
 
 
 
 
 
 
 
 

Short-Term Secure Block Device 
 

D2.5 
 

Project reference no. 653884 
 

August 2017 
	  



	 D2.5	–	Short-term	secure	block	device	 	
2	

Document	information	
Scheduled	delivery	 	 31.08.2017	
Actual	delivery	 	 31.08.2017	
Version	 	 	 1.0	
Responsible	Partners	 UniNE	
	

Dissemination	level	
Public	
	

Revision	history	
Date	 Editor	 Status	 Version	 Changes	 	 	
28.06.2017	 R.	Barbi	 Draft	 0.1	 Initial	TOC	
03.07.2017	 H.	Mercier	 Draft	 0.2	 Initial	comments	
14.07.2017									D.	Burihabwa	 Draft	 0.3	 Update	evaluation	
14.07.2017	 V.	Schiavoni	 Draft	 0.4	 Update	figs,	pass	on	text.	
14.07.2017	 D.	Burihabwa	 Draft	 0.5	 Update	refs	
18.07.2017	 H.	Mercier	 Draft	 0.6	 Small	changes	and	comments	
20.07.2017	 R.	Barbi	 Draft	 0.7	 Address	few	comments	
20.07.2017	 D.	Burihabwa	 Draft	 0.8	 Address	comments	on	source	code	

and	experiment	parameters	
23.08.2017	 S.	Schmerler	 Draft	 0.9	 Comments	re.	reference	list	
28.08.2017	 R.	Barbi	 Draft	 0.10	 Add	simulation	results	
28.08.2017	 D.	Burihabwa	 Draft	 0.11	 Pass	over	implementation	section	
29.09.2017	 R.Barbi	 Draft	 0.12	 Updating	section	3	
30.08.2017	 V.	Schiavoni	 Draft	 0.13	 Pass	on	text	
30.08.2017	 D.	Burihabwa	 Draft	 0.14	 Update	Section	4	and	fix	references	
30.08.2017	 D.Burihabwa	 Draft	 0.15	 Update	conclusion	
30.08.2017	 R.Barbi	 Draft	 0.16	 Address	comments	
30.08.2017	 D.Burihabwa	 Draft	 0.17	 Update	section	4	
30.08.2017	 S.	Schmerler	 Draft	 0.18	 C&H	second	review		
30.08.2017	 M.	Correia	 Draft	 0.18	 INESC-ID	second	review		
31.08.2017	 H.	Mercier	 Final	 1.0	 Final	version	
	

Contributors	
R.Barbi,	H.	Mercier,	D.	Burihabwa	(UniNE)	

Internal	reviewers	
M.	Correia	(INESC-ID),	S.	Schmerler	(C&H),	V.	Schiavoni	(UniNE)	

Acknowledgements	
This	 project	 is	 partially	 funded	 by	 the	 European	 Commission	 Horizon	 2020	 work	
programme	under	grant	agreement	no.	653884.	



	 D2.5	–	Short-term	secure	block	device	 	
3	

More	information	
Additional	 information	 and	 public	 deliverables	 of	 SafeCloud	 can	 be	 found	 at	
http://www.safecloud-project.eu	 	
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Executive	summary	
The	deliverable	presents	the	design	of	the	short-term	secure	block	device	along	with	the	
description	of	the	extended	prototype	implementation	(Playcloud).		
In	D2.2,	we	showed	how	to	provide	anti-tampering	and	data	integrity	once	data	has	been	
stored	for	a	long	period	of	time	in	the	system	using	uniform	entanglement.	Unfortunately,	
uniform	 entanglement	 leaves	 recently	 archived	 documents	 poorly	 protected.	 In	 this	
deliverable,	we	discuss	how	to	improve	upon	long-term	entanglement	to	guarantee	anti-
tampering	and	data	integrity	to	young	documents.	In	particular,	we	examine	the	use	of	
temporary	replication	together	with	entanglement	to	provide	the	same	level	of	protection	
across	 the	whole	archive:	replication	protects	young	documents	until	 they	become	old	
enough	to	be	protected	by	entanglement.	
To	 decrease	 the	 storage	 overhead	 of	 using	 uniform	 entanglement	 together	 with	
replication,	we	also	study	alternative	heuristics	 for	entanglement	offering	strong	 long-
term	protection	and	fast	protection	to	young	documents	so	that	fewer	of	them	need	to	be	
replicated.	
We	first	discuss	requirements	and	design	considerations.	We	then	provide	details	about	
the	 extended	 architecture	 of	 Playcloud,	 our	 experimental	 testbed	 to	 evaluate	 the	
performance	tradeoffs	of	the	security	guarantees	offered	by	the	SafeCloud	platform.	 	
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1 Introduction	
The	SafeCloud	consortium	provides	three	storage	solutions	as	shown	in	Figure	1:	secure	
block	 storage	 (SS1),	 a	 secure	 data	 archive	 (SS2),	 and	 a	 secure	 file	 system	 (SS3).	 This	
deliverable	 focuses	 on	 SS2.	More	 precisely,	 it	 describes	 how	 short-term	 protection	 of	
archived	documents	is	achieved.	By	short-term,	we	mean	that	anti-tampering	and	data	
integrity	 can	 be	 provided	 to	 recent	 data	 in	 the	 system.	 This	 is	 complementary	 to	 the	
description	of	long-term	data	entanglement	in	D2.2,	and	together	they	form	the	core	of	
SS2.	This	deliverable	also	describes	the	extended	version	of	Playcloud,	the	experimental	
testbed	used	to	test	all	the	storage	solutions	of	SafeCloud.	
This	 document	 is	 organized	 as	 follows.	 In	 Section	 2,	 we	 summarize	 STEP-archives	
introduced	in	D2.2.	In	Section	3,	we	revisit	how	we	use	data	entanglement	in	our	secure	
data	archiving	system.	We	introduce	temporary	replication	for	short-term	protection	and	
we	propose	alternatives	to	uniform	random	entanglement	that	offer	both	good	long-term	
and	fast	short-term	anti-tampering	and	data	integrity.	Finally,	in	Section	4,	we	describe	
our	current	implementation	prototype	and	testbed.	The	implementation	was	described	
in	deliverable	D2.2,	and	this	current	deliverable	includes	the	progress	made	in	the	last	
twelve	months.	
	

Secure	storage	
SS1	

Secure	block	storage	
SS2	

Secure	data	archive	
SS3	

Secure	file	system	
Figure	1:	secure	storage	solutions.	
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2 SafeCloud	archival	using	data	entanglement	(revisited)	
As	part	of	SafeCloud,	we	introduce	STEP-archives,	a	storage	system	for	archiving	coded	
documents.	 	 STEP-archives	 were	 first	 presented	 in	 [MAL16],	 extensively	 discussed	 in	
D2.2,	and	further	discussed	in	D7.10.	We	summarize	them	here	for	completeness.	Using	
data	entanglement	and	erasure-correcting	codes,	we	develop	a	data	storage	architecture	
where	a	stored	document	can	only	be	deleted	or	modified	by	compromising	the	integrity	
of	other	documents	in	the	system.	
There	are	two	main	objectives	behind	this	work.	The	first	objective	is	data	integrity.	We	
want	 to	 provide	 guarantees	 to	 users	 that	 their	 data	 cannot	 be	 deleted	 or	 corrupted	
without	 compromising	 other	 data	 stored	 by	 themselves	 or	 other	 users.	 The	 second	
objective	 is	 to	provide	censorship	resistance	by	 forcing	a	censor	who	wants	to	tamper	
with	data	to	do	so	noisily,	i.e.,	being	forced	to	corrupt	a	large	number	of	other	documents	
in	the	system.	An	ancillary	result	deriving	from	the	two	objectives	is	increased	protection	
against	failures,	which	can	be	seen	as	attacks	from	random	or	failure-specific	censors.	
Definition	 1.	 A	 (s,t,e,p)-archive	 is	 a	 storage	 system	 where	 each	 archived	 document	
consists	of	a	codeword	with	s	source	blocks,	t	tangled	blocks,	p	parity	blocks	and	that	can	
correct	e	=	p	-	s	block	erasures. 

When	a	document	is	archived,	it	is	split	into	s	≥	1	source	blocks.	Using	the	s	source	blocks	
with	 t	 distinct	 old	 blocks	 already	 archived,	 a	 systematic	maximum	distance	 separable	
(MDS)	code	[LC04]	is	used	to	create	p	≥	s	parity	blocks	which	are	then	archived	on	the	
system.	
An	archived	document	can	be	recovered	from	s	+	t	or	more	of	 its	blocks.	The	code	can	
correct	p	 block	 erasures	per	document	 codeword,	 but	 since	 the	 source	blocks	 are	not	
archived	and	are	considered	as	erased,	at	most	𝑒 = 𝑝 − 𝑠	block	erasures	per	document	on	
the	storage	medium	can	be	corrected.	Note	that	 increasing	t	does	not	 increase	storage	
overhead	 or	 error-correcting	 capability,	 but	 does	 increase	 coding	 and	 decoding	
complexity.	
An	attacker	can	censor	a	document	𝑑' 	by	erasing	more	than	e	of	its	blocks.	However,	by	
entangling	new	documents	with	documents	already	archived,	it	might	be	possible	for	the	
system	to	recover	the	deleted	blocks	by	recursively	decoding	other	documents	that	use	
them.		
The	challenging	part	of	our	approach	is	thus	to	choose	the	pointers	to	entangled	blocks.	
As	discussed	in	D2.2,	in	practice	choosing	entangled	blocks	uniformly	at	random	offers	
three	 important	advantages	over	highly	structured	entanglement.	First,	 the	problem	is	
asymmetric	between	attackers	and	defenders:	while	a	defender	can	efficiently	recover	
from	suboptimal	attacks,	an	attacker	must	solve	a	NP-hard	problem	[APPS+12]	to	find	a	
perfect	(irrecoverable)	attack	that	minimizes	collateral	damage,	or	even	just	approximate	
this	minimum	within	 a	 reasonable	 ratio.	 The	 creation	 of	 randomness	 in	 the	 structure	
prevents	the	attacker	from	planning	the	attack	in	advance,	for	instance	by	using	amortized	
cost	 expensive	pre-computations	 tied	 to	 the	 system	 structure.	 Second,	 a	 deterministic	
structure	 is	harder	to	 implement	and	maintain	 in	real-time	in	a	 large-scale	distributed	
setting.	Third,	uniform	entanglement	can	provide	strong	security	guarantees	once	data	
has	been	archived	long	enough.	
The	main	drawback	of	uniform	random	entanglement	is	that	as	the	archive	gets	bigger,	it	
takes	an	increasingly	longer	time	until	new	documents	become	properly	protected.	This	
is	what	we	overcome	in	this	deliverable.	
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3 Short-term	data	protection	-	Theory	
Providing	quick	protection	after	archival	is	the	objective	of	short-term	data	protection.	
The	work	we	present	in	this	section	is	twofold:	

• In	 Section	 3.1,	we	 propose	 alternative	 heuristics	 to	 uniform	 entanglement	 that	
provide	faster	protection	to	recently	archived	documents.	The	time	that	uniform	
entanglement	takes	to	protect	documents	is	proportional	to	the	size	of	the	archive.	
To	 overcome	 this	 limitation,	 we	 propose	 normal	 entanglement	 to	 provide	
protection	in	a	constant	amount	of	time	regardless	of	the	size	of	the	archive.	

• In	 Section	 3.2,	we	 enhance	 the	 anti-censorship	 of	 recently	 archived	 documents	
using	replication.	

3.1 Entanglement	heuristics	
The	main	idea	behind	the	alternative	entanglement	heuristics	is	to	have	less	unprotected	
documents	and	to	point	to	recently	archived	documents	quickly.			
In	Figure	2	we	show	how	the	number	of	pointers	per	document	is	distributed	in	a	(s,t,e,p)-
archive	with	105	documents.	We	use	s=1	source	block	per	document	(not	stored),	t=10	
pointer	blocks	per	codeword	and	p=3	parity	blocks	per	document.	The	erasure	code	offers	
the	same	fault	tolerance	as	state-of-the-art	systems,	e.g.	Windows	Azure	[HSX+12]:	the	
erasure	code	can	withstand	3	local	erasures	per	codeword.	This	means	that	a	document	
having	3	blocks	not	pointed	to	can	be	censored	just	by	erasing	those	3	blocks,	which	is	
highly	undesirable	for	anti-censorship.	Furthermore,	the	source	block	is	not	stored,	thus	
the	storage	overhead	on	the	physical	medium	is	the	same	as	for	triple	replication.	
The	thick	black	line	in	the	figure	shows	the	result	for	uniform	entanglement:	10%	of	the	
documents	 are	 not	 pointed	 to,	 and	30%	of	 the	 documents	 have	 a	 number	 of	 pointers	
insufficient	to	force	an	attacker	to	do	collateral	damage	when	tampering	with	them.	This	
unacceptable	 behaviour	 is	mainly	 due	 to	 the	 selection	 of	 the	 pointers	 from	a	 uniform	
distribution	 over	 a	 non-constant	 interval:	 as	 the	 archive	 gets	 bigger,	 the	 number	 of	
unprotected	documents	increases	quickly.	
If	 every	document	was	pointed	 to	exactly	 t	 times,	we	would	observe	a	vertical	 line	as	
drawn	 in	 Figure	 2.	With	 the	 aim	 of	 avoiding	 few	 overly-protected	 and	many	 poorly-
protected	documents,	we	propose	some	alternatives	to	uniform	entanglement:	

• Normal	 entanglement	 (N-std1000):	 we	 select	 pointers	 following	 a	 normal	
distribution	 having	 as	 mean	 the	 index	 of	 the	 document	 we	 want	 to	 store	 and	
standard	 deviation	 σ=1000.	 More	 precisely,	 as	 we	 can	 only	 point	 to	 archived	
documents,	this	corresponds	to	the	left	half	of	a	normal	distribution	with	standard	
deviation	σ=1000.	

• Mix	of	normal	and	uniform	entanglement:	in	rand5+norm	and	rand6+norm	we	use	
respectively	 5	 and	 6	 random	 pointers	 from	 the	 complete	 pool	 of	 archived	
documents	 and	 the	 remaining	 pointers	 following	 a	 normal	 distribution	 with	
standard	deviation	σ=100.	

• Mix	of	uniform	entanglement	(rand+rand):	6	pointers	are	chosen	at	random	within	
a	sliding	window	of	size	50	and	4	pointers	are	chosen	at	random	from	the	whole	
pool	of	blocks.	
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Figure	2:	Cumulative	Distribution	Function	(CDF)	of	the	number	of	pointers	per	document	
for	an	archive	of	100000	documents.	The	configuration	of	the	(s,t,e,p)-archive	is	s	=	1,	t	=	

10,	p	=	3.	
	
As	 Figure	 2	 illustrates,	 all	 these	 strategies	 reduce	 the	 number	 of	 document	 poorly	
protected.	 In	 particular,	 the	 heuristic	 N-std1000	 enables	 documents	 to	 get	 protection	
faster	 than	 the	 other	 strategies	 and	 reduces	 the	 number	 of	 documents	 that	 can	 be	
censored	with	no	collateral	damage.		
We	thus	focus	on	normal	entanglement	because	it	provides	good	long-term	protection,	
fast	short-term	protection,	and	a	level	of	replication	independent	on	the	size	of	the	archive	
as	we	show	in	the	remaining	of	the	section.	

3.2 Replication	
Regardless	 of	 the	 heuristic	 to	 select	 pointers,	 entanglement	 takes	 time	 to	 provide	
protection	to	new	documents	(for	instance	the	last	archived	document	is	never	pointed	
to).	We	thus	use	temporary	replication	to	guarantee	the	same	level	of	protection	across	
the	 whole	 archive.	 Spread	 over	 the	 various	 storage	 nodes,	 the	 replicas	 ensure	 a	 fast	
recovery	in	case	of	failure	of	a	node	but	significantly	add	to	the	storage	overhead.		
In	order	 to	prevent	 the	explosion	 in	storage	cost,	we	periodically	examine	 the	 level	of	
protection	of	blocks	and	once	a	given	threshold	is	passed,	remove	their	replicas	from	the	
system.	In	the	following	we	study	how	to	set	such	a	threshold.	We	evaluate	by	means	of	
simulations	when	a	block’s	replicas	can	be	safely	removed.	
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Figure	3:	Distribution	of	the	number	of	pointers	(mean	over	10	simulations)	to	each	
archived	document	in	an	archive	with	100000	documents.	The	configuration	of	the	

(s,t,e,p)-archive	is	s	=	1,	t	=	10,	p	=	3.	
	
For	 uniform	 entanglement,	 as	 the	 number	 of	 blocks	 increases	 over	 time,	 the	 random	
selection	of	pointers	 lowers	the	probability	of	picking	recent	ones	and	 in	consequence	
raises	 the	 lifetime	 of	 their	 replicas.	 In	 brief,	 the	 number	 of	 documents	 that	 must	 be	
replicated	is	proportional	to	the	number	of	documents	stored.	Figure	3	shows	clearly	that	
at	least	10%	of	the	documents	needs	to	be	replicated,	indeed	the	document	with	index	
90000	 is	pointed	 to,	on	average,	only	by	2	other	documents.	On	 the	other	hand,	using	
normal	entanglement	with	standard	deviation	σ=1000,	only	the	last	2σ=2000	documents	
are	poorly	protected.	This	number	does	not	depend	on	the	size	of	the	archive	but	only	on	
the	standard	deviation	σ.	This	is	illustrated	in	Figure	3.	

	
Figure	4:	Mean	and	interquartile	range	for	the	number	of	documents	corrupted	by	

different	attacks	to	censor	the	x-axis-indexed	document.	The	attacks	are	the	leaping	attack	
(random	and	normal	entanglement),	the	minimum	attack	(normal	entanglement),	and	the	
tailored	attack	(normal	entanglement).	The	attacks	are	described	in	[MAL16]	and	in	D2.2.	

The	configuration	of	the	(s,t,e,p)-archive	is	s	=	1,	t	=	10,	p	=	3.	
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To	 confirm	 this	 intuition,	 we	 archive	 10000	 documents	 and	 run	 the	 greedy	 attacks	
proposed	in	[MAL16]	and	presented	in	D2.2,	with	the	aim	of	censoring	recently	archived	
documents,	i.e.,	documents	with	index	i	such	that	7800	≤	i	≤	10000.	We	show	the	results	
in	Figure	4.	As	expected	very	young	documents	can	be	censored	by	tampering	with	a	few	
documents.	 However,	 with	 normal	 entanglement	 the	 protection	 is	 fast,	 and	 to	 erase	
document	8000	the	attacker	needs	to	tamper	with	more	than	300	documents.	We	recall	
that	finding	the	minimum	number	of	documents	to	censor	a	target	document	is	a	NP-hard	
problem	[MAL16]	and,	as	a	consequence,	the	greedy	attacks	are	sub-optimal	heuristics	
proving	an	upper	bound.	On	the	other	hand,	using	uniform	entanglement	document	8000	
can	 be	 censored	 by	 tampering	 with	 2.3	 documents	 on	 average.	 We	 highlight	 that	 in	
Figures	3	and	4,	 the	number	of	documents	 in	 the	archive	 is	105	and	104,	 respectively.	
Nevertheless,	the	threshold	between	protected	and	unprotected	documents	is	2σ=2000	
documents	 before	 the	 end	 of	 the	 archive.	 As	 discussed	 above,	 when	 using	 normal	
entanglement,	 the	 threshold	 is	 determined	 by	 the	 standard	 deviation	 σ	 of	 the	 normal	
distribution	and	does	not	depend	on	the	size	of	the	archive.	
The	last	set	of	simulations	we	run	is	dedicated	to	check	that	switching	from	uniform	to	
normal	 entanglement	 does	 not	 ease	 the	 work	 of	 a	 censor	 targeting	 an	 old	 enough	
document.	
The	heuristic	N-std1000	defines	a	sort	of	sliding	window	whose	width	is	determined	by	
the	 standard	 deviation	 σ	 of	 the	 normal	 distribution:	 intuitively,	 introducing	 a	 sliding	
window	might	facilitate	the	job	of	the	censor	as	it	decreases	the	space	where	pointers	are	
spread.	We	run	the	greedy	attacks	from	[MAL16]	explained	in	Section	4.2	of	D2.2	to	check	
that	the	standard	deviation	σ=1000	is	big	enough	for	preventing	the	censor	to	exploit	the	
sliding	window.	 In	particular,	we	want	 to	 force	an	attacker	 tampering	with	any	 target	
document	in	the	archive	to	recursively	spread	the	attack	to	the	largest	possible	number	
of	documents.		
We	evaluate	how	normal	entanglement	affects	the	number	of	documents	to	be	corrupted	
to	censor	one	target	document	and	compare	it	against	uniform	entanglement.	We	report	
the	results	in	Figure	5.	This	figure	should	be	read	as	“the	higher	the	better”	indeed	the	
purpose	of	entanglement	is	to	force	the	attacker	wishing	to	censor	a	document	to	do	it	
noisily	affecting	a	large	part	of	the	archive.	
In	Figure	5,	the	heuristics	causing	the	least	damage	to	censor	the	target	document	are	the	
leaping	and	tailored	attacks.	For	instance,	when	5000	documents	have	been	archived,	the	
fraction	of	documents	to	be	erased	by	the	leaping	attack	to	censor	d1	is	0.77	for	uniform	
entanglement	and	0.74	for	normal	entanglement,	so	it	is	slightly	easier	to	censor	the	first	
document	 archived	 if	 we	 use	 normal	 entanglement.	 This	 difference	 is	 not	 significant	
because	 a	 large	 fraction	 of	 documents	 must	 be	 corrupted	 in	 both	 cases.	 Much	 more	
important	 is	 the	 significant	 advantage	 of	 normal	 entanglement	 over	 uniform	
entanglement	for	newly	archived	documents,	as	discussed	above.	
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Figure	5:	Fraction	of	corrupted	documents	required	to	erase	the	target	document	{d1,	d50,	
d150,	d500}	indicated	in	the	legend.	On	each	graph,	the	two	curves	for	each	target	document	
compare	uniform	entanglement	(black	curves)	and	normal	entanglement	(colour	curves).	

The	configuration	of	the	(s,t,e,p)-archive	is	s=1,	t=10,	p=3.	
	
Summarizing,	uniform	entanglement	provides	strong	 long-term	protection	but	needs	a	
massive	use	of	replication	to	reach	an	adequate	level	of	short-term	protection.	
To	 reduce	 the	 storage	 overhead,	 we	 propose	 normal	 entanglement	 which	 provides	
comparable	 long-term	protection,	 fast	 short-term	protection	 and	 a	 level	 of	 replication	
independent	on	the	size	of	the	archive.		
We	stress	that	while	the	cost	of	replicas	grows	linearly	with	the	size	of	the	archive	if	we	
use	uniform	entanglement,	it	goes	to	zero	in	the	case	of	normal	entanglement.	Indeed,	as	
the	 number	 of	 documents	 that	 need	 to	 be	 replicated	 is	 constant,	 in	 the	 long	 term,	 it	
becomes	a	negligible	fraction	of	the	whole	archive.		
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4 Short-term	data	protection	-	Implementation	
To	evaluate	the	performance	impact	of	the	short-term	data	protection,	we	implement	the	
scheme	 in	 Playcloud	 an	 experimental	 test	 bed	 previously	 introduced	 in	 D2.2	 and	
extensively	evaluated	in	[BPF+16]	(still	designated	by	its	original	name	SafeStore).	The	
source	 code	 of	 Playcloud	 is	 currently	 in	 a	 private	 repository,	 and	 might	 be	 released	
publicly	as	it	reaches	a	more	mature	state.	
This	section	briefly	covers	the	architecture	of	Playcloud,	the	changes	introduced	by	short-
term	protection	and	their	impact	on	performance.		

4.1 Architecture	
The	 Playcloud	 architecture	 comprises	 the	 following	 components:	 a	 storage	 server	
(“proxy”)	 that	 mediates	 interactions	 between	 clients	 and	 the	 Playcloud	 system,	 an	
encoder	component,	and	a	set	of	backend	storage	clouds	(public	clouds	or	private	servers	
deployed	on-premises).	Figure	6	presents	an	instance	of	Playcloud	connected	to	a	set	of	
clients	and	various	cloud	storage	providers.	

	
Figure	6:	Architecture	of	our	experimental	testbed.	

The	proxy	component	acts	as	the	Playcloud's	front-end	and	is	responsible	for	keeping	a	
mapping	between	client's	files	and	the	actual	storage	backends	where	these	are	stored.	
Clients,	which	run	in	independent	nodes,	contact	the	proxy	component	to	write	or	read	
data	 through	 a	 simple	 REST	 interface	 that	 mimics	 the	 operating	 principles	 of	 well-
established	services	like	Amazon	S3.	The	interactions	between	the	proxy	and	the	clients	
happen	via	synchronous	HTTP	messages	over	pre-established	TCP	channels.	Serving	as	
the	entrypoint	to	the	system	and	holder	of	the	metadata,	it	is	essential	that	the	proxy	be	
trusted	and	advisable	to	have	it	deployed	client-side.	
The	Playcloud	system	 is	configurable	and	different	security	mechanisms	can	be	put	 in	
place.	 According	 to	 such	 configuration,	 the	 proxy	 component	 coordinates	 the	 other	
components	 in	 the	 system	 and	 different	 workflows	 may	 arise.	 For	 instance,	 some	
configurations	require	a	single	cloud	backend	while	others	require	two	or	more.	Upon	a	
write	request,	the	proxy	component	asks	the	encoder	component	to	encode	data	blocks	
according	to	the	configured	security	mechanisms.	The	resulting	block	or	blocks	are	then	
dispatched	by	the	proxy	to	the	storage	backends.	To	this	end,	the	proxy	maintains	a	data	
block	index	to	keep	track	of	where	data	is	stored	at	the	backends.	The	proxy	also	takes	
care	of	replication	when	inserting	a	new	document.	Additionally,	and	for	the	case	where	
anti-censorship	mechanisms	are	in	place,	the	encoder	maintains	an	entangler	component.		
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Upon	a	read	request	for	a	piece	of	data,	 the	proxy	checks	the	block	index	to	figure	out	
where	the	corresponding	encoded	blocks	are	stored.	 It	 fetches	them	from	the	backend	
storage	and	forwards	them	to	the	encoder	that	decodes	the	blocks	before	returning	the	
data	 to	 the	 client.	 The	 encoder	 is	 co-localized	 within	 the	 same	 host	 as	 the	 proxy	 to	
maximize	 throughput	and	avoid	bottlenecks	 induced	by	high	pressure	on	 the	network	
stack.	To	increase	the	flexibility	of	our	testbed,	our	encoder	provides	a	plugin	mechanism	
to	dynamically	load	and	swap	different	coding	and	cryptographic	libraries	and	associated	
bindings.	This	mechanism	relies	on	a	platform-independent	transport	mechanism	(using	
protocol	buffers)	and	a	stable	interface	between	the	proxy	and	the	encoder.	

4.2 The	Playcloud	API	
Once	started,	a	Playcloud	instance	can	be	interacted	with	using	an	HTTP	client	such	as	
cURL	 [curl]	 by	 sending	 PUT	 and	 GET	 requests.	 The	 PUT	 command	 is	 used	 to	 insert	
documents	into	Playcloud	while	the	GET	command	is	used	to	retrieve	those	documents	
from	the	system.	
A	 user	 willing	 to	 store	 a	 document	 can	 issue	 the	 following	 command	 to	 store	 a	 new	
document	named	report.pdf	into	the	system.	

curl –X PUT http://<server>:<port>/ -T report.pdf	

Retrieving	the	newly	inserted	document	can	be	done	by	running	the	following	command.	
curl –X GET http://<server>:<port>/report.pdf -o copy.pdf	

These	 commands	 should	 run	 transparently	 for	 the	 user	 regardless	 of	 the	 internal	
configuration	chosen	by	the	administrator.	

4.3 Entanglement	and	replicas	management		

Besides	the	simple	exclusive-or-based	entanglement	approach	based	on	Dagster	[SW01]	
previously	 implemented	 and	 described	 in	 D2.2,	 we	 implement	 the	 (s,t,e,p)-archive	 to	
provide	anti-censorship.	In	combination	with	short-term	data	protection,	these	changes	
modify	the	way	data	is	stored	and	managed	over	time	in	the	system.	In	short,	the	lifecycle	
of	a	document	and	the	blocks	that	it	is	made	of	can	be	described	as	follows:	
1. We	perform	uniform	random	entanglement	as	described	in	Section	3;	
2. We	compute	a	fixed	number	of	replicas	and	spread	them	randomly;	
3. We	check	if	blocks	pointed	to	by	the	newly	inserted	document	have	reached	a	given	

level	of	protection	and,	if	they	do,	delete	their	replicas;	
This	last	change	introduces	two	new	parameters	to	configure	the	system:	the	replication	
factor	and	the	protection	threshold.	
The	first	parameter,	the	replication	factor,	is	known	by	the	proxy	as	it	uses	this	number	
to	 compute	how	many	 copies	of	 any	block	 it	must	 store	on	 its	data	nodes.	The	 coder,	
unaware	of	the	replication	factor,	only	asks	for	blocks	and	never	a	specific	replica	on	a	
specific	storage	node.	This	makes	the	management	of	replicas	easier	and	shields	the	coder	
or	any	other	client	 from	having	 to	deal	with	corrupted	replicas	or	unavailable	storage	
nodes.	As	a	bonus,	in	a	setting	with	homogenous	storage	nodes,	this	level	of	indirection	
enables	the	proxy	server	to	balance	the	load	of	read	requests	for	a	block	over	the	different	
storage	nodes	holding	replicas.	
The	second	parameter,	the	protection	threshold,	is	also	known	and	used	by	the	proxy.	In	
the	 current	 prototype	 implementation,	 the	 threshold	 is	 expressed	 as	 the	 number	 of	
documents	 pointing	 at	 a	 block.	 The	 choice	 of	 this	 metric	 rather	 than	 the	 age	 of	 the	
document	and	its	blocks	stems	from	our	use	of	uniformly	random	selection	of	pointers.	
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As	 described	 in	 Section	 3,	 some	 old	 blocks	 may	 never	 be	 entangled	 with	 enough	
documents	to	reach	the	given	threshold	which	prevents	the	system	to	use	an	age-based	
approach.	In	practice,	a	separate	process	running	in	the	proxy	component,	periodically	
scans	the	metadata	looking	for	the	blocks	that	have	been	pointed	at	a	given	number	of	
times	and	once	this	list	has	been	assembled,	removes	the	redundant	replicas	and	updates	
the	proxy’s	metadata.	
While	tracking	the	pointer	count	to	a	block	and	deleting	accordingly	provides	a	first	step	
in	preventing	the	storage	overhead	from	becoming	prohibitively	costly,	the	observations	
made	in	Section	3	as	well	as	preliminary	simulations	confirm	the	idea	that	implementing	
pointer	selection	using	a	normal	distribution	should	be	favoured.	Work	on	the	integration	
of	pointer	selection	using	a	normal	distribution	is	currently	ongoing	and	will	be	presented	
in	D2.7.	

4.4 Implementation	Details	
Our	implementation	choices	have	been	largely	driven	by	performance	and	programming	
simplicity	considerations,	as	well	as	by	constraints	from	the	storage	backend	interfaces.	
The	 proxy	 component	 is	 implemented	 in	 Python	 (v2.7.11)	 and	 exploits	 the	 exporting	
facilities	 of	 the	 Bottle	 [bot]	 framework	 (v0.12.9).	 The	 proxy	 handles	 PUT	 and	 GET	
requests	via	the	WSGI	[wsgi]	Web	framework.	
The	 encoder,	 also	 written	 in	 Python,	 integrates	 with	 various	 encoding	 libraries.	 Each	
library	 is	 wrapped	 exposing	 the	 same	 API	 to	 the	 encoder	 allowing	 the	 system	 to	 be	
expanded	and	to	abstract	Playcloud	from	the	implementation	details	of	each	library.		This	
allows	Playcloud	to	support	not	only	Python	libraries	but	also	native	ones.	
As	 the	 erasure	 coding	 driver,	 Playcloud	 supports	 Jerasure,	 an	 efficient	 Cauchy	 Reed-
Solomon	driver	implemented	in	C/C++	that	is	exported	by	the	PyEClib	[pye]	library	(v1.2),	
while	the	entanglement	component	is	implemented	in	Python.	
For	the	client	side,	we	built	a	suite	of	micro-	and	macro-benchmarks,	leveraging	the	Yahoo	
Cloud	 Serving	 Benchmark	 (YCSB)	 [ycsb]	 and	 Apache	 Bench	 [ab],	 to	 measure	 the	
throughput	and	latency	of	client	storage	requests.		
Finally,	we	have	implemented	drivers	for	four	storage	backends.		First,	we	deployed	a	set	
of	on-premises	storage	nodes	using	Redis	[redis]	(v3.2.8),	a	lightweight	yet	efficient	in-
memory	key-value	store.	Redis	tools	provide	easy-to-use	probing	mechanisms	(e.g.,	the	
redis-cli	 command-line	 tool),	 which	 allowed	 us	 to	 measure	 the	 impact	 of	 the	 several	
security	combinations	used	in	our	evaluation.	Second,	we	have	implemented	drivers	for	
the	three	most	widely	used	cloud	storage	services:	Dropbox	[dbox],	Google	Drive	[gdrive],	
and	Microsoft	 OneDrive	 [odrive].	 The	 drivers	 are	 implemented	 leveraging	 the	 official	
Python	 SDKs	 from	 each	 provider.	 Similarly	 to	 the	 approach	 taken	 with	 the	 encoding	
component,	 storage	 backends	 are	 wrapped	 to	 expose	 a	 common	 interface	 with	 the	
required	set	of	operations,	i.e.,	store,	fetch	and	delete	data,	which	allows	to	easily	plug-in	
new	storage	backends	in	the	future.	Overall,	our	implementation	consists	of	10872	lines	
of	Python	code,	all	components	included.	

4.5 Evaluation	
This	section	presents	our	evaluation	of	the	performance	impact	of	 the	short-term	data	
protection	scheme.	
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4.5.1	Evaluation	Settings 

We	 deploy	 our	 experiment	 over	 a	 cluster	 of	 machines	 interconnected	 by	 a	 1	 Gb/s	
switched	network.	Each	physical	host	features	8-Core	Xeon	CPUs	and	8	GB	of	RAM.	We	
deploy	virtual	machines	(VM)	on	top	of	the	hosts.	The	KVM	hypervisor,	which	controls	the	
execution	of	the	VM,	is	configured	to	expose	the	physical	CPU	to	the	guest	VM	and	Docker	
containers	by	mean	of	the	host-passthrough	[kvm]	option,	to	allow	the	encoders	to	exploit	
special	CPU	instructions.	The	VMs	leverage	the	Virtio	module	for	better	I/O	performances.	
The	different	components	are	deployed	over	the	VMs	as	Docker[docker]	(version	17.06.0-
ce)	containers.	
We	deploy	the	components	over	18	VMs	as	follows:		

• 1	VM	for	the	proxy	container	and	the	encoder	container;	

• 1	VM	for	the	client;	

• 16	VMs	each	hosting	a	Redis	container.	
4.5.2	Impact	of	short	term	data	protection	on	request	response	time	

The	figure	below	presents	the	response	times	of	500	requests	to	store	a	document	of	1MB	
into	our	system.	The	different	curves	displayed	illustrate	the	changes	in	performance	as	
the	entanglement	scheme	or	the	number	of	replicas	stored	are	modified.	
The	 observations	 from	 these	 experiments	 are	 two-fold.	 First,	 the	 STeP	 scheme	 is	
noticeably	slower	than	Dagster.	Second,	the	introduction	of	replication	does	not	incur	a	
significant	overhead	for	the	system	(2.13%	for	Dagster	and	3.15%	for	STeP).	We	explain	
these	results	by	 the	complexity	of	 the	STeP	scheme	 that	 requires	 the	same	number	of	
blocks	for	entanglement	but	encodes	them	in	a	different	way	and,	in	return,	produces	two	
extra	 blocks	 that	 must	 be	 stored.	 In	 practice,	 the	 overhead	 in	 storage	 and	 latency	 is	
balanced	 by	 the	 fact	 that	 STeP	 provides	 redundancy	 guarantees	 out	 of	 the	 box	while	
Dagster	relies	on	replication	to	be	able	to	recover	from	erasures.	Furthermore,	Dasgter	
has	been	proven	to	offer	a	lower	level	of	censorship	resistance	in	[AFYZ07]	as	the	average	
number	of	documents	affected	by	the	destruction	of	a	block	is	not	high	enough	to	serve	as	
a	deterrent	for	the	attacker.	

	
Figure	7:	CDF	of	response	times	for	requests	to	store	1MB	documents	in	Playcloud	using	
various	entanglement	configuration	storing	1	or	3	replicas	of	the	blocks	on	the	storage	

nodes.	
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5 Conclusion	
This	deliverable	presents	the	short-term	secure	block	device,	which	extends	and	enriches	
the	 secure	 data	 archive	 (SS2)	 presented	 in	 D2.2	 by	 enforcing	 the	 same	 level	 of	 anti-
tampering	and	data	integrity	in	the	whole	STEP-archive.	The	use	of	replication	to	protect	
younger	 documents	 paired	with	 a	 smarter	 pointer	 selection	 for	 entanglement	 using	 a	
normal	distribution	offers	both	long-term	and	short-term	protection.	By	simulation	and	
experimentation	on	our	prototype	implementation,	we	show	that	short-term	replication	
can	be	achieved	at	a	reasonable	cost	in	terms	of	performance	and	storage	overhead.		
Playcloud	 will	 be	 further	 extended	 and	 optimized	 in	 D2.7	 to	 provide	 better	 pointer	
selection,	 block	 placement	 and	 replication	 management	 strategies	 as	 new	 theoretical	
results	emerge.	 	
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