
	 D2.7	–	Final	Secure	Block	Device	 1	

Final secure block device

D2.7

Project reference no. 653884

February 2018

	 D2.7	–	Final	Secure	Block	Device	 2	

Document	information	
Scheduled	delivery	 	 28.02.2018	
Actual	delivery	 	 28.02.2018	
Version	 	 	 1.2	
Responsible	Partner	 	 UniNE	
	

Dissemination	level	
Public	
	

Revision	history	
Date	 Editor	 Status	 Version	 Changes	 	 	
20.02.2018	 D.Burihabwa	 Draft	 0.1	 Initial	version	
27.02.2018	 D.Burihabwa	 Draft	 0.2	 Amended	version	
28.02.2018	 D.Burihabwa	 Final	 1.0	 Final	version	 	
28.02.2018	 D.Burihabwa	 Final	 1.1	 Internal	reviewers	correction	
28.02.2018	 H.	Mercier	 Final	 1.2	 Final	version	with	C&H	comments	
	

Contributors	
D.	Burihabwa	(UniNE)	
H.	Mercier	(UniNE)	
	

Internal	reviewers	
J.	Paulo	(INESC	TEC)	
S.	Schmerler	(Cloud&Heat)	
	

Acknowledgements	
This	 project	 is	 partially	 funded	 by	 the	 European	 Commission	 Horizon	 2020	 work	
programme	under	grant	agreement	no.	653884.	
	

More	information	
Additional	 information	 and	 public	 deliverables	 of	 SafeCloud	 can	 be	 found	 at	
http://www.safecloud-project.eu	
	 	

	 D2.7	–	Final	Secure	Block	Device	 3	

Table	of	contents	
Document	information	..	2	
Dissemination	level	..	2	
Revision	history	...	2	
Contributors	..	2	
Internal	reviewers	..	2	
Acknowledgements	...	2	
More	information	..	2	
Table	of	contents	...	3	
Executive	summary	...	4	
1	 SafeCloud	archival	using	data	entanglement	...	5	
1.1	 To	delete	or	not	to	delete	...	6	

2	 Architecture	...	7	
2.1	 Design	..	7	
2.2	 Implementation	...	7	

3	 Deployment	..	9	
3.1	 Local	deployment	..	9	
3.1.1	 Build	the	docker	images	..	9	
3.1.2	 Deploy	locally	...	9	

3.2	 Distributed	deployment	...	9	
3.2.1	 Create	a	docker	swarm	..	9	
3.2.2	 Build,	push	and	download	the	docker	images	...	10	
3.2.3	 Deploy	on	the	swarm	..	10	

4	 Configuration	...	11	
4.1	 Entanglement	parameters	..	11	
4.2	 Storage	parameters	...	12	

5	 Basic	usage	...	13	
5.1	 Insert	a	document	...	13	
5.2	 Read	a	document	..	13	
5.3	 Repair	a	document	...	13	

6	 Replica	management	...	14	
6.1	 Replica	management	by	reference	counting	..	14	
6.2	 Replica	management	by	sliding	window	..	14	

7	 Metadata	management	...	16	
7.1	 Metadata	storage	overhead	...	16	
7.2	 Metadata	reconstruction	...	16	

8	 Summary	...	18	
9	 References	..	19	
	
	 	

	 D2.7	–	Final	Secure	Block	Device	 4	

Executive	summary	
The	 past	 few	 years	 have	 seen	 the	 emergence	 of	 competitive	 commercial	 storage	
solutions.	Individuals	and	companies	looking	for	storage	space	to	share	documents	with	
the	world	or	host	their	remote	backups	now	have	plenty	of	cloud	alternatives	to	turn	to.	
But	whenever	a	user	chooses	one	of	these	solutions,	it	entrusts	the	cloud	provider	with	
the	durability	of	their	data.	To	do	so	at	a	reasonable	cost,	most	providers	perform	multi-
site	 replication.	 	While	 this	 enables	 recovery	 from	 accidental	 loss	 it	 does	 not	 prevent	
tampering	from	malicious	outsiders	and	even	the	provider	itself.	To	solve	this	problem,	
the	SafeCloud	project	provides	solutions	as	part	of	WP2.	

To	satisfy	different	storage	needs,	WP2	builds	upon	existing	self-hosted	and	commercial	
storage	components	(SS1)	to	offer	two	solutions:	the	secure	data	archive	(SS2)	and	the	
secure	file	system	(SS3).	SS3	is	a	POSIX-compliant	distributed	file	system	on	top	of	cloud	
storage	providers	that	focuses	on	the	security	of	the	data.	In	contrast,	SS2	is	a	RESTful	
object	store	focusing	on	durability.	With	different	objectives,	SS2	and	SS3	both	leverage	
existing	 bricks	 to	 split	 the	 data	 and	 trust	 in	 such	 a	 way	 that	 they	 can	 recover	 from	
independent	failures.	In	particular,	SS2	can	recover	from	failures	beyond	the	capabilities	
of	typical	replication	and	erasure	coding	schemes.	By	building	recursive	links	between	
documents	 through	 data	 entanglement,	 the	 secure	 data	 archive	 can	 detect	 and	 repair	
targeted	censoring	attempts.	In	the	rest	of	this	document	we	present	RECAST,	the	final	
prototype	version	of	the	secure	data	archive.	More	precisely,	we	describe	how	long-term	
protection	 (D2.2)	 and	 short-term	 protection	 (D2.5)	 are	 blended	 together	 in	 a	 final	
implementation	built	on	top	of	playcloud	(D2.2).	This	document	serves	as	a	user	manual	
for	the	deployment	and	experimentation	of	RECAST.	Parts	of	the	codebase	are	publicly	
available	at	https://github.com/safecloud-project.	

This	 document	 is	 organized	 in	 two	 parts.	 In	 Section	 1,	 we	 summarize	 STEP-archives	
introduced	first	in	D2.2	and	extended	in	D2.5.	From	Section	2	and	on,	we	present	a	user-
oriented	 manual	 describing	 how	 to	 deploy,	 configure	 and	 manage	 an	 instance	 of	
RECAST.	
	
	

Secure	storage	
SS1	

Secure	block	storage	
SS2	

Secure	data	archive	
SS3	

Secure	file	system	
Table	1:	secure	storage	solutions.	

	
	 	

	 D2.7	–	Final	Secure	Block	Device	 5	

1 SafeCloud	archival	using	data	entanglement	
As	part	of	SafeCloud,	we	introduce	STEP-archives,	a	storage	system	for	archiving	coded	
documents.	 	 STEP-archives	 were	 first	 presented	 in	 [MAL16],	 extensively	 discussed	 in	
D2.2,	further	discussed	in	D7.10	and	finally	extended	in	D2.5.	We	summarize	them	here	
for	completeness.	Using	data	entanglement	and	erasure-correcting	codes,	we	develop	a	
data	storage	architecture	where	a	stored	document	can	only	be	deleted	or	modified	by	
compromising	the	integrity	of	other	documents	in	the	system.	

There	are	two	main	objectives	behind	this	work.	The	first	objective	is	data	integrity.	We	
want	 to	 provide	 guarantees	 to	 users	 that	 their	 data	 cannot	 be	 deleted	 or	 corrupted	
without	 compromising	 other	 data	 stored	 by	 themselves	 or	 other	 users.	 The	 second	
objective	 is	 to	provide	censorship	resistance	by	forcing	a	censor	who	wants	to	tamper	
with	 data	 to	 do	 so	 noisily,	 i.e.,	 being	 forced	 to	 corrupt	 a	 large	 number	 of	 other	
documents	 in	 the	 system.	 An	 ancillary	 result	 deriving	 from	 the	 two	 objectives	 is	
increased	 protection	 against	 failures,	 which	 can	 be	 seen	 as	 attacks	 from	 random	 or	
failure-specific	censors.	
Definition	 1.	 A	 (s,t,e,p)-archive	 is	 a	 storage	 system	 where	 each	 archived	 document	
consists	of	a	codeword	with	s	 source	blocks,	 t	 tangled	blocks,	p	parity	blocks	and	 that	
can	correct	e	=	p	-	s	block	erasures.

When	 a	 document	 is	 archived,	 it	 is	 split	 into	 s	 ≥	 1	 source	 blocks.	 Using	 the	 s	 source	
blocks	 with	 t	 distinct	 old	 blocks	 already	 archived,	 a	 systematic	 maximum	 distance	
separable	 (MDS)	 code	 [LC04]	 is	 used	 to	 create	 p	 ≥	 s	 parity	 blocks	 which	 are	 then	
archived	on	the	system.	

An	archived	document	can	be	recovered	from	s	+	t	or	more	of	its	blocks.	The	code	can	
correct	p	 block	erasures	per	document	 codeword,	but	 since	 the	 source	blocks	 are	not	
archived	and	are	considered	as	erased,	at	most	𝑒 = 𝑝 − 𝑠	block	erasures	per	document	
on	 the	 storage	 medium	 can	 be	 corrected.	 Note	 that	 increasing	 t	 does	 not	 increase	
storage	utilization	overhead	or	error-correcting	capability	but	does	increase	coding	and	
decoding	complexity.	

An	attacker	can	censor	a	document	𝑑' 	by	erasing	more	than	e	of	its	blocks.	However,	by	
entangling	 new	documents	with	 documents	 already	 archived,	 it	might	 be	 possible	 for	
the	system	to	recover	the	deleted	blocks	by	recursively	decoding	other	documents	that	
use	them.	
The	challenging	part	of	our	approach	is	thus	to	choose	the	pointers	to	entangled	blocks.	
In	D2.5	we	 improved	 upon	D2.2	 by	 combining	 uniform	 random	 selection	 and	 normal	
distribution-based	selection	centred	on	the	tail	of	the	archive.	As	a	result,	we	maintained	
randomness	 in	 the	 structure	 preventing	 the	 attacker	 from	 planning	 the	 attack	 in	
advance	 while	 insuring	 a	 short-term	 protection	 of	 the	 newer	 documents	 through	
replication.	

For	detailed	information	on	STEP	-archives,	please	refer	to	D2.2	and	D2.5.	

	 D2.7	–	Final	Secure	Block	Device	 6	

1.1 To	delete	or	not	to	delete	

The	conflict	between	legitimate	and	illegitimate	deletion	is	always	present:	if	it	is	easy	to	
delete	files	for	a	legitimate	reason,	then	the	protection	offered	by	entangled	data	is	lost	
and	illegitimate	tampering	becomes	easier.	This	is	unavoidable,	and	in	this	sense	similar	
to	distributed	ledgers	such	as	blockchains:	tampering,	including	deletion,	must	be	very	
difficult	 by	 design.	 Throughout	 the	 project,	 we	 studied	 mechanisms	 to	 legitimately	
delete	 entangled	 files	 from	 a	 STEP-archive.	 The	 conclusion	 is	 that	 although	 deletion	
mechanisms	 are	 indeed	 possible,	 they	 require	 major	 design	 changes,	 are	 technically	
expensive,	 and	 always	 decrease	 the	 anti-tampering	 properties	 of	 a	 STEP-archive.	 This	
undesirable	tradeoff	was	not	worth	the	benefits	of	an	implementation,	thus	we	decided	
not	to	 implement	any	of	these	deletion	techniques.	This	clearly	signals	once	again	that	
our	STEP-archives		should	only	be	used	to	store	immutable	data.	
	 	

	 D2.7	–	Final	Secure	Block	Device	 7	

2 Architecture	
2.1 Design	

	
Figure	2	The	architecture	of	RECAST.	

	
Our	 implementation	 of	 the	 step-archive,	 named	 RECAST,	 is	 based	 on	 playcloud	
(introduced	 in	 D2.2	 and	 used	 for	 experimental	 evaluation	 in	 D2.5).	 As	 such	 its	
architecture	 is	 similar	 to	 playcloud’s	 with	 the	 addition	 of	 a	 few	 components	 for	
metadata	 management	 and	 coordination.	 The	 main	 components	 of	 the	 system	 are:	 a	
proxy/encoder,	 a	 metadata	 server,	 a	 coordination	 service	 and	 one	 or	 more	 storage	
nodes.		
The	 proxy	mediates	 interactions	 between	 clients	 and	 the	 system	 communicating	 over	
HTTP	through	a	REST	interface.	Users	may	insert	new	documents	using	a	PUT	request	
and	retrieve	them	by	issuing	at	GET	request.	
The	 encoder	 entangles	 the	 new	 documents	 with	 older	 ones	 already	 present	 in	 the	
system.	 Note	 that	 depending	 on	 the	 use	 cases	 and	 resources	 available,	 the	 proxy	 can	
take	care	of	the	encoding	without	delegating	to	a	dedicated	encoder	instance.	
The	metadata	server	keeps	track	of	the	stored	document.	The	information	helps	looking	
up	 blocks	 and	 checking	 their	 integrity	 as	 they	 are	 fetched	 from	 the	 storage	 nodes.	 In	
practice,	the	metadata	is	stored	in	a	centralized	key-value	store.	
The	coordination	service	enables	 separate	processes	 such	as	 the	proxy	and	 the	 repair	
daemon	to	operate	simultaneously	in	the	same	live	instance.	
Finally,	 storage	 nodes	 serve	 as	 backends.	 They	 are	 considered	 independent	 and	
leveraged	by	the	proxy	to	balance	the	reading	and	writing	load	evenly	(as	the	blocks	are	
placed	randomly).		
	

2.2 Implementation	

The	 actual	 implementation	 of	 RECAST	 is	 a	 combination	 of	 existing	 pieces	 of	 software	
and	new	code.	The	following	paragraph	is	a	brief	presentation	of	the	software	used.	
	
The	 proxy	 listens	 through	 a	 REST	 API	 written	 in	 Python(2.7)	 	 [python]	 exposed	 	 by		
uwsgi	 2.0.15	 [uwsgi]	 application	 server.	 The	 entanglement	 is	 implemented	 using	
PyEClib[pyec]	and	 liberasurecode[libec]	and	 Intel	 ISA-L	 [isa].	Communication	between	
separate	proxy	and	encoder	instances	is	done	using	grpc[grpc].	
The	 metadata	 server	 is	 a	 Redis[redis]	 server,	 an	 in-memory	 key-value	 store,	 whose	
writes	are	 logged	on	disk.	The	coordination	service	 is	Zookeeper[zkp].	Finally,	 storage	
nodes	can	either	be	redis	or	minio[min]	nodes.	

	 D2.7	–	Final	Secure	Block	Device	 8	

Each	 component	 is	 packaged	 as	 a	 separate	 docker	 [docker]	 container	 and	 can	 be	
deployed	 either	 locally,	 using	 docker-compose	 [dc]	 or	 on	 multiple	 machines	 using	
docker	swarm	mode	[ds]	(see	Deployment	section).		
	 	

	 D2.7	–	Final	Secure	Block	Device	 9	

3 Deployment	
This	section	details	the	deployment	procedure	for	RECAST.	As	RECAST	mostly	relies	on	
docker	for	ease	of	build	and	deployment,	please	make	sure	that	you	have	the	following	
requirements	installed	on	your	machine.	

3.1 Local	deployment	

A	local	deployment	only	requires	docker[docker]	and	docker-compose[dc].	This	process	
follows	2	steps:	

• Build	the	docker	images	
• Deploy	locally	

	

3.1.1 Build	the	docker	images	

At	the	top	of	the	project,	make	sure	file	docker-compose.yml	is	present	and	then	run:	

This	command	will	build	all	 the	 images	that	are	not	pre-built	 in	 the	dockerhub.	At	 the	
end	of	the	process	you	should	be	ready	to	deploy	recast.	

3.1.2 Deploy	locally	

Having	made	sure	that	the	images	were	built	properly,	run	

You	 should	 now	 have	 a	 running	 instance	 of	 RECAST	 listening	 on	 port	 3000.	 You	 can	
interact	with	 this	 instance	 by	 trying	 to	 upload	 or	 read	 files	 as	 described	 in	 the	 basic	
usage	section.	
To	stop	your	instance,	run:	

3.2 Distributed	deployment	

RECAST	can	be	deployed	in	a	distributed	mode	where	the	components	are	spread	over	
multiple	machines.	 To	 deploy	 to	multiple	machines,	 RECAST	uses	 docker	 and	docker-
swarm	[ds].	A	typical	deployment	follows	3	steps:	

• Create	a	docker	swarm	
• Build,	push	and	download	the	docker	images	
• Deploy	on	the	swarm	

	

3.2.1 Create	a	docker	swarm	

First	ensure	that	all	 the	machines	that	are	to	be	added	to	the	cluster	have	the	docker-
engine	installed.	One	of	these	machines	is	to	be	chosen	as	the	leader	of	the	swarm.	On	
that	machine,	run:	

	

docker-compose build

	

docker-compose up --detach=true

	

docker-swarm init

	

docker-compose down

	 D2.7	–	Final	Secure	Block	Device	 10	

Take	good	note	of	the	leader	token	given	as	output	of	the	command	as	it	is	going	to	be	
used	 by	 the	 other	 machines	 to	 join	 the	 cluster.	 On	 the	 other	 machines,	 run	 docker-
swarm	join	with	the	token	to	create	the	swarm.	

By	the	end	of	the	process,	the	swarm	is	assembled	and	ready	to	move	on	image	building	
and	deployment.	

3.2.2 Build,	push	and	download	the	docker	images	

In	order	run	in	swarm	mode,	the	docker	images	used	by	RECAST	must	be	built	and	then	
pushed	 to	 a	 docker	 registry.	 More	 specifically,	 the	 proxy	 image	 must	 be	 pushed	 for	
RECAST	 to	work.	For	 this	process,	make	sure	 that	you	have	an	account	on	 the	docker	
hub.	
First,	build	the	image:	

Enter	your	docker	credentials	if	you	have	not	yet	been	authenticated.	

Then	push	the	image	to	the	docker	hub.	

Finally,	 edit	 the	 docker-compose-production.yml	 to	 replace	 the	 username	 prefix	 in	 the	
proxy	service.	

	

3.2.3 Deploy	on	the	swarm	

After	successfully	building	and	pushing	the	docker	image	to	the	docker	hub,	it	is	time	to	
get	RECAST	running.	At	the	top	of	the	project,	run:	

While	you	will	get	control	of	your	console	prompt	quickly	after	running	the	command	
above,	 the	complete	deployment	of	RECAST	might	take	some	time.	 Indeed,	on	the	first	
deployment	over	the	swarm	the	images	required	to	the	container	must	be	pulled	by	the	
machines	running	the	matching	service.	 	

docker stack deploy --compose-file docker-compose-production.yml recast

docker swarm join <leader-token-here>

	

docker build --file pyproxy/Dockerfile –-tag <your-docker-
username>/proxy

docker push <your-docker-username>/proxy

docker login

…
version: "3"
services:
 proxy:
 …
 image: <your-docker-username>/proxy
 …

Figure	3	Section	to	edit	in	docker-compoe-production.yml.	

	 D2.7	–	Final	Secure	Block	Device	 11	

4 Configuration	
RECAST	can	be	 launched	without	changes	 to	 the	original	configuration	but	 the	default	
settings	 may	 not	 suit	 all	 use	 cases.	 Further	 fine-tuning	 may	 be	 needed	 to	 match	 the	
desired	configuration.	In	particular,	RECAST’s	settings	can	be	tweaked	along	two	axes:	

1. Entanglement	parameters	
2. Storage	parameters	

The	 tweaked	parameters	ultimately	determine	 the	 storage	overhead	 (in	 terms	of	disk	
utilization)	to	expect	when	launching	a	RECAST	instance:	

𝑠𝑡𝑜𝑟𝑎𝑔𝑒	𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 	
𝑝
𝑠
∗ 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝑓𝑎𝑐𝑡𝑜𝑟	

The	 system	operator	must	 therefore	be	 careful	 that	 the	 chosen	RECAST	 configuration	
matches	the	resources	available.	
	

4.1 Entanglement	parameters	

RECAST	 implements	 the	 (s,t,e,p)-archive	 scheme	 and	 lets	 the	 operator	 set	 the	 coding	
parameters.	The	number	of	source	blocks	(s),	of	pointers	(t)	and	of	parities	(p)	can	be	
tuned	 by	 editing	 the	 content	 of	 configuration.json	 (at	 the	 top	 of	 the	 project)	 in	 the	
entanglement	section.	

The	file	configuration.json	serves	as	the	central	configuration	file.	To	spread	the	changes	
to	other	configuration	files,	the	operator	needs	to	run	the	following	command	from	the	
top	of	the	project.	

The	 configuration	 changes	 should	 now	 have	 spread	 to	 the	 other	 configuration	 files:	
pyproxy/dispatcher.json	and	pyproxy/pycoder.cfg.	

{
 …
 "entanglement": {
 "type": "step",
 "configuration": {
 "s": 1,
 "t": 10,
 "p": 3
 }
 }
 …
}

Figure	4	Content	to	modify	in	configuration.json.	

./scripts/configure.py

{
…
 "entanglement": {
 "configuration": {
 "p": 3,
 "s": 1,
 "t": 10
 },
 "type": "step",
…
}

[main]
…
splitter = entanglement
…
[entanglement]
type = step
…
[step]
s = 1
t = 10
p = 3

Figure	5	Excerpts	of	pyproxy/dispatcher.json	and	pyproxy/pycoder.cfg	after	changes	in	
entanglement	configuration.	

	 D2.7	–	Final	Secure	Block	Device	 12	

4.2 Storage	parameters	

For	local	or	distributed	experimentation,	the	number	and	type	of	storage	nodes	(minio	
[min]	 or	 redis[redis])	 can	 be	 specified	 in	 configuration.json.	 You	 can	 also	 change	 the	
replication	factor,	which	will	impact	the	storage	overhead	before	replica	management.	

	
The	change	can	then	be	propagated	to	the	other	configuration	files	by	running:		

	
This	 will	 result	 in	 a	 matching	 change	 in	 files	 docker-compose.yml,	 docker-compose-
production.yml	and	pyproxy/dispatcher.json.	

	
Please	note	that	pyproxy/dispatcher.json	is	the	actual	configuration	file	read	by	RECAST	
at	startup	time	(configuration.json	is	ignored	at	runtime	and	its	changes	must	be	spread	
by	 running	 ./scripts/configure.py	beforehand).	 In	 consequence,	pyproxy/dispatcher.json	
can	 be	 manually	 configured	 to	 connect	 to	 other	 storage	 backends	 that	 may	 not	 be	
containerized,	deployed	locally	or	even	part	of	the	swarm.	The	operator	should	take	care	
of	 deleting	 the	 unnecessary	 containers	 from	docker-compose.yml	 and	docker-compose-
production.yml	before	starting	RECAST	when	their	storage	backends	are	not	managed	by	
docker.	 	

scripts/configure.py

…
storage-node-42:	
 image: redis:3.2.8
 deploy:
 placement:
 constraints:
 - node.role == worker
…

…
storage-node-42:
 image: redis:3.2.8
 volumes:
 - ./volumes/storage-node-
42/:/data/
 container_name: storage-node-42
…

Figure	6	Excerpts	of	docker-compose.yml,	docker-compose-production.yml	and	
pyproxy/dispatcher.json	after	changes	in	storage	configuration.	

 …
 "replication_factor": 2,
 "providers": {
 …
 "storage-node-42": {
 "host": "storage-node-42",
 "type": "redis",
 "port": 6379
 },
 …,
 },
 …

…
 "storage": {
 "nodes": 42,
 "type": "redis",
 "replication_factor": 2
 },
…

	 D2.7	–	Final	Secure	Block	Device	 13	

5 Basic	usage	
Users	can	 interact	with	a	RECAST	 instance	 through	 the	REST	 interface	using	an	HTTP	
client	such	as	curl	[curl]	or	any	other	software	library	of	their	choice.	

5.1 Insert	a	document	

Clients	can	upload	files	to	the	archive	using	a	simple	command.	

In	this	case,	the	client	uploads	the	document	located	at	path/to/file	under	the	key	name.	
On	a	successful	request,	RECAST	replies	to	the	request	with	the	chosen	document	name.	
In	 case	 of	 the	 failure	 RECAST	 replies	with	 the	 appropriate	 HTTP	 error	 code	 (400	 on	
empty	requests	or	409	when	trying	to	overwrite	a	document).	
In	the	case	where	a	document	cannot	be	stored	under	a	user-prefered	name,	the	client	
can	choose	to	upload	without	a	filename	and	let	RECAST	pick	one	for	them.	
	

RECAST	will	 then	 pick	 a	 random	UUIDv4	 as	 the	 name	 and	 send	 it	 in	 the	 reply	 to	 the	
client.	

5.2 Read	a	document	

Once	uploaded	to	RECAST,	 files	can	be	read	using	 the	 filename	picked	by	 the	client	or	
the	user	at	upload	time.	

With	this	command,	a	user	can	recover	a	copy	of	a	document	stored	in	RECAST	under	
the	key	name	in	path/to/file.	

	
If	a	user	is	only	interested	in	reading	metadata	about	a	given	document,	they	can	issue	a	
request	on	the	document	and	get	result	as	a	JSON	object	detailing	information	about	the	
document,	its	blocks	and	the	pointers	used	for	entanglement.	
	

5.3 Repair	a	document	

In	 case	 of	 loss	 of	 one	 or	 several	 blocks,	 the	 repair	 can	 be	 operated	 by	 attaching	 to	 a		
proxy	instance	and	running	the	following	command:	

When	auditing	the	entire	archive	to	check	for	corruption	of	blocks,	run:	

	
	 	

curl --request PUT http://proxy-ip:3000/name --upload-file path/to/file

curl --request PUT http://proxy-ip:3000/ --upload-file path/to/file

curl --request GET http://proxy-ip:3000/name --output path/to/file

curl --request GET http://proxy-ip:3000/name/__meta

docker exec --interactive --tty proxy ./repair.py <block ids>

docker exec --interactive --tty proxy ./repair.py

	 D2.7	–	Final	Secure	Block	Device	 14	

6 Replica	management	
The	right	selection	of	pointers	for	entanglement	is	paramount	to	long-term	protection	of	
documents	in	the	archive.	D2.5	described	how	to	achieve	better	selection	results	using	a	
mixed	approach	by	picking	one	part	of	the	pointers	over	the	entire	archive	and	the	other	
in	a	sliding	window	over	the	most	recent	documents	that	entered	the	archive	(aka	the	
tail).	In	addition,	we	proposed	a	similar	window-based	approach	to	provide	short-term	
protection	to	documents	in	the	tail	of	the	archive	through	replication.	To	deal	with	the	
storage	overhead	of	 this	 replication	 (see	Section	4),	our	 implementation	provides	 two	
strategies	 for	 replica	management:	 reference-counting	 and	window-based.	The	 rest	 of	
this	section	describes	these	strategies	and	their	practical	uses.	
	

6.1 Replica	management	by	reference	counting	

A	new	document	entering	the	archive	is	entangled	and	split	into	blocks.	These	blocks	are	
immediately	 replicated,	 and	 the	 copies	 are	 spread	 across	 the	 storage	 nodes	 for	
redundancy.	From	there	on,	the	blocks	can	be	used	as	pointers	for	the	entanglement	of	
new	 documents.	 Thus,	 the	 reference	 count,	 or	 the	 number	 of	 times	 a	 block	 has	 been	
selected	 as	 a	 pointer,	 is	 bound	 to	 increase	 over	 time.	 As	 this	 reference	 count	 also	
informs	 us	 on	 the	 possibility	 of	 recursive	 reconstruction	 in	 case	 of	 failure,	 we	 can	
leverage	it	to	decide	how	to	deal	with	the	explosion	in	storage	overhead.	
Using	 a	 threshold	 value	 th,	 defined	 by	 the	 system	 operator,	 the	 replica	 management	
script	can	crawl	 the	metadata	 looking	 for	blocks	that	have	been	pointed	at	th	or	more	
times	and	delete	their	copies	to	lower	the	storage	overhead	across	the	storage	nodes.	
	
This	strategy	guarantees	recovery	of	all	blocks	in	case	of	block	loss	but	requires	expert	
fine-tuning.	Indeed,	poor	settings	can	lead	to	an	archive	where	the	storage	overhead	is	
not	mitigated	as	best	as	possible	or	worse	where	some	documents	cannot	be	recovered	
in	case	of	failure.	
	
To	 run	 the	 replica	 management	 script	 using	 a	 reference-counting	 base	 in	 a	 RECAST	
instance	on	Docker,	run:	

Or	as	a	daemon,	running	at	fixed	intervals:	

	

6.2 Replica	management	by	sliding	window	

A	 new	 document	 entering	 the	 archive	 is	 entangled	 and	 split	 into	 blocks.	 As	 a	 recent	
document,	it	is	still	part	of	the	tail	of	the	archive	made	of	the	w	most	recent	documents	
in	the	archive.	In	a	system	that	uses	mixed	pointer	selection,	and	is	thus	biased	towards	
documents	in	the	tail,	we	can	assume	that	as	documents	exit	the	window,	they	can	have	
been	used	as	pointers	 and	 copies	of	 their	blocks	 can	be	discarded	 (see	D2.5	 for	more	
details).	
	

docker	exec	--interactive	--tty		proxy	./scrub.py	--pointers	<th>	

docker	run	--interactive	--tty		proxy	--entrypoint	./scrub.py	--pointers	<th>	\	
																																																																																																																			--interval	<seconds>	

	 D2.7	–	Final	Secure	Block	Device	 15	

The	 sliding	window	 strategy	 offers	 a	way	 to	maintain	 a	 predictable	 storage	 overhead	
and	even	guarantees	that	 the	size	occupied	by	replicas	decreases	over	time	relative	to	
the	 size	 of	 the	 archive.	 But	 it	 does	 so	with	 little	 regard	 to	 the	 actual	 recoverability	 of	
blocks	 themselves.	 Indeed,	 a	 document	 could	 exit	 the	 window	 without	 all	 his	 blocks	
being	pointed	at	least	once.	
	
To	run	the	replica	management	script	using	a	sliding	window	base	in	a	RECAST	instance	
on	Docker,	run:	

Or	as	a	daemon,	running	at	fixed	intervals:	

	 	

docker	exec	--interactive	–-tty		proxy	./scrub.py		--window	<w>		

docker	run	--interactive	--tty		proxy	--entrypoint	./scrub.py	--window	<w>	\	
																																																																																																																			--interval	<seconds>	

	 D2.7	–	Final	Secure	Block	Device	 16	

7 Metadata	management	
Both	 long-term	 and	 short-term	 protection	 schemes	 require	 the	 maintenance	 of	
metadata	by	the	system	operator.	Random	or	mixed	entanglement	imply	keeping	a	list	
of	pointers	and	blocks	 location.	Replication	management	can	only	be	performed	when	
copies	 of	 blocks	 can	 be	 identified	 and	 located.	 In	 our	 implementation,	 a	 centralized	
metadata	 server	 is	 set	 up	 to	 keep	 track	 of	 all	 this	 information.	 Please	 note	 that	 a	
centralized	metadata	server	is	only	necessary	because	block	placement	is	random.	If	the	
blocks	 were	 placed	 in	 a	 deterministic	 fashion,	 we	 could	 remove	 this	 component.	
However	as	(s,t,e,p)-archives	build	upon	randomness	to	prevent	pre-computed	attacks,	
we	have	chosen	not	to	implement	such	a	block	placement	model.	
In	 the	 rest	 of	 this	 section,	 we	 describe	 metadata	 management	 in	 our	 prototype,	 its	
strength	and	limitations,	and	how	they	can	be	mitigated.	
	
For	operational	purposes,	the	secure	archive	needs	to	keep	track	of	blocks’	location	and	
the	 entanglement	 graph.	 This	metadata	 is	maintained	 in	 a	 Redis	 [redis]	 database	 and	
serves	as	the	source	of	truth	for	the	system.	Components	of	the	system	that	need	to	read	
or	 write	 metadata	 interact	 with	 the	 database	 using	 a	 Python	 [python]	 client.	 Such	
components	include	the	proxy	or	the	replica	management	and	block	repair	scripts.	

7.1 Metadata	storage	overhead	

	
In	 terms	 of	 growth,	 the	 storage	 overhead	 is	 predictable.	 Variations	 can	 be	 observed	
depending	on	the	configuration	of	STeP	but	storing	1	document	adds	around	1kB	to	the	
metadata	server	regardless	of	the	size	of	the	documents	stored	in	the	archive.	
	

	
Figure	7	Metadata	storage	overhead	with	an	increasing	number	of	documents	in	the	

archive	with	different	STeP	configurations.	
	
The	 storage	overhead	of	 the	metadata	 can	 further	be	 reduced	 through	 several	means.	
Better	normalization	would	reduce	the	overall	size	by	avoiding	repetition	in	document	
entries.	This	would	be	achievable	at	the	cost	of	longer	and	more	complex	queries.	

	

7.2 Metadata	reconstruction	

Our	 system	 leverages	 randomness	 in	 the	 selection	 of	 tangled	 blocks	 and	 in	 the	
placement	of	new	blocks	into	storage	nodes.	If	metadata	is	unavailable,	damaged	or	lost,	
stored	blocks	become	meaningless.	To	mitigate	this	 issue,	we	 implement	a	mechanism	
to	reduce	risks	of	complete	loss	of	access	to	the	metadata	server.	This	procedure	enables	
the	system	to	reconstruct	 the	metadata	 from	the	data	 itself.	Under	 the	assumptions	of	

	 D2.7	–	Final	Secure	Block	Device	 17	

available	and	honest	storage	nodes	as	well	as	pristine	data	blocks,	we	scan	the	storage	
nodes,	 examining	 the	 hosted	 blocks	 and	 reconstruct	 the	 associated	 metadata.	 This	
solution	 is	 possible	 because	we	 prepend	 the	 entanglement	 information	 to	 each	 block	
before	sending	 it	 to	 the	storage	nodes.	More	specifically,	 given	a	block,	 this	metadata-
overhead	includes	a	reference	to	all	the	pointers	selected	during	the	entanglement	of	the	
document.	 In	 our	 prototype,	 it	 consists	 of	 a	 fixed	 80	 Bytes	 per	 block	 (erasure	 coding	
information)	 and	 an	 additional	 t	 *	 (average	 block	 name	 length).	 As	 blocks	 are	 named	
according	 to	 the	 document	 they	 belong	 to	 and	 their	 position	 in	 the	 codeword,	 this	
average	length	depends	on	the	naming	patterns	in	the	archive.		
	
Figure	 7	 shows	 the	 availability	 of	 documents	 during	metadata	 reconstruction	 in	 a	 16	
nodes	 archive	 with	 different	 configurations	 and	 replication	 factors.	 If	 all	 blocks	 are	
replicated,	we	can	expect	to	be	able	to	serve	all	documents	before	reading	from	all	the	
storage	 nodes	 as	 depicted	 by	 the	 full	 points.	 In	 contrast,	 if	 none	 of	 the	 blocks	 are	
replicated,	many	storage	nodes	will	have	to	be	crawled	through	until	we	gather	enough	
knowledge	about	the	entire	system.	When	running	an	instance	of	our	system	with	mixed	
entanglement	and	replication	management	enabled,	the	number	of	replicated	blocks	is	
constant	as	the	archive	grows.	Following	this	principle,	the	number	of	nodes	that	need	
to	be	explored	to	rebuild	a	functional	archive	increases.		

	
To	rebuild	the	metadata	after	a	loss	of	the	metadata	server,	some	information	about	the	
RECAST	instance	must	be	gathered.	The	hostname	(or	IP	address)	and	the	port	number	
used	by	the	metadata	server	as	well	as	the	path	to	dispatcher.json.	If	you	have	a	running	
RECAST	using	Docker,	attach	to	the	proxy	container	and	run	the	following	command:	

		 	

docker exec -–interactive --tty proxy ./rebuild_metadata.py -–host
<host> --port <port> --conf </path/to/dispatcher>

Figure	8	Availability	of	documents	during	metadata	reconstruction	in	a	16	
nodes	archive	with	different	STeP	configurations	and	replication	factors.	

	 D2.7	–	Final	Secure	Block	Device	 18	

8 Summary	
This	 deliverable	 presents	 the	 final	 implementation	 of	 the	 secure	 block	 device	 which	
leverages	 the	system	 introduced	 in	D2.2	and	extended	 to	protect	 the	whole	archive	 in	
D2.5.	Re-introducing	(s,t,e,p)-archives	as	the	cornerstone	of	this	prototype,	it	covers	the	
architecture	 of	 the	 final	 system,	 RECAST,	 and	 presents	 a	 user-oriented	manual	 for	 its	
deployment,	use	and	maintenance.	
	 	

	 D2.7	–	Final	Secure	Block	Device	 19	

9 References	
[curl]	 https://curl.haxx.se/	
[docker]	 https://www.docker.com/	
[dc]	 https://docs.docker.com/compose/	
[ds]	 https://docs.docker.com/engine/swarm/	
[grpc]	 http://www.grpc.io/	
[isa]	 https://github.com/01org/isa-l	
[LC04]	 Shu	Lin	and	Daniel	J.	Costello.	Error	Control	Coding.	Paerson	Prentice	Hall,	

second	edition,	2004.		
[libec]	 https://github.com/openstack/liberasurecode/	
[MAL16]	 Hugues	 Mercier,	 Maxime	 Augier	 and	 Arjen	 K.	 Lenstra,	 STEP-archival:	

Storage	 Integrity	 and	 Tamper	 Resistance	 using	 Data	 Entanglement,	
Submitted	to	the	IEEE	Transactions	on	Information	Theory,	2016	(revised	
2017).	Available	upon	request.	

[min]	 	 https://minio.io/	
[pyec]	 	 https://github.com/openstack/pyeclib	
[python]	 https://www.python.org/	
[redis]	 https://redis.io	
[uwsgi]	 https://github.com/unbit/uwsgi	
[zkp]	 https://zookeeper.apache.org/	
	
	
	
	

