
Initial Secure File System

Deliverable 2.4

Project reference no. 653884

February 2017

Document informaƟon

Scheduled delivery 01.03.2017
Actual delivery 01.03.2017
Version 1.0
Responsible partner INESC-ID

DisseminaƟon level

Public

Revision history

Date Editor Status Version Changes
15.01.2017 M. Pardal Draft 0.0 Initial TOC
20.01.2017 M. Pardal Draft 0.1 Extended with INESC-ID components
28.01.2017 S. H. Totakura Draft 0.2 Extended with sKnock
31.01.2017 H. Niedermayer Draft 0.3 Added certiϐicate management
03.02.2017 S. H. Totakura Draft 0.4 Format compliance
23.02.2017 D. R. Matos Draft 0.5 Improved format compliance
28.02.2017 M. Correia Final 1.0 Reviewers comments incorporated

Contributors

M. Correia (INESC-ID)
M. Pardal (INESC-ID)
F. Apolinário (INESC-ID)
E. A. Silva (INESC-ID)
D. Matos (INESC-ID)
L. Rodrigues (INESC-ID)
A. R. Silva (INESC-ID)
J. D. Pereira (INESC-ID)
J. C. Monteiro (INESC-ID)

Internal reviewers

S. H. Totakura (TUM) D. Burihabwa (UniNE) L. Yazdanov (C&H)

Deliverable 2.4 i

Acknowledgments

This project is partially funded by the European Commission Horizon 2020 work pro-
gramme under grant agreement no. 653884

More informaƟon

Additional information and public deliverables of SafeCloud can be found at:
http://www.safecloud-project.eu/

Deliverable 2.4 ii

http://www.safecloud-project.eu/

Contents
1 Executive Summary 1

2 Business Requirements 3
2.1 Cloud storage market . 3
2.2 Cloud storage security market . 4
2.3 Limitations of industry-standard solutions . 4

3 Secure ϐile system design 6
3.1 Features . 6
3.2 Architecture . 8
3.3 Functions . 9
3.4 Summary . 10

4 Homomorphic coordination service 11
4.1 MorphicLib . 11
4.2 DepSpace . 15
4.3 HomomorphicSpace . 16

4.3.1 Threat model . 16
4.3.2 Commands . 16
4.3.3 Architecture and functioning . 18

4.4 Summary . 19

5 Integrity veriϐication service 20
5.1 SafeAudit . 20

5.1.1 Threat model and assumptions . 21
5.1.2 Preliminaries . 21
5.1.3 SafeAudit’s interaction protocol . 24
5.1.4 SW signature size optimization . 26

5.2 SafeAudit’s implementation . 26
5.2.1 Pairing generator . 27
5.2.2 Key generator . 27
5.2.3 Signature generator . 27
5.2.4 Random number generator . 28
5.2.5 Proof generator . 28
5.2.6 Proof veriϐication . 28

5.3 Integration in SafeCloud-FS . 29
5.4 Summary . 30

6 Conclusion 31

Deliverable 2.4 iii

List of Figures
3.1 SafeCloud-FS architecture. 8
3.2 DepSky read protocol. 9
3.3 DepSky write protocol. 10

4.1 MorphicLib API (summary) . 12
4.2 DepSpace architecture with 4 server replicas 15
4.3 HomomorphicSpace architecture . 18

5.1 A multiplicative cyclic group representation of order 6 with 2 as its gener-
ator . 22

5.2 Components modiϐied for integrating SĆċĊAĚĉĎę in DepSky. 29

Deliverable 2.4 iv

List of Tables
4.1 MorphicLib’s main classes . 11
4.2 Fields thatmaybeused in tuples inHomomorphicSpace, besides values and

wildcards. 17

Deliverable 2.4 v

1 ExecuƟve Summary
File storage is one of themost successful use cases for cloud computing. Services like Drop-
box, Google Drive, Amazon S3, Microsoft OneDrive, and Apple iCloudDrive arewidely used
worldwide to store both personal and work ϐiles. Therefore, it makes sense to provide the
security assurances of SafeCloud to ϐiles stored in such services.

Some of these cloud storage services provide a web interface, often a RESTful interface,
but this is not the usual interface for ϐile storage. In fact, usually users access ϐiles through
the interface provided by the operating system (e.g., through a windows interface or a
command line console) or through applications that process these ϐiles (e.g., a text editor,
spreadsheet editor, etc.). Several of the cloud storage services, e.g., Dropbox and Google
Drive, recognise that this integration with the operating system is the natural way of ac-
cessing ϐiles, so they provide client software that provides such integration. Speciϐically,
from the point of view of the user, the cloud storage space appears as if it is yet another
folder in his disk. This integration is possible by mimicking a (local) ϐile system by pro-
viding a Portable Operating System Interface (POSIX) ϐile system interface, which is the
standard in most current operating systems (e.g., Linux, Mac OS X, and Windows).

The objective of WP2’s Task T2.3 is to provide a secure cloud-backed ϔile system, more ex-
actly a ϐile system that stores ϐiles in clouds and provides SafeCloud’s high degree of protec-
tion from strong adversaries. This deliverable presents the initial design of this ϐile system.
The ϐinal design will be presented in deliverable D2.8.

The SafeCloud ϐilesystem – SafeCloud-FS – provides a POSIX interface and stores ϐiles in a
set of clouds – in a cloud-of-clouds – in such a way that the ϐiles integrity and availability
are guaranteed even if some clouds are compromised. These clouds may provide the Safe-
Cloud block storage abstraction. Moreover, the ϐile system stores both the ϐiles and their
metadata (e.g., ϐile name, modiϐication date, and directory) encrypted for conϔidentiality
and privacy. Keeping metadata encrypted is particularly challenging as this data must be
accessed by the cloud (e.g., to return a ϐile with a certain name), so the ϐile systemhas to re-
sort to homomorphic encryption to support some operations without decrypting the data
[Gen09]. Finally, the ϐile system allows a mechanism to audit if the ϐiles are actually stored
and notmodiϐied in the cloudswithout the need to download the ϐiles, whichmay be costly.
This mechanism provides a second layer of integrity and availability. Communicationmay
be done over SafeCloud’s middleware (WP1) for higher security also at that level.

This deliverable is organized as follows:

• Section 2 presents the business requirements for the SafeCloud ϐilesystem.

• Section 3 describes the overall design of the ϐile system and how it provides themain
security properties by leveraging the notion of cloud-of-clouds.

• Section 4 details the coordination service used in the ϐile system – Homomorphic-
Space – and the library in which it is based – MorphicLib.

• Section 5 presents SafeAudit, which is the service that allows verifying if ϐiles stored
in the cloud have not been modiϐied.

Deliverable 2.4 1

• Section 6 concludes the deliverable.

Deliverable 2.4 2

2 Business Requirements
This section describes the business requirements for SafeCloud’s secure cloud-backed ϐile
system.

2.1 Cloud storage market

The cloud storagemarket is strongly expanding. A recentmarket study estimates a growth
from23.76 billion US dollars in 2016 to 74.94 billion in 2021 at a CAGR1 of 25.8% [Mar16].
According to that report, “Factors such as high demand for hybrid cloud storage, growing
need for enterprise mobility, and need for easy implementation of cloud storage solutions
are fuelling the growth of the cloud storagemarket.” Themain solutions in that market are
(i) primary storage, (ii) disaster recovery and backup storage, (iii) cloud storage gateways,
and (iv) data archival. Another market study, estimates the market to reach 67 billion dol-
lars by 2022 [Res16].

There is a clear demand for cloud storage to be integrated with the operating system, pro-
viding a POSIX ϔile system interface (or close to it). A ϐirst argument to substantiate this
claim is that major cloud storage services are providing a client that provides exactly that
integration. More precisely, these clients allow ϐiles stored at the cloud to be created, listed,
deleted, and edited as if they were in a folder/directory in the local ϐile system of the com-
puter. Examples are the Dropbox desktop application2, Microsoft OneDrive sync client3,
Google Drive’s client4, and iCloud Drive’s client (that comes with Mac OS X and iOS). There
is also a vast offer of open clients for Amazon S3 and others, e.g., DragonDisk S3 Client5, S3
Browser6, and CloudBerry Explorer7.

A second argument is the increasing adoption of cloud storage gateways (CSGs). A CSG is
a network appliance or a server that companies can install to mediate the access to cloud
storage. From the point of view of the computer accessing the storage, the CSG appears
to be a block storage device (communicating, e.g., using iSCSI) or a distributed ϐile system
(e.g., NFS or AFS), so the access is made similarly to what happens with such systems and
is fully integrated with the operating system. This is interesting because it makes con-
ϐiguring the access to cloud storage similar to conϐiguring access to classical distributed
ϐile systems. According to the ϐirst study mentioned, the CSG market will be the solution
that will grow faster in the 2016-21 period, i.e., will have the highest CAGR among the four
solutions mentioned above [Mar16].

1Compound Annual Growth Rate
2https://www.dropbox.com/en/help/65
3https://support.ofϐice.com/en-us/article/Get-started-with-the-new-OneDrive-sync-client-in-

Windows-615391c4-2bd3-4aae-a42a-858262e42a49
4https://www.google.com/drive/download/
5https://aws.amazon.com/customerapps/3929
6http://s3browser.com
7https://www.cloudberrylab.com/explorer/amazon-s3.aspx

Deliverable 2.4 3

2.2 Cloud storage security market

The cloud security market is also expanding. Recent studies estimate that it will grow to
8.71 billionUS dollars in 2019 [Mar14] and to 11.8 billion in 2022 [Tra16]. The security so-
lutions considered in these studies are security controls, so storage and ϐile systems do not
appear. However, some of these controls have the primary goal of protecting data stored
in the cloud, e.g., encryption and database security.

The security of data stored in the cloud is amajor concern since the beginning of the boom
of the cloud. In an interesting early roundtable on cloud security, held betweenmajor cloud
players, all assured the audience that data was safe in their clouds [GHR+10]. However, at
a point a participant in the roundtable replied to a question about security and trust in the
cloud that “there are some things that will never go into [the cloud], for example, our SAP
back end.”

There is much data in the Internet on companies’ concerns about privacy, conϐidential-
ity, integrity, and availability of data stored in the cloud, which shows that these con-
cerns are still present among cloud adopters. A piece of news stated that “In the three
years since Snowden’s initial leak, Apple, Google, Microsoft, Facebook and Yahoo [all major
cloudproviders except Apple] have become someof the biggest advocates of consumer pri-
vacy. They’ve beefed up encryption and other safeguards in their products and services”
[Hau16]. These companies took such measures “to protect business”, meaning that they
understand the importance of providing services that guarantee these properties. A simi-
lar conclusion may be taken from the coalition of 40 large tech companies created around
Apple to block the FBI’s access to private data stored in iPhones [Che16].

In a recent report,Microsoft provided a list of “What customerswant fromcloudproviders”
[Mic15]. The top 2 desires are “Secure our data” and “Keep our data private”. The two top
threats listed by the Cloud Security Alliance in their report “The Notorious Nine – Cloud
Computing Top Threats in 2013” are also related to cloud storage: “Data breaches” and
“Data loss” [Clo13]. The ϐirst is a threat against privacy and conϐidentiality, whereas the
second is a threat against integrity and availability. This shows how one of the biggest
cloud providers –Microsoft – and themajor consortiumon cloud securityworldwide – CSA
– consider data conϐidentiality/privacy/integrity to have a huge demand from the market.

2.3 LimitaƟons of industry-standard soluƟons

The above-mentioned Microsoft report on cloud security includes a section on “Data Pro-
tection” that provides a glimpse of the security mechanisms provided by Microsoft Win-
dows Azure [Mic15] (Google also has an interesting report on the matter but it provides
less detail [Goo17]). These mechanisms correspond to the current industry-standard so-
lutions:

1. Data isolation – data from different clients is logically separated, e.g., using virtual-
ization schemes;

2. Protecting data at rest – stored data is protected using encryption;

Deliverable 2.4 4

3. Protecting data in transit – data is protected while being transferred over the net-
work;

4. Encryption – customers can encrypt their data for protection;

5. Data redundancy – data may be replicated for redundancy and disaster recovery;

6. Data destruction – data should become unreadable when the customer requests its
deletion or leaves the service.

There are different ways to implement these services. Common mechanisms include disk
encryption, ϐile system encryption, hash-based message authentication codes, digital sig-
natures, the SSL/TLS protocol, and passive replication.

Nevertheless, these solutions have a set of limitations:

1. If an external attacker or a malicious insider access an account in a cloud provider,
they may corrupt or delete user ϐiles, making them unusable;

2. An outage in a cloud provider may let ϐiles temporarily unavailable;

3. Even if ϐiles are encrypted, meta-data like ϐile names and creation dates is not;

4. Checking if data is stored uncorrupted in a cloudmay require downloading thewhole
ϐiles.

The SafeCloud secure cloud-backed ϐile system addresses these limitations of current so-
lutions.

Deliverable 2.4 5

3 Secure file system design
SafeCloud’s secure ϐile system – SafeCloud-FS – is based on some of the design principles
of the Shared Cloud-backed File System (SCFS) [BMO+14]. In fact, SafeCloud-FS can be
consider to be an extension – or a enhancement – of SCFS.

SafeCloud-FS is a distributed, POSIX-compliant, distributed ϐile system that guarantees
data conϐidentiality, integrity, and availability. It allows users to store ϐiles in a cloud or a
set of clouds (a cloud-of-clouds) with the usual consistency of a ϐile system, atomic consis-
tency or linearizability [HW90], even if weak consistency storage cloud services are used.
This is important as public clouds normally provide only eventual consistency [Vog09].

To use the ϐile system, users mount it on a folder of their computer or device, and the
SafeCloud-FS client-side library synchronizes ϐiles with the cloud storage services. SCFS
supports data sharing among several users, automatically propagating users’ modiϐica-
tions between them.

In SafeCloud-FS ϐiles are storedon several cloudsusing theDepSky software library [BCQ+13].
DepSkyprovides anAPI for uploading andoperatingwith a set clouds,while enforcing fault
tolerance, lock-in resilience, conϐidentiality, and integrity as long as the clouds affected
with the aforementioned problems do not reach the majority of the cloud set.

3.1 Features

The main features of SafeCloud-FS are the following:

• It stores every ϐile in a set of clouds, forming a cloud-of-clouds;

• It provides a POSIX interface, so ϐiles are manipulated using the standard functions,
e.g., open, read, write, chmod, mkdir, ϐlush, fsync, link, rmdir, symlink, chown, etc.;

• Similarly to local ϐile systems, each ϐile has an owner, but may be shared with other
users that may also read and modify it;

• It provides controlled sharing, in the sense that it provides access control mecha-
nisms that allow controlling who can use each ϐile;

• It provides a pay-per-ownership cost model, meaning that each user pays for the stor-
age of his ϐiles;

• It runs mostly at the client and does not require a cloud storage gateway (CSG);

• It uses unmodiϔied storage clouds for storing the ϐiles;

• It provides strong consistency by leveraging a consistency anchor, which in imple-
mented using a coordination service;

• It is modular in the sense that the service is composed by a set of parts that work

Deliverable 2.4 6

together but can be exchanged by others with similar functionality – coordination
service, veriϐier, storage clouds;

• It uses caching extensively in order to provide a performance as close as possible to
a local ϐile system and to reduce monetary costs;

• It provides consistency-on-close semantics, i.e., when a user closes a ϐile, all updates
he did becomeobservable to the rest of the users, and it provides locks to avoidwrite-
write conϐlicts;

• It allows doing integrity veriϔication of the ϐiles stored in the individual clouds with-
out downloading them.

SafeCloud-FS provides the following security and dependability properties:

• Availability – ϐiles continue to be usable even if some clouds stop working (the other
clouds are still there);

• Integrity – ϐiles continue to be usable even if some clouds corrupt them (the ϐiles are
still at the other clouds);

• Disaster-tolerance – ϐiles continue to be usable even if some clouds suffer disasters
suchas earthquakes and ϐloods (ϐilesmaybe stored in clouds geographically far apart);

• Conϔidentiality (from clouds) –neither ϐiles not theirmetadata can be readby external
intruders or malicious insiders (they are encrypted);

• Conϔidentiality/integrity (from users) – ϐiles cannot be read or modiϐied by unautho-
rized users (there is access control).

The initial version of SafeCloud-FS, the one that is described in this deliverable, essentially
adds two mechanisms to SCFS:

• Encryption of ϔile metadata – ϐile metadata such as names, directories, and times-
tamps may be private. Although encrypting metadata may seem as a trivial exten-
sion of ϐile encryption, this is not the case. In fact it involves using homomorphic en-
cryption because metadata must be searched and it is impractical to download and
decrypt all metadata before accessing ϐiles. This encryption is supported by an ho-
momorphic encryption library (MorphicLib) and an homomorphic tuple space (Ho-
momorphicSpace) that are presented in Chapter 4.

• Integrity veriϔication mechanism – if ϐiles are deleted or corrupted in a cloud, either
due to accidental or intentional reasons, the degree of redundancy becomes lower
and ϐiles becomemore vulnerable to other issues. SCFS allows doing this veriϐication
but it requires downloading the ϐiles and checking a signature, which is both slow
and expensive (downloading ϐiles from a cloud has a cost). The integrity veriϐication
mechanism (SafeAudit) is presented in Chapter 5.

Deliverable 2.4 7

3.2 Architecture

Figure 3.1 presents the overall architecture of SafeCloud-FS. This architecture has mainly
three parts: storage clouds, computing clouds, and clients.

In SafeCloud-FS, ϐiles are envisaged to be stored in public storage cloud services, such as
Windows Azure, Google Files, rackspace, and Amazon S3. These services are not modiϐied,
i.e., there is no SafeCloud-FS code running in that part of the system. Alternatively, any de-
vice that provides the SafeCloud block storage abstraction can be used. This part is shown
in the bottom-right of the ϐigure.

SafeCloud-FS needs some code to run in the cloud, so it also resorts to computing cloud
services like Windows Azure or Amazon EC2 (top of the ϐigure). SafeCloud-FS runs two
components in those services. First, it permanently runs a coordination service called Ho-
momorphicSpace replicated in several of these services in order to support locks, access
control, and storing ϐile metadata. Second, when a user requires ϐile integrity veriϐication,
they run a veriϐier (auditor).

The rest of the logic of SafeCloud-FS is implemented at the clients: FS Client in the ϐigure
(left). The clients do mainly four tasks. First, they manage ϐile caching, which is extremely
important from the point of view of performance and cost. Second, they access the storage
clouds to read and write ϐiles. Third, they access the coordination service for reading and
writing ϐile metadata, and to access the ϐiles in a controlled way (locks, access control).
Four, they launch and access veriϐiers in the computing clouds to do integrity veriϐication.

Storage	clouds

Coordination	service

Lock
Service

Access
Control

Metadata

Computing	clouds

FS	
Client

FS	
Client

FS	
Client

Storage	
cloud-of-clouds	

Cache

Cache

Cache

Verifier

Figure 3.1: SafeCloud-FS architecture.

Deliverable 2.4 8

3.3 FuncƟons

In this sectionwedescribehow ϐive importantPOSIX functions are implemented in SafeCloud-
FS: open, read, write, ϐlush, and close.

Open Before a ϐile is read orwritten, itmust be opened using function open. This function
involves three main steps:

1. Access the coordination service to read the ϐile metadata;

2. If the ϐile is being opened for writing, access the coordination service to create a lock
for the ϐile and wait for the lock to be granted;

3. Access the storage cloud-of-clouds to read the ϐile to the local cache.

The reading of the ϐile in the last step is done using DepSky’s read protocol (see Figure 3.2).
In this protocol, the client accesses all storage clouds and gets the storage metadata of the
ϐile stored fromamajority of them. Then it reads the ϐile fromone of the clouds that has the
highest version of the ϐile. If there is some problem with the ϐile (e.g., the signature does
not match the ϐile or the cloud does not provide it), the ϐile is read from another storage
cloud.

Cloud A

Cloud B

Cloud C

Cloud D

REQUEST
FILE

D

FILE

D

D

D

D

REQUEST
METADATA

qwjda
sjkhd
ahsd

qwjda
sjkhd
ahsd

qwjda
sjkhd
ahsd

qwjda
sjkhd
ahsd

METADATA

qwjda
sjkhd
ahsd

highest	version	number
(+fastest	or	cheapest	cloud)

time

Figure 3.2: DepSky read protocol.

Readandwrite Asmentioned above, when the ϐile is opened it is downloaded and stored
in the local cache. Reads and writes are done in the version of the ϐile stored locally, there-
fore they do not involve interactions with the computing clouds or the storage clouds.

A concern may be raised about the fact that writes done locally will not become visible to

Deliverable 2.4 9

other users accessing the same ϐile. However, this is not a problem, but a direct conse-
quence of the consistency-on-close semantics provided by SafeCloud-FS.

Flush and close Flushing and closing a ϐile involve pushing it from the local cache to the
cloud. The main steps are:

1. Write the ϐile to the storage cloud-of-clouds;

2. Access the coordination service to update its metadata (e.g., the version);

3. If the operation is close, access the coordination service to unlock the ϐile.

The writing of the ϐile to the cloud is done using DepSky’s write protocol (see Figure 3.3).
The client essentially uploads the ϐile to all clouds, then writes the storage metadata.

Cloud A

Cloud B

Cloud C

Cloud D

WRITE
FILE

D

ACK

D

D

D

D

WRITE
METADATA

qwjda
sjkhd
ahsd

ACK

qwjda
sjkhd
ahsd

qwjda
sjkhd
ahsd

qwjda
sjkhd
ahsd

qwjda
sjkhd
ahsd

time

Figure 3.3: DepSky write protocol.

3.4 Summary

This section presented the overall design of SafeCloud-FS: its features, the properties it
enforces, the architecture, and the operation of its main functions. All these functions are
similar to SCFS’. The main difference is that metadata is stored encrypted in the coordi-
nation service, which is the topic of the following section. Later, Section 5 presents the
integrity veriϐication scheme.

Deliverable 2.4 10

4 Homomorphic coordinaƟon service
This sections presents HomomorphicSpace, a coordination service that provides a tuple
space abstraction [Gel85].

The HomomorphicSpace is based on a new library of homomorphic functions that we de-
signed called MorphicLib, so we present it ϐirst (Section 4.1). The HomomorphicSpace is
an extension of theDepSpace coordination service, sowe introduce that systemafterwards
(Section 4.2). The rest of the section presents HomomorphicSpace itself.

4.1 MorphicLib

MorphicLib is a novel library of partial homomorphic cryptographic functions written in
Java and providing a Java API. MorphicLib was not developed from scratch, but based on
existing source code whenever possible. The objective was both to simplify the task and
to avoid introducing bugs, which tend to appear due to the complexity of cryptographic
code. This library can be used both at the client-side to encrypt and decrypt data, and at
the server-side to do operations over encrypted data.

The code of the library is organized in classes, one per homomorphic property. One crucial
difference between partial homomorphic encryption (PHE) and fully homomorphic encryp-
tion (FHE) is that in PHE data has to be encrypted taking into account the kind of operation
that will be supported over the encrypted data. With FHE, on the contrary, arbitrary com-
putation is possible over encrypted data (at a huge cost, in terms of performance). As we
opted for PHE for efϐiciency (FHE is extremely slow), for each homomorphic operation we
have four kinds of functions (or methods):

• Key generation function, typically used at client-side;

• Encryption function, typically used at client-side;

• Decryption function, typically used at client-side;

• Homomorphic operation functions, which allow doing operations over encrypted
data, typically used at the server-side.

Next we explain the implementation of the functions for each homomorphic property. In-
formation about the properties of the PHE algorithm, the operations supported, and the
classes are in Table 4.1. Figure 4.1 shows a summary of the library API.

Table 4.1: MorphicLib's main classes

Property Homomorphic Operations Class Input Data Types
Random None (strong cryptanalisys resistance) HomoRand Strings, Byte Arrays
Deterministic Equality an inequality comparisons HomoDet Strings, Byte Arrays
Searchable Keyword search in text HomoSearch Strings
Order preserving Less, greater, equality comparisons HomoOpeInt 32 bit Integers
Sum Add encrypted values HomoAdd BigInteger, String
Multiplication Multiply encrypted values HomoMult BigInteger, String

Deliverable 2.4 11

1 public class HomoRand {
2 public static SecretKey generateKey()
3 public static byte[] encrypt(SecretKey key, byte[] IV, byte[] plaintext)
4 public static byte[] decrypt(SecretKey key, byte[] IV, byte[] ciphertext)
5 }
6 public class HomoDet {
7 public static SecretKey generateKey()
8 public static byte[] encrypt(SecretKey key, byte[] plaintext)
9 public static byte[] decrypt(SecretKey key, byte[] ciphertext)

10 public static boolean compare(byte[] op1, byte[] op2)
11 throws UnsupportedEncodingException
12 }
13 public class HomoOpeInt {
14 public static SecretKey generateKey()
15 public long encrypt(SecretKey key, int plaintext)
16 public int decrypt(SecretKey key, long ciphertext)
17 }
18 public class HomoSearch {
19 public static byte[] wordDigest(SecretKey key, String word)
20 public static SecretKey generateKey()
21 public static String encrypt(SecretKey key, String plaintext)
22 public static String decrypt(SecretKey key, String ciphertext)
23 public static boolean searchAll(String words, String ciphertext)
24 }
25 public class HomoAdd {
26 public static PaillierKey generateKey()
27 public static BigInteger encrypt(BigInteger m, PaillierKey pk)
28 throws Exception
29 public static BigInteger decrypt(BigInteger c, PaillierKey pk)
30 public static BigInteger sum(BigInteger a, BigInteger b, BigInteger

nsquare)
31 public static BigInteger dif(BigInteger a, BigInteger b, BigInteger

nsquare)
32 public static BigInteger mult(BigInteger a, int prod, BigInteger nsquare)
33
34 }
35 public class HomoMult {
36 public static KeyPair generateKey()
37 public static BigInteger encrypt(RSAKey key, BigInteger value)
38 public static BigInteger decrypt(RSAKey key, BigInteger ciphertext)
39 public static BigInteger multiply(BigInteger op1, BigInteger op2,
40 RSAPublicKey publicKey)
41 }

Figure 4.1: MorphicLib API (summary)

Deliverable 2.4 12

Random – Class HomoRand The cryptographic Random scheme is not homomorphic,
but was included in the library for completeness. This scheme, is called Random because
every time a given value is encrypted, it gives a different cyphertext. In fact, it is not an
homomorphic encryption system, but can be used in a general homomorphic aware ap-
plication precisely when no homomorphic property is required for certain data. In this
case, Random ismore secure than any of the homomorphic encryption schemes as it is not
vulnerable to a chosen plaintext attack [KL07].

For this scheme we have used the Advanced Encryption Standard (AES) implementation
of the javax.crypto package with CBC mode and PKCS #5 padding. This algorithm is rec-
ommended for legacy and future use by ENISA [ENI14].

What gives this scheme the randomness property (same cleartext producing different ci-
phertexts) is the use of a random Initialization Vector (IV).

Deterministic – Class HomoDet In order to make possible equality comparison opera-
tions we need deterministic encryption, i.e., encryption in which the same plaintext origi-
nates always the same ciphertext. The deterministic scheme is essentially the same as the
random encryption scheme, except that the IV takes a ϐixed value. In order to avoid that
plaintexts with the same beginning have the same beginning on the correspondent cipher-
text, we make a second encryption with the blocks in the reverse order, with the same IV.
This form of encryption is weaker than the random scheme, but necessary for equality and
inequality determinations [ENI14, PRZB11]. Needless to say, in this encryption system an
attacker will be able to notice if two equal ciphertexts correspond to the same plaintext.
Otherwise, this encryption scheme is as strong as AES encryption.

Searchable – Class HomoSearch The searchable scheme aims to produce a ciphertext
that allows searching for words within it, without having to decrypt it. The trivial op-
tion would be to encrypt the text word by word with a deterministic encryption system.
However, this approach would provide too much information to an attacker: frequency of
words, position of the words in the text, and size of the words. To avoid those drawbacks
we have built a scheme closely following the solution used in CryptDB [PRZB11]. The en-
cryption for this scheme was implemented with the following sequence of steps:

1. It builds a list of distinct words found in the text (hides the frequency);

2. It encrypts each word with deterministic encryption;

3. It obtains a SHA 256 (also recommended by ENISA [ENI14]) hash of each encrypted
word (hides the size of words);

4. It orders the obtained list randomly (hides the position in the text)

5. The text to be searched is encrypted with the random scheme and the list of hashes
is attached.

Searching for keywords in text consists in:

Deliverable 2.4 13

• The client encrypts and hashes the keyword(s) to be searched;

• The server searches for these hashes in the list and returns the encrypted text if there
is a match.

To decrypt the text the list of hashes is not necessary.

OrderPreserving–ClassHomoOpeInt Orderpreserving encryption aims to allowcom-
parisons of encrypted values such as greater than, less than, and greater or equal to. We
implemented this schemeby supporting the encryption of 32-bit signed integers (Java’s int
primitive type). Encryption maps each value into a positive number in the range [0, Max-
Long/2]. The algorithm implementedwas the one described by Boldyreva et al. [BCLO09].
The implementationwasbasedonCryptDB’sC++ implementationobtained inGitHub [P+15].
A challenge of the implementation was to ϐind a reverse hypergeometric pseudo-random
variate generator method, as CryptDB’s code was too complex. Instead we used a Java im-
plementation of the algorithm described in [KS85] available at GitHub [Der13].

Sum – Class HomoAdd As partial homomorphic scheme for the sum operation, we used
the Paillier cryptosystem [KL07]. In order to be able to work with numbers as large as
necessary, we decided to use as inputs big integers, namely Java’s BigInteger class. For the
implementation of Paillier we have adapted the Java code authored by Hassan found in the
web [Has09].

The Paillier cryptosystem is an asymmetric schemewith the following twokeys: public key
– the pair (n, g); private key – the pair (λ, µ). The parameters n, g, λ, and µ are generated
from twobig primenumbers p and q. The parametern= p.q, is part of the public key. So, the
security of the system is based on the fact that an attacker cannot ϐind p and q factorizing
n. This is the same problem used by RSA, so the length of n, two times the length of p and
q, should follow the recommendations for RSA, and have at least 2048 bits [ENI14].

This scheme also supports multiplication of encrypted values by constants. For that pur-
pose, we raise the encrypted value to the constant (for a sufϐiciently large n):

Enc(a+ b mod n) = Enc(a).Enc(b)mod n2

Enc(k.mmod n) = Enc(m)k mod n2

Note that in PHE the operations performed with the encrypted data do not have to be the
same that would be executed with plaintext. Those operations just need to produce the
desired result, i.e., the result obtained must be the encryption of the result that would be
obtained executing the original operation over the plaintext. This is the case with Paillier,
in which to obtain the encryption of a sum, a product is made. The same way, the multipli-
cation by a constant is determined by rising the encrypted value to that constant.

Multiplication – Class HomoMult For multiplication we used RSA, again with big inte-
gers. We used the standard Java functions in javax.crypto for encryption, decryption, and
key generation. No padding is used to guarantee the homomorphic property.

Deliverable 2.4 14

We implemented encryption functions accepting inputs of the types BigInteger or String
(containing an integer).

Two aspects should be noted:

1. In this way of using RSA both keys must be kept secret, otherwise chosen plaintext
attacks would be possible;

2. The partial homomorphism formultiplication is valid for themodularmultiplication.
As the RSA keys have more than one thousand bits, that means that we can comfort-
ably work with 32 bit integers or even 64 bit long integers. Actually we can work
with BigIntegers of hundreds of bits provided that the multiplications do not exceed
the value of the module used in the encryption.

4.2 DepSpace

DepSpace is a fault- and intrusion-tolerant tuple space service [BACF08]. Architecturally
it is client-server system implemented in Java (see Figure 4.2). The server-side is repli-
cated in order to tolerate arbitrary faults. The client-side is a library that can be called by
applications that use the service. Clients communicate with the servers using a Byzantine
fault-tolerant total order broadcast protocol called BFT-Smart. The most recent version
supports extensions to the service [DBB+15]. A stable prototype is available online.1

Figure 4.2: DepSpace architecture with 4 server replicas

The service provides the abstraction of tuple spaces. A tuple space can be understood as
a shared memory that stores tuples, i.e., sequences of ϔields (data items) such as (1, 2, a).
Tuples are accessed using templates. Templates are special tuples in which some ϐields
have values and others have undeϐined values, e.g., wildcards meaning any value (“*”). A
template matches any tuple of the space that has the same number of ϐields, in which the
values in the same position are identical, and the undeϐined values match in some sense.

1https://github.com/bft-smart/depspace

Deliverable 2.4 15

For example, the template (1, *, a, *), matches the tuples (1, 2, a, b) and (1, 7, a, 14), but
neither (1, 2, b, 4), where the 3rd ϐield does not match, or (1, 2, a, b, 5), where the number
of ϐields are different.

DepSpace supports a set of commands, issued by clients and executed by the servers. Here
we consider the following commands:

• out tuple – inserts a tuple in the space;

• inp template – reads and removes from the space a tuple that matches the template;

• rdp template – reads but does not remove from the space a tuple that matches the
template;

• inAll template – reads and removes from the space all tuples thatmatch the template;

• rdAll template – reads but does not remove from the space all tuples that match the
template.

DepSpace does not support homomorphic operations. However, it allows ϐields to be en-
crypted and basic equalitymatching by storing a hash jointlywith the encrypted ϐield. This
solution however is vulnerable to trivial brute force and dictionary attacks. It does support
the deϐinition of access control policies using its policy-enforcement mechanism.

4.3 HomomorphicSpace

This section presents our homomorphic tuple space service.

4.3.1 Threat model

The threat model we consider for HomomorphicSpace is similar to the threat model for
DepSpace except for one, crucial, difference: we consider that any server (or any cloud
that contains the server) may be adversarial and try to read the content of the tuples it
stores. We consider that all tuples whose ϐields’ conϐidentiality has to be preserved are
encrypted using homomorphic encryption, preventing malicious servers from doing such
an attack.

Similarly to DepSpace, adversaries may compromise up to f out of 3f +1 servers and stop
them or modify their behavior arbitrarily. This is tolerated using replication and the BFT-
Smart protocol. Network messages may also be tampered with by the adversary, but the
system tolerates this by using secure channels.

4.3.2 Commands

HomomorphicSpace extends DepSpace to allow commands over tuples with encrypted
data items. More precisely in comparison with DepSpace, HomomorphicSpace:

Deliverable 2.4 16

• Supports the original match operations over encrypted data;

• Extends matching beyond the equality and wildcards with more complex matches,
i.e., inequality, order comparisons (lower, greater), and keyword presence in a text,
all over encrypted data;

• Allows addition and multiplication off encrypted ϐields.

Besides values and wildcards (“*”), HomomorphicSpace’s templates can include the ϐields
shown in Table 4.2.

Table 4.2: Fields that may be used in tuples in HomomorphicSpace, besides values and
wildcards.

Field Meaning
%word1…wordn matches a textual ϐield containing all the words indicated
> val matches a numeric ϐield containing a value greater than val
>= val matches a numeric ϐield containing a value greater or equal to val
< val matches a numeric ϐield containing a value lower than val
<= val matches a numeric ϐield containing a value lower or equal to val

HomomorphicSpace adds three commands to those provided by DepSpace (Section 4.2):
crypt, rdSum and rdProd.

The ϐirst is crypt id template and aims to deϐine a tuple encryption type. The command takes
as input an identiϐier (id) for the type it will create, and a template with the homomorphic
operation desired for each of the ϐields, which will determine the homomorphic property.
For example, if the template contains for a given ϐield the operation “=”, the system infers
that the encryption to be used for that ϐield is deterministic, which is the strongest that
allows that operation. If no operation is indicated, the ϐield will not be encrypted. The
complete list of interpreted operations is:

• =, <> – determinist encryption (notice that<>means “different from”)

• >,>=, <,<= – order preserving encryption

• % - searchable encryption

• + – Paillier

• & – RSA

• . – random encryption

• other value – no encryption

The second command is rdSum template. This command starts by collecting all the tuples
that match the template similarly to rdAll, then sums the (encrypted) ϐields with + in the
template. The function returns a single tuple with the result.

The third command is rdProd template, which works similarly to rdSum but does multipli-

Deliverable 2.4 17

Figure 4.3: HomomorphicSpace architecture

cations instead of sum.

This scheme allows a single type of encryption per ϐield (unlike, e.g., CryptDB). However,
with the tuple data structure this is not a restriction. For instance, for tuples with a single
numeric ϐield, two operations like equality and sum can be supported by transforming that
ϐield in two and using the tuple encryption type (=,+).

4.3.3 Architecture and funcƟoning

Architecturaly the HomomorphicSpace is similar to DepSpace, with a client-side and a
server-side. Figure 4.3 represents the system with 4 replicas, i.e., with f = 1. From the
conϐidentiality point of view, the server-side is untrusted and the client-side trusted.

The server-side of the system is mostly DepSpace code with the server-side of theMorphi-
cLib andwith extensions to process the homomorphic operations. The client-side includes
MorphicLib’s and DepSpace’s client-side libraries. The main functions of the client are to
encrypt tuples and send them to the tuple space, and to decrypt them before they are de-
livered to the application. When a tuple is encrypted, the encryption keys are stored in a
key repository (a folder with one ϐile per key). Next we describe both sides in more detail.

Client side. When the crypt command is issued (i.e., that method is called), the library
generates keys for every ϐield of the tuple for which homomorphic properties are desired.
These keys are stored jointly with the tuple encryption type (id and template) in the key
repository.

All the other commands (out, inp, etc.) include an id that the library uses to retrieve the

Deliverable 2.4 18

corresponding tuple encryption type and keys from the repository. If the operation indi-
cated in a ϐield is not compatible with the encryption deϐined with the crypt command, the
command returns an error.

The library uses the DepSpace client library to send to the servers the command and the
ϐields. If the command is an out, the ϐields are encrypted with the scheme deϐined in the
tuple encryption type and the keys previously stored. If the command involves reading
tuples it contains the operation and encrypted values. Note that each ϐield of each id has
its own key (or key pair for RSA), but the same ϐield for the same id is always encrypted
with the same key.

When the library receives a reply from the servers, it does the opposite, i.e., it decrypts the
encrypted ϐields using the corresponding schemes and keys.

Server side. The server-side handles different commands in different ways. The out
command is executed the same way as in DepSpace. The ϐields may be encrypted but they
come encrypted from the client so the tuple is stored unmodiϐied. The inp and rdp com-
mands were modiϐied using DepSpace’s extension mechanism in order to support the =,
<>, >, >=, <, <=, and text search operations over encrypted data, returning one of the
matching tuples. The rdall and inall commands work similarly, as rdp and inp, but return
all matching tuples. The rdSum and rdProd commands are implemented as a modiϐication
of the original rdAll command that returns a single tuple with the relevant ϐields respec-
tively added or multiplied.

4.4 Summary

This chapter presented HomomorphicSpace, a coordination service capable of storing and
processing encrypted data. The service can search encrypted data with matching opera-
tors like =, <>,>,>=, <,<=, ϐind text based on keywords, and execute sums and mul-
tiplications. All those functions are performed without any decryption of the encrypted
data.

Deliverable 2.4 19

5 Integrity verificaƟon service
This sectionpresents SafeAudit, a software library that improves theShacham-Waters (SW)
integrity veriϐication scheme [SW08] and adapts it for use with commercial clouds and
SafeCloud-FS. SafeAudit improves the original SW scheme and provides: overall perfor-
mance increase by carefully selecting pairing-friendly elliptic curves [BN05] for SW scheme
parametrization; and a storage cost decrease of 50% in relation to the original scheme us-
ing point compression [Lyn07].

Nowadays data owners resort to integrity control mechanisms based on cryptographic
hashes [Mer79, ErJ01] to verify the integrity of data they store in clouds: digital signa-
tures for collaborative storage, where data is shared among several cloud users; and MACs
(Message Authentication Codes) for private storage, where data is used by a single cloud
user. To do so, users have some personal key: an asymmetric private/public key pair for
digital signatures or a symmetric key for MACs. A user stores data either with a signature
or a MAC, obtained respectively with the user’s private key or symmetric key. Whenever
the user wants to guarantee that the integrity of the data is preserved, the user: down-
loads the data and the corresponding signature/MAC from the cloud; then veriϐies if the
data matches the signature/MAC. If they match, the data integrity is veriϐied.

Notwithstanding the effectiveness of these mechanisms, they require downloading all the
data to be veriϐied from the cloud. Therefore, when users are only interested in verifying
the integrity of the data, not reading it, each veriϐication requires an unnecessary down-
load that implies a potentially large bandwidth consumption, delay and monetary costs
(downloads have a cost in most cloud storage services).

In order to reduce delay and bandwidth consumption some works evolved these integrity
mechanisms [AKK09, WWRL10, WLL15, BJO09, WRLL10, dC14, SW08]. On the contrary
to the previously-mentioned mechanisms (both MACs and signatures), their evolution are
homomorphic, i.e., the integrity control structures they produce have the same structure/-
format as the signed data (details later). These mechanisms provide veriϔiability (data
integrity can be veriϐied using proofs) and unforgeability (unauthorized modiϐications to
proofs, data or control structures are always detected) without the need of downloading
the data to be veriϐied. The mechanisms fall in two categories: homomorphic digital sig-
natures, that provide public veriϔiability (anyone can perform the integrity veriϐication);
and homomorphic message authentication codes, that provide private veriϔiability (only
the user that possesses the secret key can verify integrity). Therefore, independently of
the size of the data to be veriϐied, integrity veriϐication with these mechanism requires
downloading a small proof, with the associated low communication delay and negligible
cost.

5.1 SafeAudit

SafeAudit leverages homomorphic digital signatures for integrity control of the stored data,
and the computation resources of commercial clouds infrastructures for executing code
and generate compact integrity proofs based on the data and signatures present in the
cloud storage. By requesting and verifying those small proofs, cloud-backed applications

Deliverable 2.4 20

can perform storage integrity control without being constrained with network bandwidth
limitations or downloading large quantities of data.

5.1.1 Threat model and assumpƟons

SafeAudit was designed under a threat model where attackers have full permissions to
access the storage cloud and perform any operation on the users’ data, particularly the op-
erations that compromise integrity: write and delete. Under this scenario an attacker can
be: an external entity that managed to bypass the cloud’s access control mechanisms and
has obtained remote root access to one ormore cloud storagemachines; or an internal en-
tity who is trusted by the cloud and authorized to have physical access to themachine (e.g.,
a cloud’s employee), has obtained control of one or more storage machines and, moved by
malicious intent, performs several operations that compromise integrity of the storeddata.
Also it is assumed that all the attackers ϐingerprints have been erased and that the cloud
either has no knowledge of the attack or is hiding it from the user and auditor.

Since the purpose of SafeAudit is to detect cloud integrity attacks, this software library
is based on the assumption that the only way the attackers can compromise the users’
data is by attacking the cloud. This assumption was made to isolate the threat model from
problems relatedwith network or identity spooϐing attacks, which are outside of the scope
of this section. To do so, the threatmodel assumes that all communication between entities
is authenticated and secure at all times (e.g., all entities communicate through HTTPS and
use certiϐicates signed by certiϐicate authority trusted by all entities) and that neither the
user or auditor suffer Byzantine faults, i.e. users and auditors are not malicious and their
machine do not respond arbitrarily to the other entities’ requests.

5.1.2 Preliminaries

SafeAudit is built on top ofmultiplicative cyclic groups and uses several pairing based cryp-
tographic techniques, BLShomomorphicdigital signatures [Lyn07] and theShacham-Waters
(SW) integrity veriϐication scheme [SW08]. In this section somemathematical background
is provided and the aforementioned cryptographic techniqueswill be summarized for bet-
ter understanding of the remaining of the section.

5.1.2.1 Multiplicative cyclic group

A cyclic group is composed by members that are generated by a single group generator
element g. In amultiplicative cyclic group everymember is generated by raising the gener-
ator g with integers belonging to Z (the set of positive and negative integers). Multiplica-
tive cyclic groups can be ϐinite of inϐinite. The inϐinite ones are generated by raising with
unbounded integers from Z . The ϐinite ones of order n are generated by raising g with a
bounded set of integers belonging to Z that are modulo of p (also called group order p).
For better understanding consider the example illustrated in Figure 5.1, where a multi-
plicative cyclic group of order 6 and generator g = 2 is represented. The multiplicative
group is composed of six members [g0 = 1, g1 = 2, g2 = 4, g3 = 8, g4 = 16, g5 = 32], and

Deliverable 2.4 21

Store data

User

Check data integrity

Cloud

Auditor

SCFS SafeAudit

Signature Generator

DepSky

Core AmazonDriver

AuditableAmazonDriver
LocalDepSkySClient

DriversFactory

24 = 16

22 = 4 21 = 2

20 = 123 = 8

25 = 32

Figure 5.1: A mulƟplicaƟve cyclic group representaƟon of order 6 with 2 as its generator .

linear operations over members of the group are mapped as follows:

• gx = gxmod6, for example g6 = g0 = 1 and g7 = g1 = 2

• gx × gy = g(x+y)mod6, for example g1 × g2 = g3 = 8 and g7 × g8 = 8

Due to their modular nature, the ϐinite multiplicative cyclic groups can represent large
numbers of unbounded size into ϐinite group elements. SafeAudit relies on this technique
to represent data and signatures of unbounded sizes into small sized group elements and
uses them for creating compact proofs.

5.1.2.2 Pairing-based cryptography

In SafeAudit all the cryptographic techniques are built using pairing-based cryptography
in order to preserve homomorphism in all operations. In this type of cryptography, each
cryptographic function uses a pairing e (also called bilinear map) to convert a multiplica-
tive cyclic group (G) of prime order p, generated with the number g, into another multi-
plicative cyclic group (GT) of the same prime order (p), i.e., e : G × G → GT . By using
the pairing, the following properties are ensured: Computabillity: there exists an efϐicient
algorithm to compute the pairing; Bilinearity: for all u, v belonging to G, a, b belonging to
Zp and pairing e : G×G → GT , it is guaranteed that e(ua, vb) = e(u, v)ab.

5.1.2.3 BLS signature scheme

In order toprovide integrity control of a ϐile SafeAudit uses theBLS signature scheme [BB04]
for constructing digital signatures over pairing based cryptography. To do so, integrity
control assumes the following steps:

• Setup: Choose two distinct multiplicative cyclic groups G and GT of order p, and a
generator g forG and generate pairing e : G×G → GT .

• Key Generation: Using g compute an asymmetric secret/public key pair sk ∈ Zp and

Deliverable 2.4 22

pk ∈G. First compute sk, by selecting a random number that belongs to Zp and then
generate pk as gsk.

• Sign: Sign the data d ∈ Zp using the secret key sk belonging to Zp and by computing
the signature θ = dsk belonging toG.

• Verify: Using the public key pk ∈ G, the pairing e and the generator g, verify the sig-
nature θ ∈G of the data d∈Zp by testing the following hypothesis: e(θ, g) = e(d, pk).
If the hypothesis veriϐies the integrity is assured.

5.1.2.4 Homomorphic verifiable integrity proofs

Theuse of BLS signatures ensures the homomorphic property for integrity veriϐication and
consequently allows the construction of homomorphic veriϐication schemes, where data
and signatures are aggregated using additions and multiplications into compact veriϐiable
proofs. This is done because if each ϐile and signatures can be divided into blocks of a given
size (e.g., 128 bits) and these blocks can be mapped into multiplicative cyclic groups with
order = 2size (e.g., 128 bits will generate group 0...128), multiplications and additions will
always produce elements of the same group. Thus, ϐiles and signatures of unbounded size
can be aggregated into compact structures of themultiplicative cyclic group (e.g., a ϐilewith
106 bits is divided into 128bits blocksmapped tomultiplicative cyclic group andmultiplied
each block, and therefore producing 128 bit aggregation structure that represents the 106

bits ϐile). In SafeAudit the SW integrity veriϐication scheme [SW08] is used in order to
provide homomorphic generation and veriϐication of compact integrity proofs. To do so,
under this scheme, integrity control assumes the following steps:

• Setup: Choose two distinct multiplicative cyclic groups G and GT of order p, and a
generator g forG and generate the pairing e : G×G → GT .

• Key Generation: Using e and g, compute: a signature parameter w, by selecting a
random number that belongs to G; and an asymmetric secret/public key pair sk ∈
Zp and pk ∈ G. First compute sk, by selecting a random number that belongs to Zp

and then generate pk as gsk.

• Sign block: Given a block with the identiϐier id ∈ Z and the corresponding block’s
data did ∈ Zp, a hash function that mapsH : Z → Zp, the secret key sk ∈ Zp, and the
signature parameter w, compute the signature θid = (H(id)× wdid)sk ∈G.

• Proof Generation: Given a collection of block ids id1...idn ∈Z , the corresponding data
d1...dn ∈ Zp and numerical challenge vector of random numbers chal1...chaln ∈ Zp,
compute the integrity proof:
α =

∑n
i=1 di × chali ∈ Zp and β =

∏n
i=1 θ

chali
i ∈G.

• Proof Veriϔication: given the proof (α and β), the ids i...n, the public key pk ∈ G, the
signature θ ∈G, the pairing e, the generator g, and the signature parameterw, verify
by applying pairing that:
e(β, g) = e(

∏n
i=1H(idi)× wα, pk)

If veriϐication is positive integrity is assured.

Deliverable 2.4 23

5.1.3 SafeAudit's interacƟon protocol

In order to preserve the integrity of the data stored on the cloud using SafeAudit, the enti-
ties involved (cloud, user and auditor) need to follow the SafeAudit’s interaction protocol.
As will be explained in the rest of this subsection, the interaction protocol is divided into
four parts: set up (Section 5.1.3.1), store data (Section 5.1.3.2), request and verify of in-
tegrity proof (Section 5.1.3.3), and proof generation (Section 5.1.3.4).

5.1.3.1 Setup

In order to setup integrity veriϐication with SafeAudit the users and the auditor must per-
form the following interaction protocol steps before storing any data in the cloud:

• The user and the auditor exchange knowledge. The auditor provides two ϐiles1 to the
user for setting-up pairing-based-cryptography: the ‘.param’ ϐile with all the secure
public initialization parameters needed for conϐiguring cyclic groups G, GT and the
pairing for mapping G × G → GT ; and the ‘.g’ ϐile with generator g of the cyclic
group G. The user provides information to the auditor about the amount of money
the user wants to pay for audit, the time when each audit should be performed (e.g.,
daily, weekly, ...) and which data is the most critical to be veriϐied.

• The user generates his secret/public asymmetric key pair and the signature param-
eter (w) for signing and verifying data under the SW scheme, using respectively the
SafeAudit’s key and random number generators (further explained in Section 5.2).

• The user shares the public key and w with auditor and stores w on the cloud.

• The user conϐigures the cloud for listening to the auditor’s requests and for respond-
ing to them, with the execution of SafeAudit’s proof generator service (further ex-
plained in Section 5.2).

After these steps are performed users can now store their data in the cloud.

5.1.3.2 Store data

When the user stores data in the cloud, all data must be divided into blocks belonging
to Zp and signed. The SafeAudit’s signature generator (further explained in Section 5.2)
automates these tasks and produces a signature equivalent to the SW sign block step (as
described in Section 5.1.2.4). To do so, the client provides as input, for the signature gener-
ator, the data and its id (e.g., the ϐile content of the ‘data.txt’ ϐile is used as the data and the
id is the ϐilename ‘data.txt’), alongside with the pairing cryptography parameters (’.param’
and ‘.g’ ϐiles), secret key (‘.sk’), and the signature parameter (‘.w’), and obtains the signature
of all the data blocks.

After the signature of the data is obtained, the user stores both the data and signature in
1Data structureswould be probably a better expression than ϔiles, but we believe the word ϔile is easier to

understand and in our implementation they are indeed ϐiles.

Deliverable 2.4 24

the cloud.

5.1.3.3 Requesting and verifying integrity proofs

In SafeAudit’s iteration protocol, the auditor is responsible for integrity veriϐication. To do
so, whenever the auditor wants to obtain integrity proofs of a dataset stored on the cloud,
he must perform the following steps:

• Select a dataset composed of x data elements (vector [0, ..., x]), so that the cost of
obtaining the proof for the x elements is, at most, the price the user wants to pay for
the audit.

• Generate a random challenge (number belonging to Zp) for each of the x data ele-
ments chosen, using the SafeAudit’s random number generator.

• Issue the integrityproof request to the cloud specifying: identiϐiers vector ([id0, ..., idx])
and the corresponding challenge vector ([chal0, ..., chalx]).

• Upon receiving a response from the cloud, with the requested integrity proof, the au-
ditor veriϐies it using the SafeAudit’s proof veriϐier (further explained in Section 5.2).
The auditor provides the public key pk and the signature parameter w, alongside
with the ids and challenges used on the integrity request; and obtains the integrity
veriϐication result. Using SafeAudit’s proof veriϐier for performing the veriϐication
test corresponds to the proof veriϐication step of the SW scheme.

5.1.3.4 Generating integrity proofs

Whenever the cloud receives an integrity proof request of a given dataset, the cloud per-
forms the following steps:

1. Fetch all dataset’s data and signatures from the storage cloud corresponding to the
ids speciϐied.

2. Fetch from the storage cloud, the pairing cryptography parameters (‘.param’ and ‘.g’),
and the signature parameter (‘.w’), of the user requested.

3. Generate integrity proof, composed of: the aggregation of signatures provided (β);
and the aggregation of data provided (α), by using SafeAudit’s proof generator (fur-
ther explained in5.2.5). Thegenerator receivesdata, setupparameters (‘.g’ and ‘.param’),
signatures, challenges, pairing cryptography parameters and the random initializa-
tion parameter related to the dataset; and produces the α and β. This step corre-
sponds to the proof generation step of the SW scheme.

4. Respond to the requester with the integrity proof (α and β).

Deliverable 2.4 25

5.1.4 SW signature size opƟmizaƟon

The size of the block signatures produced by SafeAudit is equal to the size of the multi-
plicative cyclic group G stipulated by the auditor (e.g., if G is equal to 128 bytes then the
block signatures are also 128 bytes). Also, the size of the group G is determined by the
elliptic curve selected for its initialization and are always larger than the integers used for
its generationZp. For example, when a typeA elliptic curve [Lyn07] is used for the genera-
tion of multiplicative cyclic groups, with the recommended sizes whereG andGT are 128
bytes andZp is 20 bytes, the signatures produced are 6.4 times bigger than the original ϐile,
raising the storage costs also to 6.4 times higher.

Since SafeAudit is intended to be used in commercial clouds, this library strives to lower
the monetary costs paid for integrity veriϐication. To do so, the size of the signatures used
needs to be optimized to theminimumpossible for reducing the additional monetary stor-
age costs paid for storing them on the cloud. To do so, two optimizations were made on
the original SW scheme.

The ϐirst optimization is the selection of the pairing curve that produces the shortestmulti-
plicative cyclic groups, which is the pairing-friendly elliptic curves of prime order [BN05]
(also named type F curves and described in [BB04]), as recommended by both BLS and
SW authors in [SW08] and [Lyn07]. This optimization allows the creation ofmultiplicative
cyclic groupsG that are twice the size of the original dataZp, and thus produces signatures
twice the size of data.

The second optimization is to incorporate a signature compression in SafeAudit using the
point compression technique described in [Lyn07]. This optimization comes from the fact
that the multiplicative cyclic group G, where the signature belongs, is a two coordinate
point (x, y) where y is one of the possible results of applying the elliptic curve function
selected for pairing initialization. Due to this fact the y coordinate of the signature can be
computed solely based on the x coordinate, the elliptic function, and a one bit value in-
dicating which of the possible values to select. Thus, the y coordinate can be completely
discarded, and the signature is compressed always by half of the original size and repre-
sented by its x coordinate and the one bit value necessary to recompute the y coordinate.
This optimization allows signatures to have half of the expected size of applying the signa-
ture step of SW scheme and in the best case where type F elliptic curves [BN05] are used
are the same size of the original data.

With these two optimizations SafeAudit is able to produce signatures the same size of the
original data, which is the lowest possible using an homomorphic signature scheme.

5.2 SafeAudit's implementaƟon

In order to simplify integration with the users’ cloud-backed applications, commercial
clouds, and auditors, the SafeAudit software library is composed of several components,
each one implementing a task of the SafeAudit interaction protocol. The Pairing Genera-
tor component, allows auditors to generate all the setup parameters, required to initialize
pairing-based-cryptography. The Key Generator component allows users to generate their

Deliverable 2.4 26

asymmetric secret/public key pair and signature parameter (w). The Signature Generator
component allows users to sign their data. The Random Generator component allows en-
tities to generate random numbers belonging to any ϐield of their choosing (Zp, G or GT).
The Proof Generator component allows clouds to generate integrity proofs. The Proof Ver-
iϔier component allows auditors to verify the proofs obtained from the cloud. The rest of
the section explains each component.

5.2.1 Pairing generator

This component allows auditors to construct setup parameters (‘.param’ and ‘.g’) for ini-
tializing pairing based cryptography, according to the their security speciϐication.

Auditorsprovide as input the typeof pairing curve tobeused forpairing generation (type =
A|B|C|D|E|F)2, and the parameters needed for initializing the curves.

The Pairing Generator outputs: a speciϐier ϐile (‘.param’) detailing all the information about
the multiplicative cyclic groups G and GT , the integer range of the Z integers used for
generating elements, and thepairing speciϐications formappingG toGT ; and the generator
ϐile ‘.g’containing the absolute value of the element used for generating the multiplicative
groupG.

5.2.2 Key generator

The Key Generator component allows users to generate their own asymmetric key pair
and signature parameter according to the security information provided by the auditor.
The generated keys can be further used for the BLS and SW schemes.

The generator works as follows: the user inputs the setup parameters provided by the
auditor ‘.param’ and ‘.g’; the component initializes the pairing ; generates the secret key
by selecting a random number belonging to Zp; generates the public key by computing
gsk; generate the signature parameter by selecting a random number belonging to Gand
returns the keys and w to the user .

5.2.3 Signature generator

The Signature Generator component allows clients to sign their data using the signing step
of SW scheme and compute the digital signatures.

In the SW scheme, the data to be signed is assumed to have ϐixed sizes and belongs to Zp.
To support data sizes bigger than original data, users have to divide the data in blocks that
belong to Zp, and sign each block individually. In order to automate data division into Zp

data blocks and sign each of themwith the SW scheme, Signature Generator supports two
signing modes: the Sign Block mode, for signing individual data blocks in Zp; and the Sign
Data mode, that converts all the input data to one or several blocks ∈ Zp, signs each block

2See Section 4 of [Lyn07] for more information about the pairing curves and their selection

Deliverable 2.4 27

using Sign Block component, and returns the concatenation of all generated signatures
from the blocks.

5.2.3.1 Sign block

The Sign Block mode works as follows: the user inputs the setup parameters provided by
the auditor ‘.param’ and ‘.g’, the block d, id of the block idd, the secret key sk and the sig-
nature parameter w; the component initializes the pairing; hashes the id to Zp; multiplies
the id’s hash with wd; signs the multiplication with the user’s secret key; and returns the
signature of the block.

5.2.3.2 Sign data

The Sign Data mode works as follows: the user inputs the setup parameters provided by
the auditor ‘.param’and ‘.g’, the data d, id of the data idd, the secret key sk and the signa-
ture parameter w; the component initializes the pairing; the component divides the data
into a vector of blocks that belong to Zp; signs each block individually with an unique id;
concatenates the blocks’ signatures into one; and returns the concatenation.

5.2.4 Random number generator

This component allows generation of random numbers belonging to any of Zp, G or GT

ϐields. To do so, this generator receives as inputs the desired ϐield, the pairing ‘.param’and
the ‘.g’ and outputs the random number.

5.2.5 Proof generator

The Proof Generator component allows clouds to generate integrity proofs with the infor-
mation they have stored whenever an auditor requests them. To do so, the algorithm ϐirst
initializes pairingwith the setup parameters , calculates alpha and beta based on the data’s
blocks present in the dataset.

5.2.6 Proof verificaƟon

The Proof Veriϐier component allows users to verify integrity proofs, using the SW proof
veriϐication step. To do so, the algorithm ϐirst initializes pairing with the setup parameters
(‘.param’ and ‘.g’); applies gpairing tobeta,multiplies all ids present in theproofwithwalpha,
applies public key pairing to the id and alpha multiplication and veriϐies if both pairings
obtained match. If so, the data integrity is preserved.

Deliverable 2.4 28

Store data

User

Check data integrity

Cloud

Auditor

SCFS SafeAudit

Signature Generator

DepSky

Core AmazonDriver

AuditableAmazonDriver
LocalDepSkySClient

DriversFactory

24 = 16

22 = 4 21 = 2

20 = 123 = 8

25 = 32

Figure 5.2: Components modified for integraƟng S�¥�Aç�®ã in DepSky.

5.3 IntegraƟon in SafeCloud-FS

The SafeAudit library code was developed in Java and all the pairing-based cryptographic
mechanisms used in SafeAudit were implemented using the Java Pairing-Based Cryptog-
raphy Library (JPBC) [DI11], that implements Multi-linear Maps and all the operations re-
quired by these mechanisms for manipulating those maps.

At the client-side, SafeAudit is integrated with DepSky components. More speciϐically, in
DepSky the logic for communicating with different commercial clouds is implemented in
subcomponents called cloud drivers. In Depsky these components read and write ϐiles in
the storage clouds. With SafeAudit, auditable cloud drivers sign ϐiles using the SafeAudit’s
signature generator and the signature is also stored on the cloud. As seen in Figure 5.2,
for integrating these new drivers, DepSky suffered changes in two packages: core and
drivers. Codewas added to the core package of DepSky, in the DepSky’s initialization func-
tion (present on LocalDepSkySClient.java) and to the DepSky’s driver constructor function
(present on DriversFactory.java).

To use SĆċĊAĚĉĎę, SCFS has to be conϐigured with what we call auditable cloud drivers,
which implement our system’s logic. For instance, to use Amazon S3 as cloud storage, in-
stead of using the original (non-auditable) driver amazon-s3, the corresponding auditable
driver auditable-amazon-s3 shall be used. Users can choose which drivers to use, by mod-
ifying the conϐiguration ϐile with the name of the desired drivers. The DepSky’s initializa-
tion function automatically reads the user’s secret key, the setup parameters (.param and
.g) and the signature parameters (.w) provided by the auditor; and uses the initialization
function of DepSky driver for initializing the driver with that information. Regarding the
driver package, the auditable drivers extend the non-auditable drivers. Whenever data
is uploaded to the commercial cloud using the auditable driver, data is signed by using
SafeAudit’s sign data component and then stored both signature and data on the commer-
cial cloud by invoking the superclass’ non-auditable driver upload data function.

Deliverable 2.4 29

To run the veriϐier in the clouds the use of a service like AWS Lambda may be used3. By
using services like Lambda instead of the more traditional alternative of keeping an EC2
virtual machine running, users only pay for computing resources during the code execu-
tion, not paying for idle time. Therefore, users can leave the system always on and ready
to execute the auditors proof generation request without additional monetary costs. This
is not possible in computing services like EC2 since monetary costs are charged from the
moment the machine boots until it is completely shut down.

5.4 Summary

In this section, the SafeAudit software library was proposed. This software library was
designed to be easily integrated with the current remote storage solutions, including solu-
tions that store data with cloud-backed applications on commercial clouds, and automate
all the tasks involved in storage integrity control, including signature generation and ver-
iϐication.

3https://aws.amazon.com/lambda/

Deliverable 2.4 30

6 Conclusion
This deliverable presents SafeCloud’s cloud-backed secure ϐile system, SafeCloud-FS. This
system is based on SCFS, a modular cloud-backed ϐile system.

SafeCloud-FS contains two new features. First, it stores metadata encrypted, hiding from
the clouds information such as the names of the ϐiles, the directory tree, and their times-
tamps (time of creation and of the last change).

Second, it allows verifying the availability and integrity of the ϐiles stored at the cloudwith-
out downloading it.

These new mechanisms are based on 3 new components: the MorphicLib library, the Ho-
momorphicSpace coordination service, and the SafeAudit service.

Deliverable 2.4 31

Bibliography
[AKK09] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage from

homomorphic identiϐication protocols. In International Conference on the The-
ory and Application of Cryptology and Information Security, pages 319–333.
Springer, 2009.

[BACF08] A. N. Bessani, E. P. Alchieri, M. Correia, and J. S. Fraga. DepSpace: a Byzantine
fault-tolerant coordination service. In Proceedings of the 3rd ACM SIGOPS/Eu-
roSys European Systems Conference, pages 163–176, April 2008.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random oracles. In In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 56–73. Springer, 2004.

[BCLO09] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and AdamO’Neill. Order-
preserving symmetric encryption. In Proceedings of the 28th Annual Interna-
tional Conference on Advances in Cryptology: The Theory and Applications of
Cryptographic Techniques, pages 224–241, 2009.

[BCQ+13] AlyssonBessani, Miguel Correia, BrunoQuaresma, FernandoAndré, andPaulo
Sousa. Depsky: dependable and secure storage in a cloud-of-clouds. ACM
Transactions on Storage (TOS), 9(4):12, 2013.

[BJO09] Kevin D Bowers, Ari Juels, and Alina Oprea. Hail: a high-availability and in-
tegrity layer for cloud storage. In Proceedings of the 16th ACM conference on
Computer and communications security, pages 187–198. ACM, 2009.

[BMO+14] Alysson Bessani, RicardoMendes, Tiago Oliveira, Nuno Neves, Miguel Correia,
Marcelo Pasin, and Paulo Verissimo. Scfs: a shared cloud-backed ϐile system.
In 2014USENIXAnnual Technical Conference (USENIXATC14), pages 169–180,
2014.

[BN05] Paulo SLM Barreto and Michael Naehrig. Pairing-friendly elliptic curves of
prime order. In International Workshop on Selected Areas in Cryptography,
pages 319–331. Springer, 2005.

[Che16] Roger Cheng. Tech industry rallies around Apple in its iPhone ϐight
with FBI. CNET. https://www.cnet.com/news/iphone-ϐight-against-ϐbi-tech-
groups-industry-leaders-throw-support-behind-apple/, March 2016.

[Clo13] Cloud Security Alliance. The notorious nine: Cloud computing top threats in
2013, February 2013.

[DBB+15] Tobias Distler, Christopher Bahn, Alysson Bessani, Frank Fischer, and Flavio
Junqueira. Extensible distributed coordination. In Proceedings of the 10th
ACM SIGOPS/EuroSys European Systems Conference, pages 10:1–10:16, 2015.

[dC14] Nuno Tiago Ferreira de Carvalho. A practical validation of homomorphicmes-
sage authentication schemes. Master’s thesis, University of Minho, 2014.

Deliverable 2.4 32

[Der13] Masih H. Derkani. Hypergeometric.java. https://github.com/masih/sina/
blob/master/src/main/java/DistLib/hypergeometric.java, 2013.

[DI11] Angelo De Caro and Vincenzo Iovino. jPBC: Java pairing based cryptography.
InProceedings of the 16th IEEE SymposiumonComputers and Communications,
2011, pages 850–855. IEEE, 2011.

[ENI14] ENISA. Algorithms, key size and parameters report – 2014, November 2014.

[ErJ01] D Eastlake 3rd and Paul Jones. US secure hash algorithm 1 (SHA1). Technical
report, 2001. Accessed: 2016-05-29.

[Gel85] David Gelernter. Generative communication in Linda. ACM Transactions on
Programing Languages and Systems, 7(1):80–112, January 1985.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceed-
ings of the 41st Annual ACM Symposium on Theory of Computing, pages 169–
178, 2009.

[GHR+10] E. Grosse, J. Howie, J. Ransome, J. Reavis, and S. Schmidt. Cloud computing
roundtable. IEEE Security Privacy, 8(6):17–23, 2010.

[Goo17] Google. Google infrastructure security design overview – google cloud
whitepaper, January 2017.

[Has09] Omar Hasan. Paillier.java. http://liris.cnrs.fr/~ohasan/pprs/
paillierdemo/Paillier.java, 2009.

[Hau16] Laura Hautala. The Snowden effect: Privacy is good for business. CNET.
https://www.cnet.com/news/the-snowden-effect-privacy-is-good-for-
business-nsa-data-collection/, June 2016.

[HW90] Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Transactions on Programming Languages
and Systems, 12(3):463–492, 1990.

[KL07] JonathanKatz andYehuda Lindell. Introduction toModern Cryptography: Prin-
ciples and Protocols. Chapman & Hall/CRC, 2007.

[KS85] V. Kachitvichyanukul and B. Schmeiser. Computer generation of hypergeo-
metric random variates. Statistical Computation and Simulation, 22:127–145,
1985.

[Lyn07] Ben Lynn. On the implementation of pairing-based cryptosystems. PhD thesis,
Stanford University, 2007.

[Mar14] Markets and Markets. Cloud security market (cloud IAM/IDAASS, DLP, web
security, email security, cloud IDS/IPS, SIEM, encryption services, BCDR, net-
work security, cloud database security, virtualization security) - global ad-
vancements, forecasts & analysis (2014–2019), 2014.

Deliverable 2.4 33

https://github.com/masih/sina/blob/master/src/main/java/DistLib/hypergeometric.java
https://github.com/masih/sina/blob/master/src/main/java/DistLib/hypergeometric.java
http://liris.cnrs.fr/~ohasan/pprs/paillierdemo/Paillier.java
http://liris.cnrs.fr/~ohasan/pprs/paillierdemo/Paillier.java

[Mar16] Markets and Markets. Cloud storage market by solution (primary storage,
disaster recovery & backup storage, cloud storage gateway & data archiving),
service, deployment model (public, private & hybrid), organization size, ver-
tical & region – global forecast to 2021, 2016.

[Mer79] Ralph Charles Merkle. Secrecy, authentication, and public key systems. 1979.

[Mic15] Microsoft. Trusted cloud: Microsoft Azure security, privacy, and compliance.
http://download.microsoft.com/download/1/6/0/160216AA-8445-480B-
B60F-5C8EC8067FCA/WindowsAzure-SecurityPrivacyCompliance.pdf, April
2015.

[P+15] Raluca Ada Popa et al. CryptDB webpage. https://css.csail.mit.edu/
cryptdb/, 2015.

[PRZB11] Raluca Ada Popa, Catherine Redϐield, Nickolai Zeldovich, and Hari Balakrish-
nan. CryptDB: Protecting conϐidentiality with encrypted query processing. In
Proceedings of the 23rdACMSymposiumonOperating SystemsPrinciples, pages
85–100, 2011.

[Res16] Research and Markets. Cloud storage market insights, opportunity analysis,
market shares and forecast 2016–2022, July 2016.

[SW08] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Inter-
national Conference on the Theory and Application of Cryptology and Informa-
tion Security, pages 90–107. Springer, 2008.

[Tra16] Transparency Market Research. Cloud security market - global industry anal-
ysis, size, share, growth, trends and forecast 2014–2022, 2016.

[Vog09] Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40–
44, 2009.

[WLL15] Boyang Wang, Baochun Li, and Hui Li. Panda: public auditing for shared data
with efϐicient user revocation in the cloud. IEEE Transactions on services com-
puting, 8(1):92–106, 2015.

[WRLL10] CongWang, Kui Ren,Wenjing Lou, and Jin Li. Toward publicly auditable secure
cloud data storage services. IEEE network, 24(4):19–24, 2010.

[WWRL10] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving pub-
lic auditing for data storage security in cloud computing. In INFOCOM, 2010
Proceedings IEEE, pages 1–9. Ieee, 2010.

Deliverable 2.4 34

https://css.csail.mit.edu/cryptdb/
https://css.csail.mit.edu/cryptdb/

	Executive Summary
	Business Requirements
	Cloud storage market
	Cloud storage security market
	Limitations of industry-standard solutions

	Secure file system design
	Features
	Architecture
	Functions
	Summary

	Homomorphic coordination service
	MorphicLib
	DepSpace
	HomomorphicSpace
	Threat model
	Commands
	Architecture and functioning

	Summary

	Integrity verification service
	SafeAudit
	Threat model and assumptions
	Preliminaries
	SafeAudit's interaction protocol
	SW signature size optimization

	SafeAudit's implementation
	Pairing generator
	Key generator
	Signature generator
	Random number generator
	Proof generator
	Proof verification

	Integration in SafeCloud-FS
	Summary

	Conclusion

