data, measured in number of bytes downloaded.

Figure4.4 shows the results for SĆċĊAĚĉĎę and compares themwith theoriginal SWscheme
(that provides identical results) and with the use of RSA digital signatures (that retrieves
all data to be veriϐied). The results show that as the storage size grows, SĆċĊAĚĉĎę and
the SW scheme are able to maintain constant bandwidth consumption. Also, since proofs
are composed of an aggregation of blocks belonging toZp (20 bytes) and an aggregation of
blocks belonging to G (40 bytes), the bandwidth consumption is always equal to the sum
of these group’s sizes and that it is always low (the cost for reading 60 bytes is negligible).
On the contrary, for RSA the bandwidth grows linearly with the size of the ϐiles.
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Figure 4.4: Bandwidth consumpƟon comparison between requesƟng file integrity proofs
using S�¥�Aç�®ã, SW, and RSA digital signatures.

4.4.3 Monetary Costs

To assess the monetary costs of verifying the integrity of the cloud storage two cases were
considered: the additional storage taken with digital signatures; and the costs of generat-
ing proofs on the cloud.

4.4.3.0.1 Storage Costs Using SĆċĊAĚĉĎę for verifying data integrity on the cloud stor-
age requires users to store on the cloud the data’s digital signatures, which implies addi-
tional monetary storage costs.

Figure 4.5 compares the storage size (ϐile plus signature(s)) as data size growswhen using
SĆċĊAĚĉĎę, SW, and RSA signatures. As seen in the ϐigure, storing SW signatures increases
the storage size by 200%, but SĆċĊAĚĉĎę manages to reduce this overhead to 100% with
the signature reduction scheme of Section 4.1.5. This reduction has great positive impact
on storage monetary costs, but still requires twice the storage than the ideal case where
signature sizes are negligible (the RSA case). The actual monetary costs tend to be propor-
tional to the amount of data stored inmost commercial clouds. For example, in Amazon S3
Ireland this cost is $0.023 per GB per month, for the ϐirst 50 TB / month, using standard
storage (half of that for infrequent access and $0.004 in the Glacier service) [Amac].

4.4.3.0.2 Proof Generation Costs In order to evaluate the monetary costs associated
with integrity proof generation, SĆċĊAĚĉĎę’s proof generator was executed in the cloud.

Figure4.6presents the time for generating integrity proofs in SĆċĊAĚĉĎę. The ϐiguremakes
clear that the time grows linearly with the storage size.

Furthermore, as seen in Table 4.1, when comparing price payed for generating a proof
(execution time) with the cost of downloading the ϐiles entirely and perform the integrity
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Figure 4.5: Storage size for storing data and signature when using S�¥�Aç�®ã, SW, and RSA.

Figure 4.6: Time for the cloud to generate an integrity proof using S�¥�Aç�®ã.

veriϐication on the auditors device (as required by RSA), generating integrity proofs was
cheaper than reading the data from the cloud and allowed a monetary saving of 30%, on
average.

4.4.3.0.3 Cost Tradeoffs The previous results show that using RSA signatures is costly
(and slow) in terms of downloading data, but SĆċĊAĚĉĎę has additional costs in terms of
storage. Therefore there is a tradeoff that we now quantify.

Figure 4.7 shows how the cost of verifying 1 MB varies with the number of veriϐications
done per month. For SĆċĊAĚĉĎę the cost has two main components: the cost of storage
(again the values for standard storage in S3 Ireland) and the cost for generating proofs in
the cloud (again in Lambda). For RSA signatures, the cost has also two main components:
the cost for storing and downloading the data (also S3 Ireland).

The main conclusion from the graph is that the best option in terms of cost depends on
how often the data is veriϐied. If the data is veriϐied once per month, the cost of using
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Table 4.1: Prices for generaƟng proofs and reading data (based on Amazon Ireland prices,
standard storage).

SĆċĊAĚĉĎę RSA signatures
File Size
(KB)

Average
Execution Time (s)

Execution cost1
(microUS$)

Read Costs2
(microUS$)

Savings
(%)

128 3.82 8.11 11.52 29.58
256 7.44 15.6 23.04 32.29
512 14.67 30.57 46.08 33.64
1024 28.55 59.48 90 33.90
10000 82.29 171.18 900 80.98
1Considering 0.208 microUS$ for each 0.1s of computation (Lambda)
2Considering 0.09 microUS$ for 1GB read from the cloud storage (S3)

SĆċĊAĚĉĎę is 7.1% lower than the cost of using RSA signatures. This cost becomes much
lower – 34.9% – if the veriϐication is done approximately every week (4 times per month).

Notice that the cost of SĆċĊAĚĉĎę would be lower if cheaper storage services were used,
e.g., Amazon S3 with infrequent access or Amazon Glacier [Amac].

Figure 4.7: Monthly costs in millidolars for 1 MB of data depending on the number of
verificaƟons per month.

4.4.4 User: Client-Side Overhead

SĆċĊAĚĉĎę should not have a great impact on the performance seen by the user, i.e., on the
client-side software. However, such impact may exist when ϐiles are written in the cloud,
as signatures have to be computed in order to allow verifying integrity later. In order to
assess if SĆċĊAĚĉĎęmeets this criteria, two aspects were evaluated: the time taken to sign
data using SĆċĊAĚĉĎę and RSA; and the overhead on SafeCloud-FS.

4.4.4.0.1 Signature Generation The signature generation of SĆċĊAĚĉĎę was evalu-
ated in terms of the time required to compute a signature in the user’s device. The results
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Figure 4.8: Time for signing data using S�¥�Aç�®ã and RSA.

obtained are presented in Figure 4.8. The time required for signing data using SĆċĊAĚĉĎę
increases linearly and ismuch slowerwhen compared toRSAdigital signatures, which take
around two milliseconds. This almost constant time is due to the fact that data signed us-
ing RSA digital signatures is ϐirst hashed (faster phase), then encrypted using RSA (slower
but constant time). In SĆċĊAĚĉĎę, the SW scheme, and all the other publicly veriϐiable
schemes, all data has to be signedwithout using hashes, to avoid security problems related
to generating proofs using precomputed hashes (i.e., an adversary at the cloud computes
the hashes once, corrupts or discards the data, and later computes proofs using only the
hashes). Furthermore, due to this limitation it is necessary to sign each block of data indi-
vidually, which takes longer as data grows. This makes SĆċĊAĚĉĎę slower than the usual
signature generation mechanisms. This was expected due to the computational cost of
the homomorphic signature generator. Nevertheless, this overhead can be masked by the
application, as shown next.

4.4.4.0.2 SafeCloud-FS with SafeAudit’s Signature Generator In order to evaluate
the performance impact of SĆċĊAĚĉĎę integrated on cloud-backed applications, we evalu-
ated the performance of writing a ϐile in SafeCloud-FS, both with and without SĆċĊAĚĉĎę.
The results differ much depending on the mode in which SafeCloud-FS is executed: non-
blocking or blocking.

The non-blocking mode is the one that is recommended [BMO+14b]. In this mode, when a
client closes a ϐile by calling close, the ϐile is written to the local disk and the call returns.
Then, in the background, DepSky pushes the ϐile to the clouds. In this mode, both versions
of SafeCloud-FS, with and without SĆċĊAĚĉĎę, had the same performance from the client’s
perspective.

In blocking mode, SafeCloud-FS waits for the ϐile to be stored in the cloud for the close
call to return. This mode is slow even in the original SafeCloud-FS, so it is not recom-
mended [BMO+14b]. Nevertheless, we did several experiments of uploading a 1 MB ϐile
to the cloud using SafeCloud-FS with and without SĆċĊAĚĉĎę. The results obtained are
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presented in Figure 4.9 and show that the integration with SĆċĊAĚĉĎę increases time sig-
niϐicantly. These results are similar to those presented in Figure 4.8 (for the 1 MB ϐile).
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Figure 4.9: Time for SafeCloud-FS to upload a 1 MB file to the cloud with and without
S�¥�Aç�®ã (with linear interpolaƟon).

4.4.5 Auditor: Proof VerificaƟon Time

The last set of experiments assessed the time required for the auditor component do to its
job, i.e., to verify the proofs obtained from the cloud. This was compared with checking
RSA signatures, excluding the time to download the ϐiles.

As seen in Figure 4.10, the time necessary for verifying a signature in SĆċĊAĚĉĎę increases
linearly and is slow compared with RSA digital signatures. This is due to the fact that for
verifying a proof using SĆċĊAĚĉĎę and on the original SW scheme, it is necessary to mul-
tiply all the identiϐiers of the blocks audited and it does not scale well as data grows. For
example, verifying 1MB of involves multiplying the identiϐiers of 25600 blocks which in-
crease time to the values obtained in the experiments.

Figure 4.10: Time for verifying file integrity proofs in S�¥�Aç�®ã and with RSA.
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4.4.6 EvaluaƟon Outcomes

The main outcomes of the experimental evaluation are the following:

• in terms of monetary costs, using SĆċĊAĚĉĎę is better or worse than RSA signatures
depending on the periodicity of the veriϐications; in a typical environment (AWS)
SĆċĊAĚĉĎę starts being cheaper when data is veriϐied monthly (7.1% cheaper) and
is considerably cheaper when data is veriϐied weekly (34.9%);

• when doing integrity veriϐication, SĆċĊAĚĉĎę requires downloading much less data
than RSA signatures (only 60 bytes), but verifying the proofs takes time also;

• SĆċĊAĚĉĎę requires computing signatures when data is uploaded so it has an impact
on the performance of that operation, but this impact can be completely masked by
the application, as seen with SafeCloud-FS in non-blocking mode.

4.5 Summary

This chapter presents SĆċĊAĚĉĎę, a cloud-storage veriϐication service designed for being
easily integratedwith current cloud storage solutions, including cloud-backed applications
and commercial storage clouds. SĆċĊAĚĉĎę automates all the tasks involved in storage
integrity veriϐication, including signature generation and veriϐication.

Deliverable 2.8 35



5 Client-side security
The cloud-of-clouds ϐile system paradigm increases integrity and availability of data by us-
ing several cloud service providers coordinated by a client. Such ϐile systems may employ
erasure-codes and secret sharing schemes to fragment the ϐiles and encryption keys, so
that they can be securely distributed in diverse clouds. To attack the server side of a cloud-
of-clouds ϐile system, a malicious agent needs to penetrate themajority of the used clouds.
However, a weak spot remains: the client device. Existing systems ultimately rely on this
device to store the master credentials and if the attacker gains access to it, the systemwill
be compromised.

This chapter presents client side extensions for SafeCloudFS providing recovery capabili-
ties and resilience to client-side attacks. These extensions keep the resiliency of existing
systems and adds encryption and secret sharing mechanisms to protect the client device
and audit logs to allow ϐile recovery after, e.g., ransomware attacks.

The initial version of SafeCloud-FS presented in deliverable D2.4 and some storage ser-
vices in the literature provide high availability and integrity using public clouds [BCQ+11a,
ALPW10, BMO+14a, ZYTT15a]. In these solutions several different cloud providers are
used to distribute data. This cloud-of-clouds paradigm solves this problem and increases
the integrity and availability of data. However, the client device remains as a point of fail-
ure. Existing solutions storemaster credentials on this device, and if an attacker penetrates
it by exploiting some vulnerability, the ϐile system is compromised.

The limitation is the assumption that the user’s device or proxy used to access the ϐile
system is secure. This is aweak assumption considering that inmanyoccasions users leave
their personal devices unattended, use weak passwords, or fall prey to social engineering
techniques [SSMJ05]. Once an attacker gains access to a user account, he can read, modify
or even delete any ϐile that the user has access to.

A speciϐic concern are ransomware attacks [KRB+15]. If a device is compromised in this
way, every ϐile of the user is encryptedwith a key known only to the attacker. Furthermore,
thenowencrypted ϐileswill be synchronized to the cloud storagemaking the remote copies
useless for recovery.

To overcome possible attacks against a client device, we propose some client extensions
that improveSafeCloudFS. These extensions addnewprotections that allow increasedavail-
ability (an adversary can no longer corrupt the user credentials to prevent access to the
clouds), integrity (it becomespossible to recover from ϐile tampering, including ransomware
attacks), and conϔidentiality (the ϐiles in the local cache are also encrypted). In this section
wepresent the design of the client extensions, theworking prototype, and an experimental
evaluation of the costs of the recovery mechanisms.

5.1 Client Extensions for SafeCloud-FS

The developed work improves SafeCloud-FS in the following ways: it secures user data
that is stored on the client side, namely, access credentials to the cloud service providers
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and cached ϐiles; it provides logs that allow an administrator to analyze the usage of the
ϐile system and recover user ϐiles stored in the clouds.

5.1.1 Threat Model

The new extensions focus on three security threats, not addressed by SCFS or other cloud-
backed ϐile systems, as they originate from the client device:

Threat T1 Adversary prevents a user from accessing the cloud, by corrupting or deleting
the access credentials stored in the client.

Threat T2 Adversary accesses the locally cached ϔiles, when he gets access to the user’s
device, as the client cache is not encrypted.

Threat T3 Adversary illegally modiϔies ϔiles in the cloud, e.g. through a ransomware attack
that overwrites the data ϐiles in the client, which eventually are synchronized to the clouds.

5.1.2 SystemModel

In this new version of SafeCloud-FS there are two main actors: user and administrator.
Users contract cloud services to store ϐiles and access them remotely using a personal com-
puter or a mobile device. Administrators maintain the coordination service and monitor
the usage of SafeCloud-FS .

Asymmetric keys – PUblic and PRivate – are used to authenticate both Users (PUU , PRU)
and Administrators (PUA, PRA). We make the standard assumptions about cryptogra-
phy, e.g. that encryption cannot be broken in practice, that hash functions are collision-
resistant, and that signatures cannot be forged. We assume that only the owner of a key
pair knows the private key, whereas public keys are known and accessible to every user.
SafeCloud-FS requires several keys, listed in Table 5.1, to ensure integrity and conϐiden-
tiality of data.

5.1.3 System Architecture

Figure 5.1 presents the systemarchitecture of SafeCloud-FSwith the newclient extensions.
On the top left there are four different cloud storage services, where the data is stored. On
the top right there are four replicas for the Byzantine fault-tolerant coordination service
which should be deployed on four distinct cloud computing services. The coordination
service stores the location of ϐile data, locks for multiple writers and other metadata. The
coordination service also communicates with the storage cluster in order to backup its
state, ensuring later recovery when facing a system failure [BSF+13]. The client agent, on
the bottom, communicates with both clusters when necessary.

Both the users of SafeCloud-FS aswell as the administrator access the cloud storage and co-
ordination services, but with different privileges: users only access their ϐiles; administra-
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Entity Notation Description Generated by Stored in

User
PUU Public key of user U User U during setup Shared between the

user’s device,
coordination
service and
external storage

PRU Private key of user U User U during setup
SU Session key of user

U for local cache
User U

Admin
PUA Public key of admin

A
Admin A during setup Shared between the

admin’s device,
coordination
service and
external storage

PRA Private key of admin
A

Admin A during setup

Log Ai ith log entry secret
key

SafeCloud-FS agent Coordination service
Bi ith log entry secret

key
SafeCloud-FS agent

Clouds

SCi Cloud storage ser-
vice credentials

User and admin during setup Shared between the
user and the
admin’s device,
coordination
service and
external storage

CCi Coordination ser-
vice credentials

Admin during setup

PUSCi
Cloud storage ser-
vice public key

Admin during setup Each cloud storage service
PRSCi Cloud storage ser-

vice private key
Admin during setup

PUCCi
Coordination ser-
vice public key

Admin during setup
Each cloud hosting a

PRCCi
Coordination ser-
vice private key

Admin during setup coordination ser-
vice replica

Table 5.1: Keys used in SafeCloud-FS with descripƟon, who generated them, and where
they are stored.

Figure 5.1: SafeCloud-FS architecture with four different cloud storage providers and four
replicas for the coordinaƟon service DepSpace.

tors access also the logs. Theusers interactwith the ϐile systemby invoking thePOSIX [Gal95]
operations (open, read, write and close). The administrators access logs to analyze usage
and recover from unintended actions.
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The interaction between the client, the cloud storage services and the coordination ser-
vice is mediated by the SafeCloud-FS agent, that is responsible for intercepting ϐile system
operations with the aid of the FUSE library1. It also performs the encryption and encoding
tasks.

5.1.4 Client Architecture

The user device contains the SafeCloud-FS agent, the local cache and the keystore, includ-
ing the private key of the user (PRU). In order to access the cloud-of-clouds, the SafeCloud-
FS agent needs the access credentials of each cloud storage provider (SCi) and cloud used
by the coordination service (CCi). These credentials are also stored in the keystore ϐile.

Thekeystore is protectedwith auserpasswordand is kept inpersistent storage. SafeCloud-
FS splits the keystore in shares and stores them in separate places in a way that, even if an
attacker obtains one of the shares, he cannot recover the entire keystore. This is achieved
with secret sharing [Sha79].

When the user logs in, the SafeCloud-FS agent needs to combine some of the shares, e.g. 2
out of 3 shares. By default, it uses the share kept in the coordination service and the share
in the client device. The share in the client device is protected by the user account access
control mechanisms.

For recovery there is an additional share stored in an external memory, like a USB ϐlash
drive, or a smart card, which must be kept at a secure location. The use of secret sharing
is further detailed in Section 5.2.1.

The user device is represented in Figure 5.2. The disk stores the encrypted local cache and
one of the shares of the keystore. The RAM stores the keystore thatwas reconstructedwith
secret sharing. This ensures that even if the user’s device is stolen, the adversary cannot
obtain the access credentials from the disk. The CPU executes the logic of SafeCloud-FS
which is compiled in a software library providing the POSIX ϐile operations (open, read,
write and close).

5.1.5 Log Architecture

Figure 5.3 shows how the ϐile system operations are logged to support recovery (as de-
scribed in Section 5.3). The ϐigure presents what happens when the user closes a ϐile after
writing to it. The ϐile and the log data are uploaded to the cloud storage services. Then, the
log entry in the coordination service is created. Finally, the ϐile metadata is updated in the
coordination service. This step must be performed at the end to ensure that everything –
the ϐile, log data and metadata – is available before notifying the user that the operation
was completed successfully.

If the coordination service fails to register the ϐile operation (e.g. because of a lack of con-
sensus in the Byzantine fault-tolerant coordination service) then the log entry needs to be

1File system in user space https://github.com/libfuse/libfuse
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Figure 5.2: User device with client-side components and external memory with one of the
shares of the keystore.

Figure 5.3: Logging of operaƟons in SafeCloud-FS .

removed.

Each log entry is composed by two parts: the data part and themetadata part. These parts
are kept in different systems for two reasons: ϐirst, the data part requires more storage
space, so itmore effectively stored it in a cloud storage service; second, themetadata needs
to be queried in as many ways as allowed by the coordination service’s tuplespace.

5.2 Securing the User's Device

In this sectionwe propose solutions for threats T1 (adversary prevents a user from access-
ing SafeCloud-FS ) and T2 (adversary illegally accesses locally cached ϐiles) presented in
Section 5.1.1.
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The user’s device stores two types of sensible information: the access credentials for the
cloud providers, and the local cache with the most recently accessed ϐiles. With the ac-
cess credentials an attacker may violate the availability of the service. If the local cache is
accessed by an attacker both the integrity and conϐidentiality of the user’s ϐile are at risk.

5.2.1 Securing the User's CredenƟals

The credentials are protected with secret sharing [Sha79] so, even if the user’s machine is
compromised and the keystore is corrupted, the user may still recover his credentials and
resume the use of SafeCloud-FS . In a secret sharing scheme a special entity, the dealer,
distributes a secret to n parties. Each party gets a share of the secret, meaning that if an at-
tacker succeeds in obtaining one of the shares he cannot reconstruct the secret. With such
a scheme, k < n shares of the secret are required to reconstruct it, therefore an attacker
would need to be get k shares to recover it. More speciϐically, in this work we use a secret
sharing scheme called publicly veriϔiable secret sharing scheme (PVSS) [Sch99].

In SafeCloud-FS , the PVSS scheme is used to share two types of secrets: the keystore and
the secret keys used to encrypt ϐiles andmetadata. In both cases the client acts as a dealer,
sharing, combining and verifying the secrets. More speciϐically, PVSS provides the follow-
ing functions:

• share, invoked by the client to obtain the shares of the keystore;

• combine, invoked by the client to reconstruct the keystore using k shares;

• prove, invoked by the server to create a proof for the share it owns;

• verifyD, invoked by the servers to verify if the received share is legitimate;

• verifyS, invokedby the client to verify if the shares sent by the servers are legitimate.

The shares of the keystore are generated during setup, in the following way:

• The SafeCloud-FS agent asks the user for howmany shares of the keystore (n) should
be generated, and howmany are needed (k) to reconstruct the keystore;

• The SafeCloud-FS agent executes the share function of the PVSS with parameters n
and k;

• One of the shares is sent to the coordination service while the remaining shares are
given to the user so he can choose where to store them;

• The shares given to the user are erased fromdisk andRAM, and the setup is complete.

By default, the user keeps one secret share on his device, for easier log in to SafeCloud-FS
(assuming a scenario with n = 3 and k = 2). However, the PVSS allows the user to chose a
different way to split the secret (different parameters n and k) and different deviceswhere
to store them, for added security. The user’s smartphone can be used for this purpose, or
other more elaborate password stores [SJKS17].
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A user recovers the keystore in two situations: every time he logs in, and when his device
was compromised and he needs to recover the keystore using the share kept in external
memory. For both cases the recovery works as follows:

• The user provides k − 1 shares (the remaining one is located in the coordination
service);

• SafeCloud-FS agent fetches the remaining share from the coordination service;

• SafeCloud-FS agent executes the PVSS function verifyS to verify if all the shares are
legitimate;

• SafeCloud-FS agent executes the PVSS function combine and loads the keystore into
memory. In any case the keystore is in the disk.

5.2.2 Securing Client's Local Cache

In the proposed extensions SafeCloud-FS we propose mechanisms to verify the integrity
and conϐidentiality of the local cache on the device, which stores the ϐiles recently accessed
by the user. The client cache uses a least recently used (LRU) policy by default, but other
policies could also be used, especially suited for erasure coded data [HFKT17].

Figure 5.4 represents the extension of the POSIX ϐile operations open and close that was
done for SafeCloud-FS .

5.2.2.1 Integrity

The integrity of the local cache is ensured by cryptographic hash functions. When a user
invokes the open operation on a ϐile fu, the SafeCloud-FS agent executes:

• Fetches hfu, the hash value correspondent to fu;

• Computes a hash value h′
fu of fu;

• Compares both hash values, hfu and h′
fu. If they match the ϐile is opened, otherwise

the ϐile is discarded and a valid version of the ϐile is fetched from the cloud.

When the user invokes the close operation on a ϐile fu:

• A new hash value, hfu, is calculated and stored in the local cache alongside fu;

• The ϐile fu is encrypted, as explained in the next section.
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Figure 5.4: SafeCloud-FS operaƟons, the read and write operaƟons remain unaltered. The
operaƟons open and close decrypt and encrypt the local cached files to ensure data

confidenƟality.

5.2.2.2 Confidentiality

A session key, SU , used to encrypt the local cache ϐiles, ensures their conϐidentiality. This
key has a short validity (conϐigurable by the administrator), and is associatedwith an entry
in the coordination service, preventing an attacker from reusing old session keys. On open,
the SafeCloud-FS agent:

• Checks if SU is still valid, if not the local cache is discarded and a new SU is generated
and exchanged with the coordination service;

• Decrypts theopened ϐile and loads it intomemory. If the large is too large tobe loaded
into memory an alert is given to the user that the ϐile will be temporarily stored on
disk.

The ϐile close operation:

• Creates a log entry for the ϐile update, and uploads the log entry to the cloud;

• Uploads the ϐile to the cloud;

• Fetches SU from the keystore;

• Removes the log entry from the disk or memory;

• Encrypts the ϐile that was closed.

Besides encrypting the locally cached ϐile, the close operation also logs the modiϐications,
as detailed in the next section.
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5.3 Storage Recovery

In this section we propose a solution for the remaining problem, T3 (when an adversary
illegally modiϐies ϐiles on behalf of the user), of Section 5.1.1.

When an adversary hijacks a user’s session, for example, by stealing the computer, he can
tamper with the ϐiles on behalf of the user. Every action (create, modify and delete ϐiles)
that the user executes in the user’s device is eventually synchronized to the cloud, so the
effects of the attack that occurred on the client side are propagated to the cloud side. When
this happens the cloud-of-clouds will have tampered ϐiles. To cope with this vulnerability
we propose a recovery approach that enables the administrator to identify malicious op-
erations and undo them.

To enable the administrator to undo the faulty operations performed by adversaries, every
ϐile operation (open, read, write and close) needs to be registered in a log. The SafeCloud-
FS agent is the component responsible for recording these operations. The log is stored
alongside with the ϐiles in the cloud-of-clouds, with the protections provided by DepSky.

The logmetadata, lmfu, contains a timestamp, the user id, the ϐile name, the version id and
the operation (create, update or delete). lmfu is stored in the coordination service.

The log data of the user ϐile, ldfu, consists of the differences between the new version of
the ϐile and the previous one. ldfu, is encrypted, split in shares using erasure-codes and
stored in the cloud-of-clouds.

The erasure-codes library provides the following functions:

• encode(d, n, t) - encodes d on n blocks in such way that t are required to recover it;

• decode(db, n, t) - decodes array db of n blocks, with at least t valid to recover d.

When the POSIX operation close is invoked on a ϐile fu, the following operations are exe-
cuted by the SafeCloud-FS agent:

• Compute a diff to calculate ldfu, the differences between the new version of fu and
the previous version;

• fu and ldfu are encrypted using a random secret key Sfu;

• The encode function is used to split fu and ldfu in n shares requiring t = f + 1 to be
restore;

• Both fu and ldfu are send to the cloud storage services. Each cloud storage service
gets on share of each;

• Sfu is split in shares with the share function of the PVSS with parameters n equal to
the number of clouds and k equal to fu + 1;

• Each share of Sfu is sent to each cloud storage service;
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• Log metadata lmfu is added in a tuple and sent to the coordination service.

One could assume that logs were stored in a secure environment, so they could not be
illegally modiϐied by adversaries. However, in the cloud environment, such an assumption
is not realistic. To ensure the recovery is done correctly, it must provide forward-secure
stream integrity [MT09], a property that ensures that logs, which are a streamof sequential
entries, can be veriϐied for integrity.

Forward-secure sequential aggregate [MT07, Ma08] is an authentication scheme that uses
forward-secure signatures (or message authentication codes) to generate a single aggre-
gate signature. However, this scheme has two problems: it is not secure against truncation
attacks (the attacker can delete a contiguous segment of entries at the end of the log) and
delayed detection attacks (the attack is not detected until the entire log is downloaded to a
trusted server). The forward-secure stream integrity scheme presented in [MT09] solves
these two problems by providing the following guarantees:

• Forward Security: the secret signing key used in the scheme is updated by a one-way
function, making it computationally unfeasible for an attacker to recover previous
keys from a current, stolen, key;

• Stream Security: the sequential aggregation process preserves the order of the log
entries and provides stream-security;

• Integrity: illegal insertions, modiϐications and deletion of log entries are detected.

These protections are relevant for the security goals of SafeCloud-FS and the system imple-
ments them. The forward-secure stream integrity [MT09] allows the integrity of the entire
log to be checked. This requires that, during setup, two random symmetric keys, A1 and
B1, are securely exchanged between two parties. We assume the administrator himself is
responsible for providing these keys to the cloud storage servers (stored in shares using
secret sharing) and the coordination service.

Recovery is done by obtaining the last valid version of a ϐile, and applying every validmod-
iϐication to it until the present time. In more detail:

1. The administrator fetches the ϐirst version of fu and its corresponding log entries,
LDfu (LDfu is an array with several ldfu);

2. The function decode is used to join the shares of both the fu and every ldfu

3. The administrator selects themaliciousmodiϐications fromLDfu and discards them;

4. For each ldfu in LDfu, the function patch is invoked to apply ldfu to fu;

5. File fu is shared by the encode version and sent to the cloud storage services.
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5.4 ImplementaƟon of the Client Extensions

SafeCloud-FS and the new client extensions were implemented in Java SE 8. We chose this
programming language since all the components of SCFS were written in Java and every
cloud storage service used in this work also provides Java APIs. Also, since Java is a multi-
platform language, it is possible to deploy in distinct execution environments, making it
more robust against operating system speciϐic vulnerabilities.

The size of the keys aswell as the algorithmsused to generate themwere chosen taking into
account their security in the long term. According to ENISA, the recommended values are:
SHA-512 for hash values, 512 bit elliptic curves for public keys and AES-256 for symmetric
keys [Eur14].

The keystore (depicted in Figure 5.4) is a text ϐile with the access credentials for cloud
services, the access credentials for the coordination service, the sessions keys (SU) and
the private key of the user (PRU). This ϐile is never stored on persistent storage (disk). It
is split in, at least, three shares: with one of the shares in the coordination service, another
in the user’s device and an extra one in a external storage (USB memory or smartcard),
especially for recovery. To recover the keystore it is not enough to reveal the secrets since
this ϐile is also encrypted (with AES-256), requiring a user password to decrypt it. Once it
is decrypted it is loaded into memory (RAM).

The SafeCloud-FS agent uses a variation of the UNIX diff command [HS77] called JBDiff 2.
This command is used to calculate the log entries of each ϐile operation. Each log entry is in
fact the difference between the old version and the new version of a ϐile. Recovery is done
by reconstructing a ϐile, i.e., executing the corresponding patch command sequence.

5.5 Experimental EvaluaƟon

The overhead of the protections for the credentials (threat T1) and cache (T2) was found
to be below tens of milliseconds, so their cost can be considered negligible in the overall
cloud-of-clouds solution. Therefore, our evaluation focused in detail on the costs of re-
covery from T3 described in Section 5.3. With the experiments performed we wanted to
answer the following three questions: (a) What is the cost, in terms of performance, of
having the SafeCloud-FS agent log every ϐile operation? (b) What is the cost, in terms of
storage, of saving every ϐile modiϐication? (c) How long does it take to recover ϐiles de-
pending of the number of modiϐications they suffered? The answer to this last question is
relevant to assess how effective our solution is against ransomware attacks.

In the experimentswewanted to simulate a realistic scenario inwhich SafeCloud-FSwould
be deployed in at least two different clouds. This way it would be possible to ensure that
metadata and data are stored in different locations (logically and geographically) ensuring
that even if one cloud gets compromised, it is not possible to read the users’ ϐiles. We
set up SafeCloud-FS using two different clouds: Amazon S3 [Ama15] for the cloud storage
services; and Google Compute Engine [KG15], for the coordination service. Regarding the

2Java Binary Diff https://github.com/jdesbonnet/jbdiff
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Amazon S3 storage services, we set up 4 storage buckets in Ireland. In the Google Compute
Engine we created 4 instances (for the 4 replicas of DepSpace) with 1 vCPU and 3.75GB of
memory for each machine. All 4 replicas were located in the Belgium data center.

For the client machine, we created an instance, again with 1 vCPU and 3.75GB of memory,
in the London data center. This additional instance serves as a client of SafeCloud-FS and
will execute the SafeCloud-FS agent code. We chose to execute the client on the cloud for
two reasons: ϐirst, it provides a stable Internet connection; and second, this machine is as
simple as possible, meaning that no extra software running in the background interferes
with the execution of the experiments.

5.5.1 Latency Overhead of Log OperaƟons

To calculate the latency of logging operations we created a workload that consisted in cre-
ating ϐiles and then updating these ϐiles with an extra 30% content. We vary the size of
the ϐiles between 1 and 50MB, according to statistics from [ABDL07]. Given that SCFS
offers two different approaches for ϐile synchronization (blocking and non-blocking), we
performed the experimentswith both conϐigurations. Each testwas repeated 10 times and
the values presented in the graphs correspond to the average values.

Figure 5.5 presents the average latency of logging ϐile operations in SafeCloud-FS . The
latency is the time it takes since the user ϐinishes updating the ϐile, i.e. invoking the POSIX
close function, and the time the coordination service ϐinishes recording the ϐile operation.
The latency valueswith logging are, on average, 20%higher than the oneswithout logging.
This overhead is expected, since it takes time for the SafeCloud-FS agent to compute the log
entry (differences between versions) and to upload these differences to the cloud. Several
optimizations were performed to reach this value. The two most important ones were (1)
both the logging and the ϐile operationareprocessed inparallel by the coordination service,
and (2) the ϐile and log entry uploads are also done in parallel. This 20% overhead can be
reduced by improving the network bandwidth (for instance, by using the same data center
for the storage services and the coordination services) and by improving the computing
hardware of the client (to process the differences quicker).

In a different experiment we used microbenchmarks from FileBench [Fil17] to execute
different workloads. Table 5.2 shows the results of three different workloads: sequential
write, that appends data to the end of a ϐile; random write, that modiϐies a random section
of a ϐile; and create ϔiles, that creates new ϐiles without modifying them afterwards. Each
workload was tested in SafeCloud-FS with and without extensions in two different modes:
non-blocking (NB) which synchronizes ϐiles to the cloud in the background allowing the
user to proceed his work, and blocking (B) which blocks the application until the modi-
ϐied ϐile has been completely uploaded to the clouds. We tested these three workloads in
SafeCloud-FS with and without extensions to understand how much it costs, in terms of
performance, to log ϐile operations. Unlike the original experiments in SCFS [BMO+14a]
that executed several workloads of read operations, in this case we are only interested in
testingoperations thatmodify ϐiles, since these are theonlyonesbeing loggedbySafeCloud-
FS . The overhead of using the client extensions according to the results shown in Table 5.2
is non-negligible but can be considered acceptable, especially in the non-blocking mode
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(a) Blocking API of the file system.

(b) Non-blocking API of the file system.

Figure 5.5: Latency of using SafeCloud-FS with and without the log in both modes of the file
system: (a) blocking and (b) non-blocking.

which is the recommended conϐiguration.

5.5.2 Storage Overhead of Log OperaƟons

Wedid experiments to ϐind out howmuchmore storage SafeCloud-FS needs to keep all the
logs of several ϐile operations. To do so we executed 1, 10 and 100 ϐile updates in ϐiles with
sizes again varying from 1MB to 50MB.

Experiments show that the storage overhead of the log is signiϐicant. Every time a user
appends 10MB to a ϐile, an extra 10MB are added to the log. In this system model we are
using the CA protocol of DepSky which uses erasure-codes to reduce the required storage
to 2 times (as opposed to 4 times in the A protocol) i.e. a log entry of 10MB will occupy
20MB overall in the clouds.

Deliverable 2.8 48



Micro-benchmarks # Operations File size Without extensions With extensions Overhead
NB B NB B NB B

write 1 4MB 1.63 1.71 1.90 2.12 17% 24%
create 200 16KB 197.60 236.76 219.00 298.20 11% 26%

Table 5.2: Latency (in seconds) of Filebench micro-benchmarks for SafeCloud-FS with and
without extensions.

It is also worth noting that a ϐile that is modiϐied several times will create a log history
greater than a ϐile that is created once and subsequently is not modiϐied. In these exper-
iments we wanted to evaluate how much storage does it take to store the log entries of
ϐiles that are rarely updated (1 version), moderately updated (10 times) and intensively
updated (100 times). Each modiϐication to the ϐile was in 30% of the original size of the
ϐile (e.g. a ϐile with 10MB was updated with more 3MB every time).

Figure 5.6: Required storage for the files and logs in the cloud storage services.

Figure 5.6 presents the storage overhead of logging different ϐiles with different versions.
The storage growth is linear. For the 10 versions we can see that the storage required to
store the log is greater than the ϐile itself. This motivates the adoption of a future snapshot
mechanism to create backup versions of the ϐiles in order to discard log entries. The log
size values for the 100 versions ϐile are not in the chart. The sizes vary from 60MB (for the
1MB ϐile) to around 3GB (for the 50MB ϐile).

5.5.3 Mean Time to Recover Files

TheMTTR(MeanTime toRecover) a speciϐic ϐile varies according to thenumberof versions
of that ϐile. A ϐile that was only modiϐied once before being attacked can be recovered by
executing a patch operation (i.e. applying the differences in the log to the original version),
while a ϐile that was modiϐied 100 times requires 100 patch operations to be executed.

Here we are recovering the ϐile system from a ransomware attack. In this type of attack,
every ϐile in the ϐile system is corrupted (encrypted). First we did experiments to measure
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Figure 5.7: Mean Ɵme to recover files with 1, 10 and 100 versions.

the recovery of a single ϐile. Then we did experiments with the recovery of the set of all
ϐiles.

To evaluate the MTTR of different ϐiles we took the ϐiles and log entries from the previous
experiments and recovered each ϐile 10 times (to reach an average value). Again, a ϐilewith
1 version means that was created and modiϐied just once while a ϐile with 100 versions
means that after its creation, it was modiϐied 100 times.

Figure 5.7 presents the MTTR of several ϐiles with different versions. Although the MTTR
grows linearly with the ϐile size, in the 100 versions ϐiles the growth is steeper. The time
varies from around 2 seconds (for 1 version ϐile with 1 MB) to around 40 seconds (for the
100 versions ϐile with 50MB).We optimize the recovery process by downloading every log
entry of the ϐile to be recovered at once, instead of downloading one entry at a time.

To evaluate howSafeCloud-FS recovers a complete ϐile system from such attack, we created
16KB ϐiles (from 10 to 10,000) and modiϐied them several times (from 1 to 100 versions
with each modiϐication being a 4KB write in the ϐile). Then SafeCloud-FS recovered every
ϐile of the ϐile system. The results are presented in Figure 5.8. The mean time to recover
grows exponentially with the number of ϐiles in the ϐile system. In the worst case of the
experiments (10,000 ϐiles with 100 versions each) it took around 2 hours and 5minutes to
recover every ϐile in the system. Considering the hindering effects of a ransomware attack,
the full recovery time is acceptable. This is still a considerable time but once SafeCloud-
FS starts the recovery process, ϐiles become gradually available for the user. Because of
this property of the system, the recovery can start with the most urgently needed ϐiles,
as speciϐied by the user. And assuming that a regular user does not access every ϐile in
the system at once, this allows him to resume working while SafeCloud-FS continues the
remaining recovery process in the background.
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Figure 5.8: Mean Ɵme to recover a file system compromised by a ransomware aƩack
varying in the number of files and versions of each file.

5.6 Summary

This section presented presented new client extensions for SafeCloud-FS, a recoverable
cloud-of-clouds ϐile system resilient to client-side attacks. It provides recovery mecha-
nisms for the access credentials of the users and for ϐiles stored in the cloud storage ser-
vices. The proposed client extensions improve SafeCloud-FS and other cloud-backed ϐile
systems by protecting against client-side attacks and allowing for recovery of unautho-
rized changes, in particular, recovery from ransomware attacks. The experimental evalua-
tion results show that it is possible to recover intensivelymodiϐied ϐiles (with 100 updates)
in around 40 seconds. Using SafeCloud-FS to log ϐile system operations imposes a perfor-
mance overhead in the order of 20%, a cost that can be further reduced by improving the
computing characteristics of the clouds used in the system.
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6 Mobile client trust
Mobile devices have gradually become an integral part of our daily lives. Currently, ϐinan-
cial and healthcare institutions offer services to their clients using smartphone and tablet
applications, which are important use cases for SafeCloud. Although this is convenient,
it also leads people to rely on these applications to access and process privacy-sensitive
data, e.g., ϐinancial data and medical records. Many of these applications run on Android,
the most adopted mobile operating system (OS) today [K+16]. However, the popularity
of Android and the open nature of its application marketplaces make it a prime target for
malware [GZJS12, ZWZJ12, ZJ12, CFGW11]. This situation puts data stored in smartphones
in jeopardy, as it can be stealthily stolen or modiϐied by malware that infects the device.

Several companies provide anti-malware software for mobile OSs. Moreover, the research
community has investigated mechanisms for detecting malware on Android using static
and dynamic analysis [EGC+10, HHJ+11]. However, these tools andmechanisms run in the
device and assume that themobile OS is trusted, i.e., that it is part of the trusted computing
base (TCB) [Nat83]. However, currentmalwareoftendisables anti-malware softwarewhen
it infects a device or computer. For mobile phones this trend started more than a decade
ago with malware such as the Metal Gear Trojan and Cabir.M [Lea05] and continues, e.g.,
with HijackRAT [Gre14].

TrustZone is a hardware security extension incorporated in recent ARM processors, much
used in smartphones and other mobile devices [ARM09]. This extension partitions the
system resources (e.g., memory, peripherals, etc.) in two logical parts: the secure world
and the normal world. The secure world runs trusted applications on top of a small trusted
OS, whereas the normal world runs the normal applications on top of a normal OS such as
Android. TrustZone protects the secure world resources from the normal world, whereas
the secureworld can access resources of the normal world. This hardware separation pro-
tects the conϐidentiality and integrity of computation and data in the secure world, while
permitting the secure world to inspect the normal world.

Most uses of TrustZone in the literature are based onmeasurements of the normal world,
i.e., on hashes of the software running in the normal world obtained using a collision-
resistant hash function. This way of using TrustZone is interesting, but the versatility of
TrustZone suggests it is possible to obtain richer information about the normal world than
just hashes, which are simply numbers with limited semantics. An approach is to analyze
the posture or compliance of the device. The notion of posture assessment was introduced
in RFC 5209 [SKM+08] for network access control [Hof08], which proposed having a soft-
ware agent running on endpoint devices (such as laptops and desktops) to evaluate and re-
port the posture/compliance of the device to the network owners (e.g., anti-virus software
running on the device or not, updates installed or not). The network owner has validation
software that determines the device’s compliance with the security policies, allowing it to
connect to the company’s network, to block it, or to connect it to some lower trust VLAN
(e.g., one that connects only to the Internet).

The previous chapter assumes that the SafeCloud-FS client is executed in a terminal, e.g.,
in a personal computer (PC). However, it is possible to execute it in a mobile device and,
such devices, are arguably less protected from malware than PCs. This chapter presents
the design and implementation of DroidPosture, a posture assessment service for mobile
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devices. DroidPosture runs in the devices (e.g., smartphones) and evaluates the security
status of their OS (e.g., Android) and applications. DroidPosture is protected from the OS,
applications, andmalwareby leveraging theTrustZoneextensionand running in the secure
world. DroidPosture does introspection of the normal world and can be conϐigured with
a variety of assessment mechanisms, e.g., static analysis of applications and detection of
rootkits. Posture data obtained with DroidPosture can be sent to external services, such
as a SafeCloud-FS’ coordination service that may be conϐigured to use this information to
grant or deny access.

In this chapter we propose two classes of assessment mechanisms – application and ker-
nel analysis mechanisms – and provide two example of each: signature-based detector,
learning-based detector, syscall table checker, and kernel integrity checker. These mech-
anisms illustrate the forms of posture analysis that can be implemented in DroidPosture,
although others may also be used.

6.1 Background

This section provides background on the technologies underlying the design and imple-
mentation of DroidPosture.

6.1.1 ARM TrustZone

ARMTrustZone [ARM09] is a security extension supported by recent ARMprocessors, e.g.,
ARM Cortex-A and Cortex-M. It provides two logically isolated execution domains: the se-
cure world for security-sensitive computation and storage, and the normal world for con-
ventional processing. A program running in the normal world can make the processor
switch to the secureworld using a special securemonitor call (SMC). This technology is not
yet widely-adopted, but it is used in Samsung’s KNOX enterprise mobile security solution
[Sam].

TrustZone partitions the system memory into two worlds, i.e., each world has its own ad-
dress space. The secure world can see all the physical memory in the system, but the nor-
mal world can see only its own. Cache memories are tagged as secure or non-secure to
protect them from accesses from the normal world. Individual hardware peripherals can
be assigned to the secureworld, and for these peripherals hardware interruptions are con-
ϐigured to be directly routed to, and handled by, the secure world. As a result, it is possible
to secure peripherals such as memory, storage (e.g., an SD card), keyboard and screen to
ensure they are protected from software attacks. In general, TrustZone protects the con-
ϐidentiality and integrity of any computation and data in the secure world, so untrusted
code running in the normal world cannot access these resources [SRSW14, YMHC17].
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6.1.2 Android Architecture

Android is a Linux-based open source software stack for mobile devices. It consists of a
modiϐied Linux kernel, a middleware layer, and an application layer. The Linux kernel pro-
videsOS services likememorymanagement, process scheduling, device drivers, ϐile system
support and network access. The middleware layer consists of native Android libraries,
the Android run-time environment, and an application framework. The application frame-
work consists of applications that provide system services, e.g., the Activity Manager that
manages the life cycle of applications, the Application Installer that installs new applica-
tions, and the Package Manager that maintains information about all applications loaded
in the system.

Android applications are implemented in Java, but they can also incorporate C/C++ native
libraries through the Java native interface (JNI). Java code is compiled to a custom byte-
code format, the Dalvik EXecutable (DEX) format. Android applications are comprised
of four basic types of components: Activities, Services, Content Providers and Broadcast
Receivers. Activities are responsible for the (graphical) user interface. Services execute
background processes without user interaction. Content Providers support SQL-like data
management for storing and sharing application data. Broadcast Receivers receive event
notiϐications from the system and other applications.

Android applications are distributed as ϐiles in the Android Application Package format
(APK or .apk). An APK ϐile is essentially a zip archive containing all the application re-
sources: bytecodes (.dex), manifest ϐile, media ϐiles, etc. After a successful installation of
an application, its APK ϐile is stored in the ϐile system (in /data/app/). For static analysis of
an Android application, one has to unzip the APK ϐile, then decompile the .dex ϐile or trans-
late it into Java source code using appropriate tools (e.g., dex2jar, APKtool). Every APK ϐile
includes amanifest ϐile (AndroidManifest.xml) with essential information about the appli-
cation: list of components that compose it; permissions that the application needs to run;
permissions that other applications must have in order to interact with the application’s
components.

6.2 DroidPosture Architecture and Design

DroidPosture gives external service providers a mechanism to evaluate the posture of a
smartphone and restrict access to critical data – ϐiles in the case of SafeCloud-FS – based
on the evaluated posture. DroidPosture is a software component that runs in the secure
world of a mobile device. The posture information is requested by external services when
smartphone applications request to use a service or by local application to understand the
posture of the smartphone.

6.2.1 Threat Model and AssumpƟons

We assume that DroidPosture runs in an ARM processor with TrustZone. We assume that
in the normal world the mobile OS and the applications it executes are untrusted, i.e., that
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Figure 6.1: Architecture of a mobile device running DroidPosture. The grey boxes are
components of the DroidPosture service. The applicaƟons in the normal world may use the

SafeCloud-FS client to accees the cloud. The external services are the SafeCloud-FS
coordinaƟon service in this case.

theymaybemalicious or compromisedbymalware or hackers. In contrast, we assume that
the software running in the secureworld, including theDroidPosture software, is trustwor-
thy. In order to reduce the size of the TCB, the size of the software executed in the secure
world has to be as small as possible, so it should not include for example a network stack.
The size of the API is also as small as possible to reduce the attack surface, and all inputs
are validated. These measures make software attacks against the secure world unlikely to
be successful, so in this chapter we assume they are not. We also assume that the device
(i.e., the normal world) is not yet compromised when DroidPosture is ϐirst installed (it can
come pre-installed with the device).

Each DroidPosture instance in a device has an identiϐier id and a public-private key pair
(Ku,Kr) for some public-key cryptographic scheme (e.g., RSA). It has also a certiϐicate con-
taining the public key, signed by some trusted certiϐication authority (CA). We also assume
the existence of a collision-resistant hash function (e.g., SHA-256).

6.2.2 Architecture

Figure 6.1 represents a mobile device running DroidPosture, SafeCloud-FS client applica-
tions, and communicating with the SafeCloud-FS coordination service. The normal world
runs the usual mobile device software: a mobile OS and applications. It includes also a
driver (TZ_Driver) that allows software in the normal world to call functions in the secure
world, DroidPosture in our case. This driver allocates a shared memory zone that is used
for the application to pass inputs to DroidPosture, and for DroidPosture to return outputs
to the application (assessment results in our case).

The secure world runs the DroidPosture service. This world includes a small trusted OS
that provides basic functions for software running in that world (processes, ϐile access,
etc.). Besides its private memory space, it is also conϐigured to have a private persistent
storage partition (either part of the internal memory or of an SD card). DroidPosture itself
is composed of two modules, for detecting and reporting the posture of the normal world.
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The detection module is further divided in two modules that we implemented in our pro-
totype – application analysis and kernel analysis – although others may be designed and
used (others in the ϐigure). The reporting module provides an interface between the nor-
mal world and the detection modules. The posture monitor receives, validates (for protec-
tion against buffer overϐlows and other input attacks), and replies to requests for posture
data from the normal world. The posture collector collects information from the detection
module(s) and signs it.

The bootstrapping of the device starts by running the kernel of the secure world, so this
kernel is the static root of trust formeasurement [PMP11]. Before passing the control to the
normal world and starting the execution of the normal world, the kernel analysis module
calculates and stores a hash (measurement) of the normal world operating system. This
is process is denominated trusted boot [PMP11] and may involve storing hashes of other
modules, if needed.

6.2.3 Posture Reports

DroidPosture provides information about the posture of the device in the form of a pos-
ture report. The format of a posture report is: ⟨id, posture_data, nonce⟩SKr

, where id is the
identiϐier of the DroidPosture instance, posture_data the posture data itself, nonce a nonce
(a random number used only once for replay protection) that comes with the request for
posture data, and SKr a signature obtained using the instance private key.

Posture reports can be delivered to applications or transferred to the SafeCloud-FS coor-
dination service via the normal world. In both cases an application running in the normal
world requests posture data from the posture monitor module. This request contains the
above-mentioned nonce. The module then invokes the posture collector module that re-
quests the detection modules to collect the posture of the device. The posture collector
gets the result, creates and signs the posture report, and sends it to the posture monitor.
The latter sends the posture report to the application, which may optionally send it to the
SafeCloud-FS coordination service.

As the mobile OS and the applications may be compromised, we do not trust them to de-
liver the posture report unmodiϐied to the application or external service that requested it.
The authenticity and integrity of the report are veriϐied using the digital signature SKr cal-
culated using the private key of the DroidPosture instance in the device. Such an attacker
might still do a denial of service attack by deleting or modifying all reports, but this would
be understood by the service provider as consequence of a compromised device.

Figure 6.2 illustrates the steps for providing a posture report to an external service (e.g.,
the SafeCloud-FS coordination service). An application starts the interaction with the ex-
ternal service, e.g., the backend of the application (step 1). The external service replies
and provides a nonce (step 2). The application forwards the nonce to DroidPosture in the
secure world and asks for posture assessment (step 3). DroidPosture performs the pos-
ture assessment, creates and signs the posture report, then sends it to the application (step
4). The application sends this report to the external service (step 5). Finally, the external
service veriϐies the nonce and the signature, using the certiϐicate of that DroidPosture in-
stance (Section 6.2.1). If they are correct, it then interprets the posture data. If it ϐinds the
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Figure 6.2: DroidPosture providing a posture report to an external service, such as the
SafeCloud-FS coordinaƟon service.

posture acceptable it continues to interact the application, e.g., sending it some data (step
6).

6.2.4 ApplicaƟon Analysis

We designed two detection modules, although others may be used. As mentioned before,
these mechanisms illustrate how posture analysis may be implemented in DroidPosture.

This section is about the application analysis module (Figure 6.1). This module provides
two static analysismechanisms to detect the presence ofmalware in Android applications:
signature-based detector and learning-based detector.

By static analysis we mean analysis of code, without executing it. The application analysis
module ϐirst unpacks the application APK and obtains the bytecodes. Then, the bytecode
ϐile is passed as input to the signature-based and learning-based detection mechanisms.
Prior to this process, the hash of the APK ϐile is compared with the hashes of the APKs
already analyzed stored in the secure world persistent storage partition, in order to avoid
re-executing the analysis. If it has already been analyzed, the result obtained previously is
returned. Notice that if the APK changes, then its hash also changes (collision resistance
property of the hash function).

6.2.4.1 Signature-Based Detector

The ϐirst and simplest malware detection technique is based on pattern matching. Mal-
ware detectors have a database of distinctive patterns – signatures – of malicious code and
they look for them in applications. Malware has to be public for a period of time so that
signatures can be generated for that speciϐic malware family.

Our signature-basedmechanism detects malicious applications or injected malicious code
based on similarities of control ϐlow graphs (CFGs). A control ϐlow graph represents the
control ϐlow of a program. The signature-based mechanism takes the bytecode ϐile and
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converts each function in the bytecode into a string that represents the CFG of the function.
The comparison of similarity of the CFGs is done by using a similarity algorithm such as
Kolmogorov distance and normalized compression distance (NCD). The CFG string of each
function is compared against the CFGs (the signatures) of knownmalware in the database
to verify if they are similar.

6.2.4.2 Learning-Based Detector

As the signature-based detection mechanism only detects malware for which it has signa-
tures, we propose a complementary mechanism to detect malware in applications. The
learning-based detection mechanism relies on a machine learning classiϐier. This mecha-
nism has two phases. In the ϐirst phase, training, the mechanism statically examines and
extracts selected features from known malware samples and benign applications to build
feature vectors; then, these features are used to train a machine learning classiϐier to dis-
tinguishmalware fromnormal code. In the second phase, detection, the classiϐier is used to
check applications for malware. Notice that the detection phase is the one that is executed
byDroidPosture itself; the training phase is executed beforehand, bywhoevermanages the
DroidPosture service.

The selection of features is essential for the efϐiciency of the detectionmechanism. Redun-
dant or relevant features may present several problems such as misleading the learning
algorithm, and increasing model complexity and run time. We use the features below, ex-
tracted from the AndroidManifest.xml ϐile and the .dex ϐile. All features are binary, i.e.,
either the application has it or not:

• Requested permissions. Android uses permissions for restricting access to the de-
vice resources. Permissions are granted by the user during application installation,
or later in the latest versions of Android. Malicious applications request certain per-
missions (e.g., SEND_SMS, READ_SMS) more often than benign applications. Requesting
a security sensitive permission is a feature.

• Sensitive function calls. Among thousands of Android API functions, we consider API
calls invoked by applications that allow to access sensitive data or resources. For
example, APIs for accessing the user’s personal information, network details, device
ID, and sending SMSs.

• Suspicious intents. An intent is an abstract description of an operation to be per-
formed. Application components are activated using intents. We consider as features
intents that perform sensitive actions as features, e.g., android.intent.action.CALL
or android.intent.action.DIAL .

• Suspicious content URI. A content URI is used to locate data in a content provider. It
can be used to leak user’s personal data or to access another application’s data. For
example, content://sms/inbox can be used to read SMS messages from inbox.

• Arbitrary code execution. Execution of native code using JNI or Linux commands.
For example, Ljava/lang/Runtime;->exec() executes command exec() in a separate
process.
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In the training phase, to construct feature vectors, we retrieve the selected features from
each malware sample and benign application and store them as binary numbers, 1 or 0,
respectively for presence or absence of the feature. Furthermore we assign a class to each
feature vector, M for malware and B for benign application. Feature vectors are then pro-
vided to the machine learning classiϐier.

We use the k-Nearest Neighbours (kNN) algorithm as classiϐier [Alt92]. Given vectors of
N classes as training samples, kNN classiϐies an unknown sample by searching the entire
set of training samples for the k nearest based on a distance metric, then the unknown
sample is assigned to the class most common among its k nearest. k is a positive integer
and if k = 1, then the unknown sample is simply assigned to the class of the single nearest
sample.

6.2.5 Kernel Analysis

This section presents the kernel analysismodule of Figure 6.1. Again, thismodule provides
two kinds of analysis.

A rootkit is a piece of malware that gains privileged access to a system, hides itself from
the user and the OS, then stealthily carries out some kind of malicious activity. Rootkits
may be roughly classiϐied in two classes. User-level rootkits replace system binaries and
libraries with customized versions. Kernel-level rootkits modify the kernel, for example by
adding code into the running kernel memory image (/dev/mem) or by injecting a Loadable
Kernel Module (LKM).

The kernel analysismodule starts by calculating a hash of the normal world kernel and by
comparing it with the hash obtained during the boot of the device (Section 6.2.2). If the
hashes are different, the kernel analysis fails immediately.

6.2.5.1 Syscall Table Checker

The Android kernel provides system calls (syscalls) that allow applications in user mode
to interact with the kernel. Syscalls are one of the primary targets for kernel-level rootkit
writers. The kernel uses a syscall table, an array of pointers mapping each syscall number
to the corresponding function in kernel memory. Modifying a syscall table entry is a pop-
ular way to intercept the execution ϐlow of any system service. Kernel-level rootkits often
modify syscall table entries to point to new, malicious, system calls. Therefore, in order to
detect a kernel-level rootkit, the ϐirst step is to verify the integrity of the system call table.

Each time the kernel is compiled, a ϐile containing themapof kernel symbols and addresses
is created (System.map). Comparing the addresses of syscalls in the System.map with the
addresses in the syscall table during runtime detects if system calls have been redirected,
which may be an indication that the kernel has been compromised by a rootkit.

When DroidPosture is installed, our kernel analysismechanism starts by making a copy of
the addresses of system calls in System.map and storing them in the secure world. Then
during runtime the mechanism simply compares that copy with the values in the syscall

Deliverable 2.8 59



table in the normalworld. Recall thatwe assume that the system is not compromisedwhen
DroidPosture is installed.

6.2.5.2 Kernel Integrity Checker

Besides syscall table integrity checking, the kernel analysismodule is capable of checking
the kernel code formodiϐications todetect rootkits. As the kernel is not supposed to change
during runtime, changes are probably a sign ofmalware. For example, a rootkit can replace
the ϐirst few bytes of some system call functions with a jmp instruction that redirects the
execution to malicious code.

In order to verify the kernel integrity, the kernel integrity checker calculates a hash of the
kernel code memory pages of the Android OS running in the normal world and compares
it against a hash calculated when the system was in a pristine state, which is stored in the
secure world persistent storage partition. To calculate a hash value, the start address and
length of the target memory pages are required. The kernel integrity checker ϐinds the
virtual address of the kernel code in the copy of the System.map ϐile stored in the secure
world and translates this address to the secure world address space before evaluating the
hash value.

6.3 DroidPosture ImplementaƟon

We implemented a prototype on an i.MX53 QSB board equipped with a Cortex-A8 single
core 1 GHz processor, 1 GB DDR memory, and a 4GB MicroSD card. Most TrustZone-
enabled smartphones are locked in such a way that it is not possible to use the secure
world, so we opted for this board.

6.3.1 RunƟme Environment

Genode is a framework for building special-purpose operating systems [Gen14]. It pro-
vides a collection of OS building blocks, e.g., kernels, device drivers, and protocol stacks.
Genode can reduce OS complexity for security-sensitive scenarios, which makes it an ap-
pealing foundation for an OS to run in the secure world. Genode Labs has released a Trust-
Zone virtual machine monitor (VMM) demo for our board, which enables the execution of
Genode in the secure world, while a guest OS such as Linux, monitored by a Genode hyper-
visor, runs in the normal world. We used this demo as a starting point to implement our
prototype.

In the secure world, we implemented DroidPosture based on a program called tz_vmm that
runs on top of the Genode kernel. In the normal world, we run Android for the i.MX53
series from Adeneo, previously freescale (http://witekio.com/cpu/i-mx-53/). We used
the Linux/Android kernel modiϐied by Genode Labs for this board. The kernel is modiϐied
so as to prevent the normal world from directly accessing certain resources such as hard-
ware, persistent storage andmemory that are set as securewithin the central security unit

Deliverable 2.8 60



Table 6.1: Lines of code for the DroidPosture modules.

Modules Code Size (LOC)
Application Analysis 30484
Kernel Analysis 142
Posture Collector 86
Posture Monitor 121

(CSU) initialization. To create the secure world persistent storage partition, we used the
Genode partition manager (part_blk) that supports partition tables and provides a block
session for each partition of a SD card. This allows the partitions to be addressable as sep-
arate block sessions and makes it is easy to grant or deny access. We used this scheme to
reserve a partition for the secure world.

We run TZ_Driver in the kernel for an application in the normal world to issue a hyper-
call to exit the normal world and trap into the secure world, using the SMC instruction. A
shared buffer in RAM allows passing data between the two worlds. Some of the general
purpose CPU registers are used to store information about the shared buffer between the
two worlds, including its address and length.

In our prototypewe used components written in Python, which required installing Python
2.6 in the secure world using the Genode libports repository. This is undesirable because
it increases the size of the TCB. However, this is not a limitation of our proposal, but of the
current prototype. DroidPosture itself does not need to use Python code.

6.3.2 DroidPosture Modules

Table 6.1 shows the code size of each module implemented in the DroidPosture service.

The application analysismodule is based on Androguard [Anda], an open source tool writ-
ten in Python. It is able to unzip an APK ϐile, obtain its metadata and bytecodes. Andro-
guard has a module to create the control ϐlow graph (CFG) for each function in a bytecode
ϐile. In addition, Androguard has several built-in signatures that are able to detect known
malicious applications. Since Androguard is a complete feature-rich framework, we use
its modules to disassemble an application’s Dalvik bytecode, then create a CFG for each
function, and compare these CFGs with the malware CFGs (the signatures) that are stored
in the secure world persistent storage partition. In addition to Androguard, we modiϐied
Androwarn [Andb] to extract the features (Section 6.2.4.2) from malware and benign ap-
plications to build feature vectors for the learning-based detector.

The kernel analysismodule needs to access the normal world memory. TrustZone conϐig-
uration within Genode partitions the DDR RAM between the secure world and the normal
world using the multi-master multi-memory interface (M4IF) [Gen14]. tz_vmm is able to
read the normal world’s RAM via an IOMEM session during its start-up routine. Themem-
ory is mapped as uncached to the secure world’s address space, thus the whole normal
world memory can be accessed by the kernel analysis module in the secure world.
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Table 6.2: DroidPosture delay when called locally (in seconds).

Size Calls
APK .dex ii iii iv v vi vii viii
12KB 5KB 1.81 0.8 2.23 0.15 1.64 1.75 4.01
19MB 39KB 14.12 1.51 14.92 0.14 1.63 1.77 16.26
4MB 67KB 31.84 1.57 32.26 0.14 1.63 1.77 33.19

250KB 103KB 29.03 1.55 29.70 0.14 1.63 1.77 30.40
803KB 153KB 66.28 5.85 69.96 0.14 1.63 1.77 71.21
401KB 305KB 206.21 7.86 206.54 0.14 1.63 1.77 208.42
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Figure 6.3: DroidPosture delay when called locally with emphasis on the applicaƟons
analysis modules (in seconds).

6.4 Performance EvaluaƟon

Toevaluate theperformanceofDroidPosture,weuseda set ofmicro- andmacro-benchmarks
by considering calls to theDroidPosture service that: (i) return immediately (baseline); (ii)
do application analysis, only signature-based; (iii) do application analysis, only learning-
based; (iv) do application analysis, both mechanisms; (v) do kernel analysis, only syscall
table checker; (vi) do kernel analysis, only kernel integrity checker; (vii) do kernel analysis,
both mechanisms; (viii) do all the detection mechanisms.

In themicro-benchmarks, an application (in the normal world) sends a request for posture
and gets a reply back from DroidPosture (in the secure world). The macro-benchmarks
are used to evaluate the posture assessment transmission protocol. For this purpose, we
used a remote server which runs on a standard laptop. The server listens for incoming
requests from the application in the normal world and sends requests for posture to the
DroidPosture service running in the secure world of our board via the application.

6.4.1 Micro-benchmarks: mechanism performance

We used the calls mentioned above to evaluate the overhead of DroidPosture. To measure
the time for the baseline (i), the application in the normal world sends a request for pos-
ture to the DroidPosture service in the secure world that does not execute any analysis
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Table 6.3: DroidPosture delay when called by a remote service (sec.).

Size Calls
APK .dex ii iii iv v vi vii viii
12KB 5KB 1.85 0.89 2.29 0.17 1.67 1.78 4.59
19MB 39KB 14.27 1.56 14.94 0.16 1.65 1.78 16.74
4MB 67KB 31.86 1.60 32.38 0.16 1.65 1.78 34.05

250KB 103KB 29.07 1.57 29.77 0.16 1.65 1.78 31.24
803KB 153KB 66.39 5.87 69.12 0.16 1.65 1.78 72.32
401KB 305KB 206.61 7.88 207.11 0.16 1.65 1.78 208.89

module. We repeated the experiment 1000 times and obtained an average of 0.082 ms,
with standard deviation of 0.0061.

For the rest of the calls the process is similar, except that DroidPosture executes a subset
of the analysis modules. We expected calls to the application analysis modules to depend
on the size of the applications, so we considered a set of applications with different sizes
(downloaded from Google Play Store). We did experiments for the combinations of calls
(ii) to (viii) and all bytecode sizes. The results of these experiments are shown in Table
6.2. Moreover, in Figure 6.3 we represent the same values but only for the combinations of
application analysis modules and the total.

These results allow us to extract several conclusions. First, in the table it is clear that
calls to the kernel module have a delay that is independent of the size of the application,
as expected (columns v-vii). Second, both the table and the ϐigure show that delay of the
signature-based analysis growswith the size of the dex ϐile, to the point of becoming unus-
able (column ii). This was expectable as it converts all the functions in the bytecodes into
CFGs, which increase with the size of the code. Third, the table and the ϐigure also show
that learning-based analysis grows slowly with the size of the dex ϐile, showing that this
form of analysis is much simpler and faster than the signature-based (column iii). Fourth,
they also show that these two delays depend on the size of the dex ϐiles, not on the size of
the APK ϐiles, which often contain many ϐiles that are not analyzed, e.g., images and video
(columns ii-iii). Fifth, all mechanisms and their combination seem to be usable, except the
form of signature-based analysis we considered.

6.4.2 Macro-benchmarks: DroidPosture in a company

To evaluate the performance of the DroidPosture service in the context of a realistic use
case, we measured the total time for the remote server to send a request for posture and
to get a reply back from the service, e.g., from the coordination service (see Figure 6.2). We
used a LAN network to emulate the case of posture being provided inside a company.

We measured a round trip time (RTT) between our board and the remote server of 0.497
ms. We used the same calls as before. In this case, the time for a baseline call was 1.92ms,
with standard deviation of 0.096. The results of these experiments are shown in Table 6.3.
The trends are essentially the same that were observed with the micro-benchmarks, with
the additional delay of the network.
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6.5 Security EvaluaƟon

As previously mentioned, the speciϐic modules we implemented in DroidPosture serve
mainly to demonstrate the kinds of analysis it can make and that it can support several.
Nevertheless, we evaluated experimentally the quality of the detection made by our four
modules, which we present here.

Weused 500malware samples from theDrebin datasets [ASH+14]. These datasets contain
samples from 179 different malware families collected between August 2010 and October
2012. We balanced the number of samples fromdifferentmalware families. For benign ap-
plications, we randomly downloaded 30 applications from8different categories on Google
Play Store and veriϐied them throughVirusTotal that runs samples through around 10 anti-
virus products, in order to get some conϐidence that they had no malware.1.

To evaluate the detection performance of the learning-based detectionmechanism, we ran-
domly split our datasets into a training set (66%) and a test set (33%). The training setwas
used to determine the classiϐication model, whereas the test set was used for measuring
the detection performance. We use as metric accuracy, which evaluates the ratio of appli-
cations correctly classiϐied (it is given by the number of applications correctly classiϐied
as good or bad, divided by the total number of applications evaluated). The result shows
that the learning-based mechanisms using kNN with k = 3 had accuracy of 89.4% with a
false positive rate (i.e., percentage of samples wrongly identiϐied as malware) of 4%. The
detection performance is relatively good, although our dataset is not large. This suggests
that our features effectively model malicious code.

The signature-based detector achieves better detection performance for samples that have
signatures in the database. To test its performance, we created signatures from over 100
different malware families, such as DroidDream, DroidKungfu, DogoWar and foncy. The
signature-based detectorwas able to detectmalware samples from thosemalware families
correctly with approximately 100% accuracy. However, the learning-based mechanism is
more effective than the signature-basedmechanism for applications that contain unknown
malware.

To illustrate the effectivenessofkernel analysismodules,wedeployed theMindtrickkernel-
level rootkit on our board [Min14]. The Mindtrick rootkit replaces the entry for the read
syscall (sys_read) to instead point to the address of a malicious function injected into the
kernel. It allows attackers to obtain a reverse TCP shell on Android devices. Our kernel
analysis module in the secure world is able to detect this rootkit by reading each address in
the system call table from the normal worldmemory, and compare it with each syscall ad-
dress listed in System.map. It inserts an error for the sys_read syscall entry in the posture
report.

1https://www.virustotal.com
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6.6 Summary

This chapter presents the DroidPosture service for mobile devices running SafeCloud-FS’s
client applications. The service aims to securely detect intrusions in an Android device
leveraging the ARM TrustZone extension, and report posture information for external ser-
vices, such as the coordination service. We implemented a set of application and kernel
analysis mechanisms to exemplify the kind of posture assessment that our service can
do, although the speciϐic analysis to do are probably speciϐic to different scenarios. The
performance of these mechanisms seems to be adequate for many applications, with the
exception of the signature-based analysis that is slow for large applications.
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7 Conclusion
This deliverable presents SafeCloud’s cloud-backed secure ϐile system, SafeCloud-FS. This
system is based on SCFS, a modular cloud-backed ϐile system.

SafeCloud-FS contains several new features. First, it stores metadata encrypted, hiding
from the clouds information such as the names of the ϐiles, the directory tree, and their
timestamps (time of creation and of the last change).

Second, it allows verifying the availability and integrity of the ϐiles stored at the cloudwith-
out downloading it.

Third, it provides a set of mechanisms for client-side protection.

Finally, it may be used with DroidPosture in mobile devices to ensure the user can trust
the device.
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