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Executive	summary	
The	 deliverable	 presents	 the	 theoretical	 background	 of	 the	 long-term	 secure	 block	
device	along	with	the	description	of	a	prototype	implementation	(SafeStore).	Long	term	
means	that	strong	anti-tampering	and	data	integrity	can	be	provided	once	the	data	has	
been	stored	for	a	long	period	of	time	in	the	system.	
We	 	 first	 discuss	 requirements	 and	 design	 considerations.	 We	 then	 describe	 the	
entanglement	process	and	analyse	its	robustness	to	various	types	of	attacks	that	try	to	
corrupt	 documents	 in	 the	 data	 store.	 We	 then	 provide	 details	 on	 the	 architecture	 of	
SafeStore,	 an	 experimental	 testbed	 to	 evaluate	 the	 performance	 trade-offs	 of	 the	
security	guarantees	offered	by	the	SafeCloud	platform.	 	
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1 Introduction	
The	SafeCloud	consortium	provides	three	storage	solutions:	secure	block	storage	(SS1),	
a	 secure	data	archive	 (SS2),	 and	a	 secure	 file	 system	 (SS3).	This	deliverable	describes	
how	 long-term	data	 entanglement	 is	 achieved.	More	 precisely,	 by	 long-term	we	mean	
that	 strong	anti-tampering	and	data	 integrity	 can	be	provided	once	 the	data	has	been	
stored	for	a	long	period	of	time	in	the	system.	This	is	a	fundamental	part	of	SS2,	but	is	
also	paramount	to	SS1	since	our	secure	data	archive	is	built	on	top	of	the	secure	block	
storage.	This	deliverable	also	describes	SafeStore,	the	experimental	testbed	used	to	test	
all	the	storage	solutions	of	SafeCloud,	including	SS3.	
The	 remaining	 of	 this	 document	 is	 organized	 as	 follows.	 In	 Section	 2,	 we	 discuss	
requirements	 and	 design	 considerations.	 In	 Section	 3,	 we	 revisit	 how	 we	 use	 data	
entanglement	in	our	secure	data	archiving	system.	The	main	operating	principle	behind	
long-term	 data	 entanglement	 and	 its	 application	 in	 the	 context	 of	 SafeCloud’s	 secure	
block	storage	component	are	presented	 in	Section	4.	Finally,	 in	Section	5,	we	describe	
our	 current	 implementation	 prototype	 and	 testbed.	 The	 implementation	 was	 first	
introduced	in	deliverable	D2.1,	and	this	current	deliverable	includes	the	progress	made	
in	the	last	six	months.	

1.1 Storage	solutions	new	names	
Please	 note	 that	 we	 changed	 the	 name	 of	 two	 of	 our	 three	 storage	 solutions	 for	
simplicity	 purposes	 and	 uniformity	 across	 all	 other	 deliverables.	 The	 old	 names,	 only	
used	in	D2.1,	will	no	longer	be	used.	We	will	use	the	new	names,	described	as	follows,	
until	the	end	of	the	project:	
	
Storage	solution	 Old	name	in	D2.1	 New	name	in	all	deliverables	
Solution	1	(SS1)	 Secure	block	device	 Secure	block	device	

Solution	2	(SS2)	 Long	term	distributed	encrypted	
document	storage	 Secure	data	archive	

Solution	3	(SS3)	 Distributed	encrypted	file	system	 Secure	file	system	
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2 Requirements	and	design	considerations	
The	overall	design	of	the	SafeCloud	architecture	is	guided	by	several	requirements	and	
practical	 considerations.	We	briefly	discuss	 them	 in	 this	 section,	with	 an	 emphasis	 on	
the	thrustworthy	storage	layer.	
The	SafeCloud	architecture	design	is	driven	by	the	need	to	provide	security	in	two	very	
different	but	complementary	manners:	

• Provide	 a	 secure	 data	 store	 spanning	 several	 data	 centres	 across	 distinct	
administrative	domains	in	a	way	that	data	cannot	be	accessed	without	compromising	
all	data	sources;	

• Provide	 a	 secure	 data	 store	 for	 long-term	 data	 archival	 that	 cannot	 be	 deleted	 or	
tampered	 with.	 In	 that	 sense,	 the	 data	 store	 will	 provide	 both	 integrity	 and	
censorship	resistance.	

The	focus	of	SafeCloud	is	on	providing	innovative	security	mechanisms,	and	not	on	the	
practical	 aspects	 dealing	 with	 the	 implementation	 of	 proven	 technologies	 that	 are	
readily	available.	Hence	our	design	assumes	that	the	final	SafeCloud	architecture	can	be	
supported	by	state-of-the-art	coding	and	storage	techniques,	which	are	key	to	producing	
a	 robust,	 efficient	 and	 scalable	 implementation.	 This	 approach	 was	 paramount	 in	
designing	 all	 the	 components	 of	 the	 storage	 layer.	 For	 instance,	 for	 the	 secure	 data	
archive,	most	proposed	solutions	so	 far	either	do	not	provide	the	privacy	and	security	
guarantees	that	we	do,	or	has	an	unacceptable	performance.	
We	thus	have	evaluated	and	benchmarked	several	existing	components	 (backend	data	
store	and	coding/encryption	libraries)	to	identify	those	that	could	be	best	integrated	as	
basic	 building	 blocks	 in	 the	 SafeCloud	 architecture.	 The	 results	 of	 our	 study	 are	
summarized	Section	5.	
One	main	requirements	regarding	the	choice	of	 the	components	 is	 that	they	should	be	
efficient,	 robust,	 and	 well	 maintained.	 Furthermore,	 they	 should	 integrate	 seamlessly	
with	SafeCloud’s	own	components,	and	hence	use	APIs	that	are	interoperable	with	Java,	
C,	 and	 Python	 code—which	 are	 the	 main	 languages	 used	 in	 SafeCloud.	 While	
coding/encryption	 libraries	 should	 be	 linked	 directly	 with	 SafeCloud’s	 code,	 other	
components	 can	 be	 accessed	 via	 a	 REST	 API	 and	 hence	 can	 use	 any	 programming	
language,	as	long	as	they	can	be	packaged	and	executed	in	a	standard	container.	
Regarding	the	backend	data	store,	SafeCloud’s	mechanisms	assume	a	simple	key-value	
store	 with	 explicit	 placement	 of	 data	 blocks	 (i.e.,	 values)	 by	 a	 given	 node.	 This	 is	
essential	 because	 the	 security	 and	 robustness	 of	 the	 algorithms	 depend	 on	 the	
placement	 of	 the	 blocks	 (in	 different	 data	 centres,	 or	 on	 different	 nodes/disks	 in	 the	
same	data	centre).	
Regarding	 the	 coding	 libraries,	 SafeCloud’s	 entanglement	 algorithms	 rely	 on	 classical	
Reed-Solomon	 codes.	 SafeCloud’s	 security	mechanisms	 also	 leverage	 classical	 cyphers	
(AES	 and	 RSA)	 and	 cryptographic	 algorithms	 (signatures,	 checksums).	 Our	
implementation	choices,	which	are	described	in	Section	5	and	summarised	in	the	table	
below,	have	been	largely	driven	by	these	practical	considerations	and	requirements.	
	
Component	 Requirements	 Implementation	language	
Backend	data	store	 Key-value	API;	explicit	data	placement	 Any	
Coding	libraries	 Reed-Solomon	codes;	classic	cyphers	 Java,	C/C++,	Python	
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3 SafeCloud	archival	using	data	entanglement	(revisited)	
As	part	of	SafeCloud,	we	introduce	STEP-archives,	a	storage	system	for	archiving	coded	
documents.	Using	data	entanglement	and	erasure-correcting	 codes,	we	develop	a	data	
storage	 architecture	 where	 a	 stored	 document	 can	 only	 be	 deleted	 or	 modified	 by	
compromising	the	integrity	of	other	documents	in	the	system.	
There	are	two	main	objectives	behind	this	work.	The	first	objective	is	data	integrity.	We	
want	 to	 provide	 guarantees	 to	 users	 that	 their	 data	 cannot	 be	 deleted	 or	 corrupted	
without	 compromising	 other	 data	 stored	 by	 themselves	 or	 other	 users.	 The	 second	
objective	 is	 to	provide	censorship	resistance	by	 forcing	a	censor	who	wants	to	tamper	
with	 data	 to	 do	 so	 noisily,	 i.e.,	 being	 forced	 to	 corrupt	 a	 large	 number	 of	 other	
documents	 in	 the	 system.	 An	 ancillary	 result	 deriving	 from	 the	 two	 objectives	 is	
increased	 protection	 against	 failures,	 which	 can	 be	 seen	 as	 attacks	 from	 random	 or	
failure-specific	censors.	

3.1 Practical	considerations	
We	emphasize	 that	one	of	 the	objectives	of	SafeCloud	 is	 to	achieve	both	data	 integrity	
and	 censorship	 resistance	 in	 a	way	 implementable	 in	 practical	 systems.	 Thus,	we	 use	
practical	constraints	that	keep	an	actual	implementation	realistic	(for	instance	avoiding	
reads	 and	 writes	 requiring	 a	 non-constant	 part	 of	 the	 total	 system	 size)	 while	 being	
simple	enough	to	allow	analysis.	All	our	underlying	assumptions	and	design	choices	are	
implementable	 using	 state-of-the-art	 coding	 and	 storage	 techniques,	 which	 is	
paramount	for	a	large-scale	implementation.	

3.2 Entanglement	architecture	using	erasures	codes	
Definition	 1.	 A	 (s,t,e,p)-archive	 is	 a	 storage	 system	 where	 each	 archived	 document	
consists	of	a	codeword	with	s	 source	blocks,	 t	 tangled	blocks,	p	parity	blocks	and	 that	
can	correct	e	=	p	-	s	block	erasures. 

When	 a	 document	 is	 archived,	 it	 is	 split	 into	 s	 ≥	 1	 source	 blocks.	 Using	 the	 s	 source	
blocks	 with	 t	 distinct	 old	 blocks	 already	 archived,	 a	 systematic	 maximum	 distance	
separable	 (MDS)	 code	 [LC04]	 is	 used	 to	 create	 p	 ≥	 s	 parity	 blocks	 which	 are	 then	
archived	on	the	system.	
An	archived	document	can	be	recovered	from	s	+	t	or	more	of	 its	blocks.	The	code	can	
correct	p	 block	 erasures	per	document	 codeword,	 but	 since	 the	 source	blocks	 are	not	
archived	and	are	considered	as	erased,	at	most	𝑒 = 𝑝 − 𝑠	block	erasures	per	document	
on	 the	 storage	 medium	 can	 be	 corrected.	 Note	 that	 increasing	 t	 does	 not	 increase	
storage	overhead	or	error-correcting	capability,	but	does	increase	coding	and	decoding	
complexity.	
An	attacker	can	censor	a	document	𝑑' 	by	erasing	more	than	e	of	its	blocks.	However,	by	
entangling	 new	documents	with	 documents	 already	 archived,	 it	might	 be	 possible	 for	
the	system	to	recover	the	deleted	blocks	by	decoding	other	documents	that	use	them.	As	
an	 example,	 consider	 the	 (1,3,2,3)-archive	 presented	 in	 Figure	 1.	 Each	 document	
codeword	 consists	 of	 one	 source	 block,	 three	 pointers	 to	 old	 blocks,	 and	 three	 parity	
blocks.	Only	the	parity	blocks	are	stored	when	a	new	document	is	archived;	the	source	
block	 is	 not	 stored	 and	 the	 pointer	 blocks	were	 previously	 stored	 as	 parity	 blocks	 of	
older	documents.	Block	0	is	a	known	anchor	that	cannot	be	corrupted.	If	an	MDS	code	is	
used,	any	four	of	the	six	stored	blocks	belonging	to	a	document	are	sufficient	to	recover	
it	(i.e.,	𝑒 = 2).	In	Figure	1,	an	attacker	wants	to	censor	document	𝑑)	by	erasing	its	blocks	
{2,7,11,13,14,15}	 from	the	archive.	However,	although	𝑑)	cannot	be	recovered	directly,	
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all	 the	blocks	are	 recoverable:	Block	2	 can	be	 recovered	by	decoding	𝑑*	or	𝑑+,	Block	7	
can	 be	 recovered	 by	 decoding	𝑑,,	𝑑-	or	𝑑.,	 Block	 11	 can	 be	 recovered	 by	 decoding	𝑑-,	
Block	14	can	be	recovered	by	decoding	𝑑/,	Block	15	can	be	recovered	by	decoding	𝑑.,	
and	 in	 the	 last	 step	Block	13	can	be	 recovered	by	decoding	𝑑).	Having	been	unable	 to	
erase	𝑑),	 the	attacker	continues	his	attack	more	cleverly	and	 further	erases	Blocks	20,	
21,	22	and	24,	as	illustrated	in	Figure	2.	Document	𝑑)is	now	destroyed	irrecoverably,	as	
are	also	𝑑/and	𝑑.	(the	irrecoverable	blocks	and	documents	are	shown	in	red).	Blocks	2,	
7	and	11	are	still	recoverable,	which	means	that	the	attacker	could	have	 irrecoverably	
destroyed	𝑑)	without	destroying	them.	
The	challenging	part	of	our	approach	is	thus	to	choose	the	pointers	to	entangled	blocks	
in	a	way	that	 is	practical.	Since	we	target	practically	 implementable	data	 integrity	and	
anti-tampering,	we	focus	on	archives	with	t	constant	and	small.	Studying	how	to	assign	
these	pointers	to	maximise	the	tamper-proofing	and	protection	against	censorship	is	an	
important	task	of	the	project.	
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Figure	1:	(1,3,2,3)-archive.	4	out	of	6	blocks	are	required	to	recover	a	document.	This	

example	illustrates	a	recoverable	attack.	
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Figure	2:	(1,3,2,3)-archive.	4	out	of	6	blocks	are	required	to	recover	a	document.	This	

example	illustrates	an	irrecoverable	attack.	
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4 Long-term	data	entanglement	
In	 this	 section,	 we	 summarize	 the	 main	 theoretical	 concepts	 behind	 long-term	 data	
entanglement,	which	is	achieved	by	selecting	the	pointers	to	old	data	blocks	uniformly	at	
random.	We	first	describe	the	main	principle	of	random	entanglement.	We	then	discuss	
various	 types	 of	 attacks	 to	 corrupt	 documents	 in	 the	 data	 store.	 Finally,	 we	 present	
simulation	 results	 of	 how	 random	entanglement	 tolerates	 the	 considered	 attacks.	 The	
complete	 analysis,	 including	 all	 the	 mathematical	 proofs	 and	 an	 extended	 set	 of	
simulations,	can	be	found	in	[MAL16].	

4.1 Random	entanglement	
In	 practice,	 choosing	 entangled	 blocks	 uniformly	 at	 random	 offers	 three	 important	
advantages	 over	 highly	 structured	 entanglement.	 First,	 the	 problem	 is	 asymmetric	
between	 attackers	 and	 defenders:	 while	 a	 defender	 can	 efficiently	 recover	 from	
suboptimal	 attacks,	 an	 attacker	 must	 solve	 a	 NP-hard	 problem	 to	 find	 a	 perfect	
(irrecoverable)	attack	 that	minimizes	collateral	damage,	or	even	 just	approximate	 this	
minimum	 within	 a	 reasonable	 ratio.	 The	 creation	 of	 randomness	 in	 the	 structure	
prevents	 the	 attacker	 from	 planning	 the	 attack	 in	 advance,	 for	 instance	 by	 using	
amortized	 cost	 expensive	 pre-computations	 tied	 to	 the	 system	 structure.	 Second,	 a	
deterministic	structure	is	harder	to	implement	and	maintain	in	real-time	in	a	large-scale	
distributed	setting.	Third,	random	entanglement	can	provide	strong	security	guarantees	
once	data	has	been	archived	long	enough.	
The	main	drawback	of	uniformly	random	entanglement	is	that	as	the	archive	gets	bigger,	
it	 takes	 an	 increasingly	 longer	 time	 until	 new	documents	 become	 properly	 protected.	
Providing	 quick	 protection	 after	 archival	 is	 one	 of	 the	 objectives	 of	 deliverable	 D2.5,	
thus	this	issue	will	be	tackled	later	in	the	project.	

4.2 Suboptimal	attacks	
In	 order	 to	 test	 random	 entanglement,	 and	 because	 we	 do	 not	 know	 any	 good	
polynomial-time	 algorithms	 to	 optimally	 attack	 our	 system	 (or	 even	 to	 find	 a	 good	
approximate	solution),	we	turn	to	more	specific	techniques,	taking	the	special	structure	
of	our	archive	into	account.	We	therefore	consider	several	linear-time	heuristics.	
All	the	heuristics	formulate	the	attack	as	a	search	problem	on	a	tree	of	partial	solutions.	
A	partial	 solution	consists	of	a	set	of	 target	documents	we	are	currently	committed	 to	
destroy,	and	a	set	of	erased	blocks.	A	solution	is	complete	if	the	set	of	erased	blocks	is	
sufficient	 to	 make	 the	 target	 document	 set	 irrecoverable.	 A	 partial	 solution	 must	 be	
completed	by	deleting	some	blocks	referenced	by	recoverable	documents.	To	make	sure	
the	target	document	set	is	not	recoverable,	no	destroyed	blocks	must	be	referenced	by	
documents	outside	of	 the	target	set;	every	time	we	choose	to	destroy	a	new	block,	we	
must	 commit	 to	 destroy	 all	 documents	 referencing	 it.	 From	 a	 partial	 solution,	 every	
possible	 choice	 of	 new	 blocks	 to	 erase	 gives	 a	 new	 partial	 (or	 possibly	 complete)	
solution,	 forming	 a	 tree	 of	 solutions.	 For	 the	 initial	 solution,	 we	 take	 the	 set	 of	
documents	to	censor,	along	with	a	(yet)	empty	set	of	erased	blocks.	The	simplest	way	to	
explore	 this	 lattice	 is	with	a	greedy	algorithm.	We	 iteratively	walk	down	 the	 lattice	of	
solutions	along	a	single	path,	eventually	reaching	a	complete	solution.	
3.2.1	Greedy	Attacks 

We	 defined,	 implemented	 and	 studied	 four	 greedy	 attacks.	 The	 minimum	 attack	
minimizes	 the	 set	of	 corrupted	 target	documents	by	always	preferring	blocks	 that	are	
referenced	by	the	least	amount	of	documents	not	already	in	the	target	set.		The	leaping	
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attack	 is	based	on	the	 intuition	that	 it	 is	easier	 to	attack	recent	documents	than	older	
ones.	 	 Intuitively,	we	try	 to	 leap	over	documents	by	moving	 forward	 in	 time	as	 fast	as	
possible	toward	the	end	of	the	archive.	The	creeping	attack	intuitively	tries	to	keep	the	
set	of	corrupted	documents	as	compact	as	possible	in	time.	Finally,	the	tailored	attack	
uses	 the	 expected	 number	 of	 times	 a	 parity	 block	 is	 used	 as	 a	 pointer	 by	 younger	
documents.	This	number	 can	be	 calculated	mathematically	when	 the	entangled	blocks	
are	 chosen	uniformly	 at	 random	hence	 this	 attack	 is	 specifically	 tailored	 to	 uniformly	
random	 entanglement.	 This	 allows	 us	 to	 estimate,	 when	 we	 erase	 a	 block,	 the	
propagation	of	the	attack	to	all	the	documents	used	by	that	block.	

3.2.2	Depth-first	search	

The	greedy	algorithms	are	fast	since	their	complexity	is	linear	in	the	number	of	archived	
documents,	 but	 the	 quality	 of	 the	 solution	 they	 find	 is	 not	 always	 good.	We	 therefore	
implemented	a	recursive	depth-first	search	over	the	tree	of	partial	solutions	using	our	
four	heuristics.	The	first	complete	solution	produced	always	matches	the	output	of	the	
greedy	attack.	The	tree	is	then	backtracked,	looking	for	smaller	integrity	sets.	Since	the	
cost	function	is	non-decreasing	as	we	go	down	the	tree,	we	can	perform	branch	pruning	
as	soon	as	the	partial	cost	exceeds	the	cost	of	the	currently	best	known	solution.	
This	algorithm	thus	offers	a	trade-off	between	time	and	solution	quality,	at	the	expense	
of	 increased	 memory	 usage.	 Unfortunately,	 even	 with	 pruning,	 depth-first	 search	 is	
expensive	 and	does	not	 always	progress	 to	 the	optimal	 solution	quickly.	By	 searching	
depth-first,	 we	 spend	 a	 lot	 of	 effort	 trying	 to	 optimize	 the	 later	 stages	 of	 the	 attack,	
which	may	already	be	close	to	optimal,	whereas	the	decisions	with	the	most	impact	on	
the	overall	cost	are	the	ones	taken	at	the	beginning	of	the	attack.	

3.2.3	Bounded	breadth-first	search	

The	 inefficiency	of	 depth-first	 search	motivates	 the	 investigation	of	 bounded	breadth-
first	search	algorithms.	For	large	systems,	it	is	impossible	to	traverse	the	entire	solution	
tree,	and	bounded	breadth-first	search	algorithms	converge	much	faster	than	depth-first	
search	protocols.	We	thus	keep	a	collection	of	partial	attack	states,	ranked	according	to	
some	of	our	heuristics,	and	expand	the	most	promising	partial	solutions	first.	We	expand	
all	the	partial	solutions	into	their	child	states	at	once,	then	only	retain	the	best	ones,	up	
to	the	selected	buffer	size.	We	thus	deal	with	a	series	of	sets	of	solutions,	for	which	all	
solutions	 in	 the	same	set	are	 located	at	 the	same	depth	 in	 the	 tree.	This	simplifies	 the	
analysis	of	the	behaviour:	we	can	enforce	a	constant	maximum	width,	for	all	depths,	on	
the	 subtree	 we	 are	 exploring.	 We	 cannot	 apply	 the	 same	 pruning	 strategy	 as	 in	 the	
depth-first	search,	because	no	complete	solution	is	known	before	the	end	of	a	run,	but	
we	can	control	how	much	time	we	spend	in	the	most	critical	part	of	the	search	tree.	

4.3 Simulation	results	
We	 simulated	 the	 damage	 caused	 by	 the	 leaping	 attack	 on	 (1,	 t,	 2,	 3)-archives	 of	 size	
1,000,000	with	pointers	chosen	uniformly	at	random.	The	results	are	shown	in	Figure	3.	
The	six	subfigures	correspond	to	𝑡 ∈ {1,2,3,4,5,10}	pointers	per	document,	respectively.	
On	 each	 subfigure,	 the	 seven	 curves	 respectively	 represent	 target	 document	
{𝑑*, 𝑑), 𝑑*:, 𝑑):, 𝑑*::, 𝑑)::, 𝑑*:::}.	 Each	 curve	 is	 the	 average	 over	 100	 simulations.	 The	
phase	transition	as	the	number	of	pointers	increases	is	obvious	from	the	graphs.	When	
reaching	the	threshold,	the	asymptotic	cost	of	the	leaping	attack	no	longer	depends	on	
the	target	document:	an	attacker	who	wants	to	irrecoverably	destroy	a	document	must	
destroy	 a	 constant	 fraction	 of	 all	 documents	 archived	 after	 it.	 Increasing	 t	 further	
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accelerates	 the	 convergence	 and	 increases	 the	 fraction	 of	 documents	 that	 must	 be	
destroyed.	

t	=	1	pointer	per	document	

	
t	=	2	pointers	per	document	

	
t	=	3	pointers	per	document	
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t	=	4	pointer	per	document	

	
t	=	5	pointer	per	document	

	
t	=	10	pointer	per	document	

	
Figure	3:	Damage	caused	by	the	leaping	attack	on	(1,	t,	2,	3)-archives	of	size	1,000,000	with	

pointers	chosen	uniformly	at	random.	The	six	subfigures	correspond	to	different	
configurations	with	𝒕 ∈ {𝟏, 𝟐, 𝟑, 𝟒, 𝟓, 𝟏𝟎}	pointers	per	document,	respectively.	On	each	
subfigure	the	curves	represent	target	document	{𝒅𝟏, 𝒅𝟓, 𝒅𝟏𝟎, 𝒅𝟓𝟎, 𝒅𝟏𝟎𝟎, 𝒅𝟓𝟎𝟎, 𝒅𝟏𝟎𝟎𝟎},	

respectively.	Each	curve	is	the	average	over	100	simulations.	
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We	conjectured,	with	entanglement	chosen	uniformly	at	random,	that	there	is	a	constant	
number	 of	 pointers	 threshold	 after	 which	 even	 the	 optimal	 attack	 will	 require	 the	
erasure	of	a	constant	fraction	of	all	documents	archived	after	an	old	enough	target.	Since	
simulating	 the	optimal	 attack	 is	 computationally	 intractable	 and	we	do	not	have	good	
enough	 theoretical	 lower	bounds,	 to	 support	 this	 conjecture	we	simulate	 the	bounded	
breadth-first	search	attack	described	in	the	previous	section.	By	bounding	the	size	of	the	
buffer,	we	can	control	the	number	of	nodes	traversed	at	each	level	of	the	solution	tree.	
Figure	4	shows	the	damage	caused	by	the	tailored	bounded	breadth-first	search	attack	
on	(1,5,2,3)-archives	of	size	10000	with	pointers	chosen	uniformly	at	random	and	target	
document	𝑑C 	for	𝑖 ∈ {1,5,10,50,100}.	 On	 each	 subfigure,	 the	 curves	 represent	 different	
tree	widths	(buffer	sizes).	The	leaping	attack	is	also	shown	for	comparison.	Each	curve	is	
the	 average	over	100	 simulations.	 The	 figures	provide	numerical	 evidence	 supporting	
our	conjecture	and	show	the	efficiency	of	the	greedy	leaping	attack.	
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i	=	5	for	target	document	di	
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i	=	10	for	target	document	di	

	
i	=	50	for	target	document	di	

	
i	=	100	for	target	document	di	

	
Figure	4:	Damage	caused	by	the	tailored	bounded	breadth-first	search	attack	on	(1,5,2,3)-
archives	of	size	10000	with	pointers	chosen	uniformly	at	random.	The	five	subfigures	
correspond	to	target	document	𝒅𝒊	for	𝒊 ∈ {𝟏, 𝟓, 𝟏𝟎, 𝟓𝟎, 𝟏𝟎𝟎}.	On	each	subfigure,	the	

curves	represent	different	tree	widths	(buffer	sizes),	from	1	to	100.	The	leaping	attack	is	
also	shown	for	comparison.	Each	curve	is	the	average	over	100	simulations	
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4.4 Discussion	

The	simulations	are	paramount	to	set	the	appropriate	number	of	pointers	to	entangled	
blocks.	 For	 instance,	 using	 a	 code	 rate	 of	 1/3,	 which	 corresponds	 to	 the	 storage	
overhead	 of	 triple	 replication,	 Figure	 3	 illustrates	 that	 using	 t	 =	 5	 pointers	 is	 a	 good	
empirical	 choice.	 Having	 less	 than	 five	 pointers	 might	 not	 lead	 to	 good	 long-term	
protection,	 especially	 if	 the	 attacker	 uses	 sophisticated	 attacks	 that	 we	 are	 unable	 to	
simulate.	Conversely,	 using	more	 than	 five	pointers	 increases	 the	 speed	at	which	new	
documents	 are	 protected,	 but	 at	 a	 performance	 cost	 since	 encoding,	 decoding	 and	
system	maintenance	will	be	more	complex.	
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5 Implementation	
This	 section	 details	 the	 architecture	 of	 SafeStore,	 the	 experimental	 testbed	 we	 have	
implemented	to	evaluate	the	performance	trade-offs	of	the	security	guarantees	offered	
by	 the	 SafeCloud	 platform.	We	 first	 describe	 its	 components	 and	 its	 implementation,	
followed	 the	 evaluation	 of	 long-term	 entanglement	 over	 multiple	 clouds.	 A	 more	
detailed	 description	 of	 SafeStore	 as	 well	 as	 its	 evaluation	 in	 a	 large	 number	 of	 other	
scenarios	 can	 be	 found	 in	 [BPF+16].	 The	 source	 code	 of	 SafeStore	 itself	 is	 publicly	
available	online.	

5.1 Architecture	
The	 SafeStore	 architecture	 comprises	 the	 following	 components:	 a	 storage	 server	
(“proxy”)	 that	 mediates	 interactions	 between	 clients	 and	 the	 SafeStore	 system,	 an	
encoder	 component,	 and	 a	 set	 of	 backend	 storage	 clouds	 (public	 clouds	 or	 private	
servers	deployed	on-premises).	Figure	5	presents	an	instance	of	SafeStore	connected	to	
a	set	of	clients	and	various	cloud	storage	providers.	

	
Figure	5:	Architecture	of	our	experimental	testbed	

The	proxy	component1	acts	as	the	SafeStore's	front-end	and	is	responsible	for	keeping	a	
mapping	between	client's	files	and	the	actual	storage	backends	where	these	are	stored.	
Clients,	which	run	in	independent	nodes,	contact	the	proxy	component	to	write	or	read	
data	 through	 a	 simple	 REST	 interface	 that	 mimics	 the	 operating	 principles	 of	 well-
established	services	like	Amazon	S3.	The	interactions	between	the	proxy	and	the	clients	
happen	via	synchronous	HTTP	messages	over	pre-established	TCP	channels.	
The	SafeStore	 system	 is	 configurable	 and	different	 security	mechanisms	 can	be	put	 in	
place.	 According	 to	 such	 configuration,	 the	 proxy	 component	 coordinates	 the	 other	
components	 in	 the	 system	 and	 different	 workflows	 may	 arise.	 For	 instance,	 some	
configurations	require	a	single	cloud	backend	while	others	require	two	or	more.	Upon	a	
write	request,	the	proxy	component	asks	the	encoder	component	to	encode	data	blocks	
according	to	the	configured	security	mechanisms.	The	resulting	block	or	blocks	are	then	
dispatched,	 by	 the	 proxy,	 to	 the	 storage	 backends.	 To	 this	 end,	 the	 proxy	maintains	 a	
data	block	index	to	keep	track	of	where	data	is	stored	at	the	backends.	Additionally,	and	
for	the	case	where	anti-censorship	mechanisms	are	in	place,	the	proxy	also	maintains	an	
entangler	 component.	 This	 component	 requires	 access	 to	 the	 block	 index	 component	
																																																								
1  Note that, in practice, one should deploy multiple such proxies for scalability and dependability 
reasons, or even co-locate them with the clients. 
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and	 is	 placed	 within	 the	 proxy	 to	 leverage	 locality.	 More	 details	 on	 the	 entangler	
component	are	presented	in	Section	5.3.	
Upon	a	read	request	for	a	piece	of	data,	 the	proxy	checks	the	block	index	to	figure	out	
where	the	corresponding	encoded	blocks	are	stored.	 It	 fetches	them	from	the	backend	
storage	and	forwards	them	to	the	encoder	that	decodes	the	blocks	before	returning	the	
data	 to	 the	 client.	 The	 encoder	 is	 co-localized	 within	 the	 same	 host	 as	 the	 proxy	 to	
maximize	 throughput	and	avoid	bottlenecks	 induced	by	high	pressure	on	 the	network	
stack.	 To	 increase	 the	 flexibility	 of	 our	 testbed,	 our	 encoder	 provides	 a	 plugin	
mechanism	 to	dynamically	 load	and	swap	different	 coding	and	cryptographic	 libraries	
and	 associated	 bindings.	 This	 mechanism	 relies	 on	 a	 platform-independent	 transport	
mechanism	 (using	protocol	 buffers)	 and	 a	 stable	 interface	between	 the	proxy	 and	 the	
encoder.	

5.2 The	SafeStore	API	
Once	started,	a	SafeStore	instance	can	be	interacted	with	using	an	HTTP	client	such	as	
cURL	 [curl]	 by	 sending	 PUT	 and	 GET	 requests.	 The	 PUT	 command	 is	 used	 to	 insert	
documents	into	SafeStore	while	the	GET	command	is	used	to	retrieve	those	documents	
from	the	system.	
A	 user	 willing	 to	 store	 a	 document	 can	 issue	 the	 following	 command	 to	 store	 a	 new	
document	named	report.pdf	into	the	system.	

curl –X PUT http://example.local/ -T report.pdf	

Retrieving	 the	 newly	 inserted	 document	 can	 be	 done	 by	 running	 the	 following	
command.	

curl –X GET http://example.local/report.pdf -o copy.pdf	

These	 commands	 should	 run	 transparently	 for	 the	 user	 regardless	 of	 the	 internal	
configuration	chosen	by	the	administrator.	

5.3 The	SafeStore	Entangler	
In	 order	 to	 illustrate	 the	 modularity	 of	 our	 architecture,	 we	 implemented	 a	 simple	
exclusive-or-based	 entanglement	 approach	 to	 provide	 anti-censorship.	 The	 technique	
we	 implemented	 is	 similar	 to	 Dagster	 [SW01].	 In	 Dagster,	 the	 size	 of	 documents	 and	
blocks	is	identical.	When	a	new	document	D	must	be	stored,	Dagster	randomly	chooses	c	
blocks	 already	 archived	 and	 XOR	 them	 with	 D.	 The	 resulting	 block	 is	 then	 stored.	
Dagster	 is	 analysed	 in	 [AFYZ07]:	 an	 attacker	 who	 wants	 to	 censor	 a	 document	must	
erase	one	of	 its	c	+	1	blocks,	and	this	will	destroy	on	average	O(c)	other	documents	 in	
the	 system.	 Older	 documents	 are	 more	 protected	 than	 newer	 ones.	 Dagster	 thus	
provides	a	low	level	of	Strong	CR,	low	in	the	sense	that	the	average	amount	of	collateral	
damage	is	in	O(c).	We	use	c	=	5	in	our	implementation.	

5.4 Implementation	Details	
Our	implementation	choices	have	been	largely	driven	by	performance	and	programming	
simplicity	considerations,	as	well	as	by	constraints	from	the	storage	backends	interfaces.	
The	 proxy	 component	 is	 implemented	 in	 Python	 (v2.7.10)	 and	 exploits	 the	 exporting	
facilities	 of	 the	 Bottle	 [bot]	 framework	 (v0.12.9).	 The	 proxy	 handles	 POST	 and	 GET	
requests	via	the	WSGI	[wsgi]	Web	framework.	
The	 encoder,	 also	 written	 in	 Python,	 integrates	 with	 various	 encoding	 libraries.	 Each	
library	 is	 wrapped	 exposing	 the	 same	 API	 to	 the	 encoder	 allowing	 the	 system	 to	 be	
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expanded	 and	 to	 abstract	 SafeStore	 from	 the	 implementation	 details	 of	 each	 library.		
This	allows	SafeStore	to	support	not	only	Python	libraries	but	also	native	ones.	
We	 leverage	 Cryptography	 [cryp],	 a	 python	 library	 that	 exposes	 a	 wide	 range	 of	
cryptographic	 primitives	with	 an	 easy	 to	 use	 and	well	 documented	 API.	 Namely,	 this	
library	 provides	 the	 AES	 and	 RSA	 cyphers	 by	 wrapping	 OpenSSL's	 cryptographic	
protocol	implementations	[ssl].	
We	use	our	own	implementation	for	the	one-time	pad	XOR	encoding	driver	that	resorts	
to	 the	 numpy	 [numpy]	 library	 to	 optimize	 vector	 computation.	 As	 the	 erasure	 coding	
driver,	 SafeStore	 supports	 Jerasure,	 an	 efficient	 Cauchy	 Reed-Solomon	 driver	
implemented	in	C/C++	that	is	exported	by	the	PyEClib	[pye]	library	(v1.2).	
For	the	client	side,	we	built	a	suite	of	micro-	and	macro-benchmarks,	leveraging	Apache	
Bench	 [apa]	 (v2.3),	 to	measure	 the	 throughput	 and	 latency	 of	 client	 storage	 requests.	
The	CPU	and	memory	measurements	presented	in	the	evaluation	are	gathered	with	the	
dstat	tool	[dstat].	
Finally,	we	have	 implemented	drivers	 for	 four	storage	backends.	 	First,	we	deployed	a	
set	of	on-premises	storage	nodes	using	Redis	[redis]	(v3.0.7),	a	lightweight	yet	efficient	
in-memory	key-value	 store.	Redis	 tools	provide	easy-to-use	probing	mechanisms	 (e.g.,	
the	redis-cli	command-line	tool),	which	allowed	us	to	measure	the	impact	of	the	several	
security	combinations	used	in	our	evaluation.	Second,	we	have	implemented	drivers	for	
the	 three	 most	 widely	 used	 cloud	 storage	 services:	 Dropbox	 [dbox],	 Google	 Drive	
[gdrive],	and	Microsoft	OneDrive	[odrive].	The	drivers	are	implemented	leveraging	the	
official	 Python	 SDKs	 from	 each	 provider.	 Similarly	 to	 the	 approach	 taken	 with	 the	
encoding	component,	storage	backends	are	wrapped	to	expose	a	common	interface	with	
the	 required	 set	 of	 operations,	 i.e.,	 store,	 fetch	 and	delete	data,	which	 allows	 to	 easily	
plug-in	 new	 storage	 backends	 in	 the	 future.	 Overall,	 our	 implementation	 consists	 of	
2,723	lines	of	Python	code,	all	components	included.	

5.5 Evaluation	

This	section	presents	our	evaluation	study	of	the	different	security	guarantees.	
4.4.1	Evaluation	Settings 

We	 deploy	 our	 experiments	 over	 a	 cluster	 of	 machines	 interconnected	 by	 a	 1	 Gb/s	
switched	network.	Each	physical	host	features	8-Core	Xeon	CPUs	and	8	GB	of	RAM.	We	
deploy	virtual	machines	(VM)	on	top	of	the	hosts.	The	KVM	hyper-	visor,	which	controls	
the	execution	of	the	VM,	 is	configured	to	expose	the	physical	CPU	to	the	guest	VM	and	
Docker	containers	by	mean	of	the	host-passthrough	[kvm]	option,	to	allow	the	encoders	
to	 exploit	 special	CPU	 instructions.	The	VMs	 leverage	 the	virtio	module	 for	better	 I/O	
performances.	
We	 deploy	 Docker	 (v0.10)	 containers	 on	 each	 VM	 (1	 container	 per	 VM)	 without	 any	
memory	 restriction	 to	 minimize	 interference	 due	 to	 co-location	 and	 maximize	
performance.	In	particular,	the	proxy,	the	encoder	and	the	Redis	storage	nodes	reside	in	
isolated	containers,	each	of	them	running	in	VMs	executed	by	separated	hosts.	Similarly,	
the	client	that	injects	requests	into	the	testbed	runs	in	a	Docker	container	running	in	a	
separate	 host.	 We	 use	 regular	 accounts	 for	 the	 selected	 cloud	 providers	 (Dropbox,	
GDrive,	and	OneDrive).	
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4.4.2	Macro-benchmark	–	Multi-cloud	entanglement	

We	evaluate	the	overhead	of	the	entanglement	by	configuring	our	testbed	to	use	three	
distinct	 public	 cloud	 backends	 at	 the	 same	 time,	 namely	 Google	 Drive,	 Dropbox,	 and	
OneDrive.	We	choose	the	driver	combinations	that	provide	the	higher	degree	of	security	
in	 a	 multi-cloud	 deployment,	 in	 particular	 cauchy_rsa_sha_512	 and	 xor_rsa_sha_512.	
Both	 combinations	 provide	 encryption,	 integrity	 checking,	 non-repudiation	 using.	 The	
only	difference	between	cauchy_rsa_sha_512	and	xor_rsa_sha_512	is	that	one	uses	Reed-
Solomon	 codes	 while	 the	 over	 performs	 an	 exclusive-or	 operation.	 We	 compare	 the	
latency	of	inserting	250	blocks	of	1	MB	with	and	without	entanglement	for	both	drivers.	
Once	blocks	are	entangled,	the	proxy	dispatches	them	to	the	chosen	provider	in	a	round-
robin	 fashion	 to	 spread	 the	 load	among	 them.	We	present	 the	 cumulative	distribution	
function	 (CDF)	 of	 the	 results	 for	 cauchy_rsa_sha_512	 and	 xor_rsa_sha_512	 in	 Figure	 6	
and	Figure	7,	respectively.	
Our	 observations	 are	 twofold.	 First,	 the	 exclusive-or	 based	 driver	 xor_rsa_sha_512	 is	
considerably	 faster	 than	 the	 erasure-	 coding	 driver	 cauchy_rsa_sha_512.	 For	 example,	
the	50th	percentile	of	the	former	is	below	4	s	whereas	the	latter	is	at	14.7s.	This	results	
from	the	fact	that	the	exclusive-or	is	a	very	computationally	efficient	operation.	Second,	
the	overhead	induced	by	the	entanglement	phase	is	modest.	In	particular,	in	the	case	of	
cauchy_rsa_sha_512,	 the	 entanglement	 only	 adds	 a	 +18.1%	 latency	 overhead	 for	 the	
95th	percentile	of	the	blocks.	In	the	xor_rsa_sha_512	scenario,	this	overhead	is	lowered	
to	+0.3%.	These	results	prove	that	a	multi-cloud	entanglement	scheme	can	be	practically	
operated	by	clients	with	very	low	performance	gaps	when	compared	to	the	default,	non-
entangled	operational	mode.	

	
Figure	6:	Macro-benchmark:	latency	distribution	(CDF)	for	the	cauchy_rsa_sha_512	driver	

with	and	without	entanglement	over	3	cloud	providers.	
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Figure	7:	Macro-benchmark:	latency	distribution	(CDF)	for	the	xor_rsa_sha_512	

driver	with	and	without	entanglement	over	3	cloud	providers.	
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6 Conclusion	
This	 deliverable	 has	 addressed	 the	 design	 of	 the	 first	 two	 storage	 solutions	 of	 the	
SafeCloud	project:	the	secure	block	storage	(SS1)	and	the	secure	data	archive	(SS2).	We	
have	 specifically	 addressed	 the	 theoretical	 background	 upon	 which	 long-term	 data	
entanglement	is	achieved,	in	order	to	achieve	strong	anti-tampering	and	data	integrity.	
Furthermore,	we	have	presented	 the	 first	 prototype	 implementation	 of	 the	 data	 store	
(SafeStore),	 which	 allows	 clients	 to	 store	 and	 retrieve	 documents	 via	 a	 REST-based	
key/value	API.	 It	 supports	 various	 data	 coding	 libraries	 as	well	 as	 a	 simple	 entangler	
component.	 SafeStore	 will	 be	 extended	 toward	 supporting	 the	 other	 features	 of	 the	
SafeCloud	 storage	 solutions:	 the	 secure	 data	 archive	 (SS2)	 and	 the	 secure	 file	 system	
(SS3).	
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