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Executive	summary	
This	deliverable	describes	the	SafeCloud	storage	architecture.	The	architecture	provides	
three	complementary	and	innovative	solutions:	

1. Secure	block	storage;	
2. Long-term	distributed	encrypted	document	storage;	and	
3. Distributed	encrypted	file	system.	

These	 solutions	 differ	 in	 their	 objectives	 (data	 archival,	 data	 store),	 APIs	 (blocks,	
documents,	POSIX	file	system),	levels	of	protection	and	underlying	mechanisms.	
The	deliverable	introduces	the	general	architecture	of	the	solutions	and	provides	details	
on	 the	 initial	 specification	 and	 implementation	 of	 the	 SafeCloud	 archival	 system.	 This	
long-term	 storage	 solution	 relies	 on	 innovative	 techniques	 for	 data	 coding	 and	
entanglement	to	provide	strong	anti-tampering	capabilities	and	data	integrity.	
The	deliverable	also	describes	the	SafeCloud	storage	testbed	used	for	early	prototyping	
and	to	gather	initial	insights	into	the	performance	and	properties	of	coding	and	security	
libraries.	 	
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1 Introduction	

	
Figure	1:	High-level	architecture	of	the	SafeCloud	platform	and	dependencies	between	

WP2	and	other	technical	work	packages.	

This	 deliverable	 describes	 the	 storage	 architecture	 of	 the	 SafeCloud	 platform,	 built	 as	
part	 of	 work	 package	 2.	 It	 leverages	 the	 secure	 communication	mechanisms	 of	 work	
package	1	and,	in	turn,	provides	storage	services	to	work	packages	3	and	4	(see	Figure	
1).	
The	work	package	provides	data	storage	mechanisms	with	an	emphasis	on	privacy,	data	
integrity	 and	 protection	 against	 tampering.	 In	 addition	 to	 these	 security	 features,	 the	
storage	mechanisms	must	be	designed	with	redundancy	for	protection	against	failures,	
and	 without	 significant	 performance	 degradation.	 Although	 the	 main	 storage	
contribution	of	SafeCloud	is	protection	against	tampering	and	censorship	for	long-term	
storage	 and	 permanent	 archival,	 the	 SafeCloud	 use	 cases	 require	 more	 storage	
granularity,	 including	mutable	data	stores	and	 file	systems.	We	thus	decided	to	design	
and	provide	three	different	data	storage	“solutions”	for	the	SafeCloud	platform.	
This	deliverable	is	organised	as	follows.	In	Section	2,	we	describe	the	motivation	behind	
our	work,	 and	discuss	 the	 state	 of	 the	 art	 in	 Section	3.	 In	 Section	4,	we	describe	how	
erasure-correcting	 codes	 can	 be	 used	 to	 provide	 high	 reliability	 and	 low	 storage	
overhead	 in	 distributed	 storage	 systems.	 The	 general	 storage	 architecture	 and	 its	
components,	including	our	three	storage	solutions,	are	presented	in	Section	5.		The	most	
innovative	of	the	three	solutions,	used	for	long-term	storage	and	permanent	archiving,	is	
described	in	more	details	in	Section	6.	In	Section	7,	we	describe	the	architecture	of	a	first	
testbed	prototype	developed	to	drive	the	components,	interfaces,	and	coding	algorithms	
used	 for	 trustworthy	 data	 storage,	 and	 in	 Section	 8	 we	 discuss	 the	 implementation	
choices	made	for	realizing	this	prototype.	We	conclude	this	deliverable	in	Section	9.		
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2 Motivation	
As	 part	 of	 SafeCloud,	 we	 consider	 long-term	 digital	 data	 storage	 and	 permanent	
archiving.	A	first	major	challenge	is	data	integrity.	The	objective	is	to	provide	verifiable	
guarantees	 to	 users	 that	 their	 data	 is	 properly,	 securely,	 and	 reliably	 archived.	 For	
instance,	 if	 a	 storage	 provider	 guarantees	 that	 the	 equivalent	 of	 three	 copies	 of	 each	
piece	of	data	is	archived	on	three	continents,	how	can	users	verify	that	this	claim	is	more	
than	a	marketing	slogan?	In	practice,	it	appears	difficult	to	prove	this	claim	in	a	simple	
and	convincing	way.	Users	rely	mostly	in	the	good	faith	they	have	in	their	providers	(and	
in	 the	catastrophic	 consequences	 for	 their	providers’	bottom	 line	 should	 they	 lose	 the	
data).	Another	question	is	how	can	a	user	be	sure	that	his	data	will	not	stop	being	taken	
care	 of	 after	 a	 system	update	 or	 a	maintenance	budget	 cut,	 or	 that	 its	 data	will	 be	 as	
securely	and	 reliably	 stored	as	data	 from	very	 large	paying	customers	using	 the	 same	
service?	These	problems	are	especially	relevant	with	old	archives,	some	of	which	might	
not	need	to	be	accessed	for	decades. 
A	second	challenge	of	digital	storage	and	permanent	archiving	is	tamper	resistance.	This	
is	closely	related	to	protection	against	censorship.	Research	and	scientific	data	as	well	as	
medical,	 legal	and	 financial	 records	can	 include	very	sensitive	 information	 that	 can	be	
viewed	 as	 threatening	 or	 compromising	 by	 potential	 censors.	 A	 good	 archival	 system	
must	thus	make	it	very	difficult	for	a	powerful	censor	to	irrecoverably	destroy	or	tamper	
with	archived	data,	especially	in	an	undetectable	way.	This	is	a	different	issue	from	the	
traditional	 definition	 of	 data	 integrity	 and	 authenticity,	 for	which	 there	 already	 exists	
plenty	of	solutions	from	the	client	perspective	using	client-side	cryptography.	
For	compliance	and	legal	reasons,	such	sensitive	data	may	be	stored	using	a	“write-once,	
read-many”	 (WORM)	 technology.	 WORM	 storage	 is	 a	 niche	 market	 of	 secure	 data	
storage	 solutions	 that	 has	 been	 historically	 fulfilled	 using	 hardware	 approaches.	
Physical	 implementations	 offer	more	 constrained	 data	 access	 than	 logical	 approaches	
and	are	more	dependent	on	hardware	robustness	against	failures	and	destruction.	The	
implementation	 of	 software	 approaches	 for	 anti-tampering	 is	 an	 active	 topic	 of	
investigation	and	no	satisfying	solution	is	available	in	practice.	
There	 is	 currently	 no	 archival	 system	 providing	 strong	 anti-tampering	 and	 data	
integrity.	Designing	such	a	system	is	a	surprisingly	difficult	endeavor,	both	in	theory	and	
in	practice.	This	is	one	of	the	main	objectives	of	SafeCloud.	
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3 State	of	the	Art	
Data	 integrity,	 protection	 against	 tampering	 and	 anti-censorship	have	been	 studied	 in	
various	forms	and	for	a	large	number	of	settings	and	applications.	Work	on	these	topics	
include	the	Eternity	Service	[And96],	[WRC00],	Freenet	[CSW+01],	Free	Haven	[DFM01],	
Dagster	[SW01],	Tangler	[Wal01],	SiRiUS	[GSM+03],	Tahoe	[WW08]	 ,	Clouds	[BHL+08]	
and	POTSHARDS	[SGM+09]. 
Randomized	 encryption	 can	 be	 used	 to	 prevent	 a	 malicious	 storage	 system	 from	
extracting	 information	about	 its	users	by	observing	with	whom	they	share	 files.	 It	 can	
also	be	used	to	prevent	the	system		from	preemptively	censor	documents	corresponding	
to	known	content.	This	has	been	 implemented	with	success	 in	practice,	notably	by	the	
Tahoe	[WW08]	 	filesystem	under	the	name	of	Convergent	Encryption.	Encryption	keys	
are	 semi-deterministically	 derived	 from	 the	 hash	 of	 a	 cleartext	 block	 	so	 that	 efficient	
deduplication	 can	 still	 be	 performed	 on	 encrypted	 blocks	 to	 reduce	 storage	 space.	
However,	a	third	party	could	publish	the	encryption	key	for	a	particular	block,	and	prove	
that	some	block	decrypts	to	censorable	content,	prompting	an	authority	to	individually	
censor	particular	blocks. 
Data	integrity	and	resistance	against	tampering	are	not	easy	to	define,	especially	when	
considering	how	to	provide	these	features	in	a	practical	way.	For	instance,	in	[WRC00],	
the	authors	informally	write	“Our	system	should	make	it	extremely	difficult	 for	a	third	
party	 to	make	 changes	 to	 or	 force	 the	 deletion	 of	 published	materials”.	 This	was	 also	
observed	in	[PRW05],	which	provided	a	more	formal	definition	of	censorship	resistance	
in	the	context	of	selective	filtering.	A	definition	of	data	integrity	was	made	in	[AFY+07],	
but	in	such	a	strong	way	that	it	cannot	be	achieved	in	practical	systems.	
Other	 interesting	 related	work	 include	plausibly-deniable	 search	 [US12]	and	proofs	of	
storage	 and	 retrievability	 [ZX12].	 In	 [JK07]	 the	 authors	 describe	 an	 efficient	 proof	 of	
retrievability	mechanism	that	allows	a	client	to	verify	the	existence	of	a	piece	of	data	in	a	
storage	 system.	 The	 authors	 correctly	 note,	 however,	 that	 such	 a	 mechanism	 cannot	
guarantee	that	the	system	will	agree	to	disclose	the	actual	data	when	prompted	to	do	so. 
In	 [AFY+07],	 the	 authors	 studied	 data	 integrity	 and	 developed	 a	 theory	 of	 data	
entanglement.	One	of	their	contributions	is	the	introduction	of	all-or-nothing	integrity:	
intuitively,	 either	 all	 the	 documents	 are	 recoverable	 with	 high	 probability,	 or	 no	
document	is.	They	show	that	all-or-nothing	integrity	is	possible	with	some	restrictions	
on	 the	 power	 of	 the	 attacker.	 [ADD+12]	 extended	 the	 work	 by	 providing	 a	 stronger	
definition	 of	 all-or-nothing	 integrity	 and	 a	 simulation-based	 security	 analysis.	 The	
protocols	 provided	 in	 both	 articles	 [AFY+07],	 [ADD+12]	 remain	 far	 from	 real-life	
implementations:	they	require	to	read	the	entire	data	store	to	retrieve	a	document,	and	
require	to	process	 the	entire	data	store	to	add	a	new	document,	which	 is	not	scalable.	
Furthermore,	 no	 document	 is	 recoverable	 if	 the	 storage	 provider	 corrupts	 or	 fails	 to	
maintain	a	small	part	of	the	data.	
Providing	 anti-censorship	 using	 data	 entanglement	 was	 first	 proposed	 by	 Dagster	
[SW01]	and	Tangler	[Wal01],	and	both	can	be	seen	as	special	cases	of	the	approach	we	
propose.	In	Dagster,	documents	and	blocks	have	the	same	size.	To	add	a	new	document	
in	the	system,	c	blocks	already	stored	are	chosen	at	random,	and	a	new	block	consisting	
of	the	exclusive-or	of	the	new	document	with	the	c	blocks	is	stored.	A	censor	wanting	to	
delete	a	document	can	erase	one	of	its	c+1	blocks,	and	this	will	destroy	on	average	O(c)	
other	 documents,	 the	 older	 documents	 being	 more	 protected	 than	 newer	 ones.	 In	
Tangler,	two	old	blocks	chosen	randomly	and	a	new	document	to	be	archived	are	used	
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to	 generate	 two	 new	 blocks	 using	 (3,4)	 Shamir	 secret	 sharing	 [Sha79].	 The	 two	 new	
blocks	are	 then	stored.	The	original	document	can	be	 recovered	with	any	 three	of	 the	
four	 blocks	 using	 Lagrange	 interpolation.	 In	 [AFY+07],	 it	was	 shown	 that	 erasing	 two	
blocks	 from	a	 random	Tangler	document	 erases	 on	 average	𝑂 "#$%

%
	other	documents.	

However,	 the	number	of	documents	 erased	 irrecoverably	 is	much	 smaller,	 since	 some	
partly	corrupted	documents	can	be	decoded	to	recover	erased	blocks.	No	analysis	of	the	
system	resistance	against	tampering	is	presented. 
Finally,	WORM	storage	has	a	long	history	predating	CD-R	disks	and	was	commercialized	
in	 several	 forms	 for	 protection	 against	 tampering:	 tape	 cartridges,	 secure	digital	 flash	
memory	 cards,	 SD	 cards,	 etc.	 Recent	 solutions	 include	 WORM	 HDDs,	 where	 the	
protection	against	data	rewrite	is	embedded	at	the	physical	disk	level	[WOR].	
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4 Distributed	storage	using	erasure	correcting	codes	
The	objective	of	error-correcting	codes	for	data	storage	is	to	carefully	add	redundancy	
to	 data	 in	 order	 to	 protect	 it	 against	 corruption	 when	 stored	 on	 media	 like	 DVDs,	
magnetic	tapes	or	solid-state	drives.	In	these	systems,	the	errors	are	usually	modeled	as	
erasures,	meaning	that	their	locations	are	known.	Consider	the	example	shown	in	Figure	
2,	where	a	coding	disk	is	used	to	store	the	XOR	of	k	data	blocks.	

	
Figure	2:	Redundancy	using	XOR.	

If	the	system	realizes	that	one	of	the	disks	has	failed,	as	shown	in	Figure	3,	it	can	XOR	the	
healthy	disks	and	recover	 the	 failure.	This	 is	 the	maximum	decoding	capability	of	 this	
code,	and	there	will	be	data	loss	if	more	than	one	disk	fails.	

	
Figure	3:	Failed	disk	recovered	using	XOR.	

In	general,	k	data	blocks	are	coded	to	generate	n−k	coding	blocks,	as	illustrated	in	Figure	
4.	

XOR

coding disk

k data disks

XOR

k+1 healthy disks

failed disk



	 D2.1	–	Storage	architecture	 10	

	
Figure	4:	Generic	erasure	code	encoder.	

After	disk	failures,	the	system	will	try	to	decode	the	original	codewords	from	the	healthy	
disks,	 like	 in	 Figure	 5.	 The	 number	 of	 recoverable	 disk	 failures	 depends	 on	 the	 code	
itself.	

	
Figure	5:	Generic	erasure	code	decoder.	

The	most	famous	class	of	erasure	codes	are	Reed-Solomon	codes	(RS),	first	introduced	
in	1960	[RS60].	An	(n,k)	Reed-Solomon	code	is	a	linear	block	code	with	dimension	k	and	
length	 n	 defined	 over	 the	 finite	 field	 of	 n	 elements.	 Reed-Solomon	 codes	 have	 many	
interesting	 properties.	 First,	 they	 achieve	 the	 singleton	 bound	with	 equality,	 and	 thus	
are	maximum	distance	separable	(MDS)	[LC04].	In	other	words,	they	can	correct	up	to	
n−k	 symbol	erasures,	 i.e.,	 any	k	 of	 the	n	 code	symbols	are	necessary	and	sufficient	 for	
decoding.	 Second,	 using	 a	 large	 field,	 they	 can	 correct	 bursts	 of	 errors,	 thus	 their	
widespread	adoption	in	storage	media	where	such	bursts	are	common.	
Encoding	 and	 decoding	 Reed-Solomon	 codes	 is	 challenging,	 and	 optimizing	 both	
operations	has	kept	many	coding	theorists	and	engineers	busy	for	more	than	50	years.	
There	is	a	large	amount	of	literature	on	these	topics,	covering	theory	(e.g.,	[GS99])	and	
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implementation	 (e.g.,	 [San00]),	 but	 in	 a	 nutshell	 the	 best	 encoding	 and	 decoding	
implementations	are	quadratic	in	the	size	of	data.	
Reed-Solomon,	 while	 storage-efficient,	 were	 not	 originally	 designed	 for	 distributed	
storage	 and	 are	 somewhat	 ill-suited	 for	 this	 purpose.	 Besides	 their	 complexity,	 their	
main	drawback	is	that	they	require	at	least	k	geographically	distributed	healthy	disks	to	
recover	a	single	failure,	 followed	by	decoding	of	all	 the	codewords	with	a	block	on	the	
failed	disk.	This	incurs	significant	bandwidth	and	latency	costs.	This	handicap	has	led	to	
the	development	of	codes	that	can	recreate	destroyed	redundancy	without	decoding	the	
original	codewords.	The	tradeoffs	between	storage	overhead	and	failure	repairability	is	
an	active	area	of	research	[DGW+10],	[OD15],	and	there	are	many	interesting	theoretical	
and	 practical	 questions	 to	 solve.	 Among	 other	 work	 of	 interest,	 NCCloud	 [CHL+14]	
reduces	 the	 cost	 of	 repair	 in	 multi-cloud	 storage	 if	 one	 cloud	 storage	 provider	 fails	
permanently.	We	 also	mention	 the	 coding	work	 done	 for	Microsoft	 Azure	 [CWO+11],	
[HSX+12],	 and	 XOR-based	 erasure	 codes	 [KBP+12]	 in	 the	 context	 of	 efficient	 cloud-
based	 file-systems	 exploiting	 rotated	 Reed-Solomon	 codes.	 RAID-like	 erasure-coding	
techniques	have	been	studied	in	the	context	of	cloud-based	storage	solutions	[KBP+12].	
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5 General	architecture	and	components	
The	 storage	 architecture	 provides	 three	 “solutions”,	 in	 increasing	 levels	 of	
sophistication:	

1. Secure	block	storage.	
2. Long-term	distributed	encrypted	document	storage.	
3. Distributed	encrypted	file	system.	

These	three	solutions	are	illustrated	in	Figure	6	and	described	in	the	rest	of	this	section.	

	
Figure	6:	The	three	solutions	of	the	SafeCloud	storage	architecture.	

5.1 Solution	1:	Secure	block	storage	
The	secure	block	storage	solution	essentially	consists	of	a	data	store	that	can	store	raw	
data	under	a	given	key.	In	that	respect,	it	behaves	akin	to	a	key/value	store	but	provides	
additional	 mechanisms	 to	 ensure	 data	 security	 and	 integrity	 (using	 cryptographic	
techniques),	as	well	as	explicit	placement	of	data	items.	As	a	matter	of	fact,	being	able	to	
place	 different	 parts	 of	 data	 items	 in	 various	 geographical	 locations	 within	 distinct	
administrative	 domains	 is	 key	 to	 providing	 privacy	 in	 the	 SafeCloud	 platform.	 The	
secure	block	storage	operates	locally,	on	a	per	node	basis,	and	there	are	typically	several	
instances	 per	 data	 centre.	 Orchestration	 between	 these	 instances	 is	 performed	 by	
separate	 components,	 the	 block	 storage	 managers,	 which	 can	 explicitly	 place	 data	
items	on	individual	instances	of	the	block	storage.	
Placement	 of	 the	 data	 blocks	 can	 be	 enforced	 at	 multiple	 levels	 (e.g.,	 administrative	
domain,	application-defined	partition,	geographical	region	or	country,	data	centre,	rack,	
node,	etc.)	depending	on	some	desired	dependability	and	security	properties.	There	can	
be	several	block	storage	managers	at	different	levels	of	the	architecture	for	hierarchical	
placement	of	data.	
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This	 solution	 provides	 a	 REST-based	 key/value	 store	 API	 with	 support	 for	 explicit	
placement.	 Such	 an	 API	 essentially	 provides	 operations	 to	 store	 an	 arbitrary	 piece	 of	
data	under	a	given	key	that	acts	as	a	unique	identifier,	and	to	retrieve	the	data	associated	
with	 a	 specific	 key.	 A	 third	 operation	 is	 also	 usually	 provided	 to	 delete	 a	 key.	 In	 its	
simplest	form,	the	API	thus	consists	of:	

put(key, value)	
value = get (key)	
delete(key)	

The	 API	 can	 be	 extended	 with	 more	 sophisticated	 operations,	 for	 instance	 to	 list	 or	
iterate	 through	 the	 set	 of	 keys,	 or	 to	 handle	multiple	 data	 versions	 for	 a	 key.	We	will	
support	the	core	operations	initially	and	extend	the	API	as	needed.	

5.2 Solution	2:	Long-term	distributed	encrypted	document	storage	
The	long-term	distributed	encrypted	document	storage,	described	in	more	details	in	
Section	 6,	 builds	 on	 top	 of	 the	 secure	 block	 storage	 and	 supports	 secure	 storage	 of	
documents	over	many	distributed	instances	of	data	stores.	Documents	are	redundantly	
stored	and	protected	against	tampering	using	coding	and	entanglement	techniques,	i.e.,	
they	are	encoded	and	combined	with	previous	documents	 to	ensure	 that	no	party	can	
modify	or	delete	them	(without	affecting	a	significant	portion	of	all	documents).		
The	data	stored	in	the	system	is	 immutable,	as	the	key	idea	behind	entanglement	 is	to	
persist	 documents	 over	 the	 long	 term.	 In	 other	words,	 this	 solution	 supports	 archival	
storage.	 Modifications	 to	 existing	 data	 can	 be	 implemented	 on	 top	 of	 the	 long-term	
distributed	 encrypted	 document	 storage	 by	 the	 means	 of	 a	 versioning	 API,	 i.e.,	 by	
inserting	 a	 new	 version	 of	 a	 previous	 document	 under	 the	 same	 name	 but	 a	 with	
different	version	identifier.	
Clients	communicate	with	the	storage	service	via	document	storage	managers	that	are	
responsible	 for	 splitting	documents	 into	blocks,	 encoding	and	entangling	 these	blocks,	
and	dispatching	them	onto	instances	of	the	block	data	store	across	several	data	centres	
(as	 well	 as	 the	 reverse	 operation	 for	 retrieving	 blocks	 and	 reconstructing	 the	
document).	There	are	typically	multiple	document	storage	managers	placed	in	different	
data	centres	and	administrative	domains,	and	clients	are	free	to	choose	any	of	them	as	
entry	point	into	the	system.	
This	solution	provides	a	REST-based	document	store	API	 largely	compatible	with	the	
Amazon	S31	API.		

5.3 Solution	3:	Distributed	encrypted	file	system	

The	distributed	encrypted	file	system	provides	a	file	system	API	on	top	of	the	secure	
block	 storage.	 It	 supports	 secure	 reading	 and	 writing	 of	 files	 that	 are	 geographically	
distributed	across	data	 centres,	 and	hence	deals	with	mutable	data.	The	 file	 system	 is	
optimized	in	terms	of	latency	and	throughput	for	sequential	accesses.	Placement	of	data	
in	 the	 file	 system	 can	 be	 guided	 by	 policies	 that	 express	 security	 or	 dependability	
requirements	 (e.g.,	 replication	 degree,	 disaster	 tolerance	 against	 whole	 data	 centre	
failure,	geo-localisation	in	a	given	set	of	countries,	etc.).	
As	 the	 file	 system	 is	 accessible	 locally	 from	 clients,	 it	 requires	 a	 local	 component	 to	
execute	 directly	 on	 the	 client	 machines.	 This	 is	 supported	 thanks	 to	 the	 FUSE	
mechanism	(file	system	in	user	space).	

																																																								
1  https://docs.aws.amazon.com/AmazonS3/latest/API/APIRest.html 



	 D2.1	–	Storage	architecture	 14	

This	 solution	 provides	 a	 FUSE-based	 file	 system	 API	 designed	 to	 be	 mostly	 POSIX.2	
compliant.	

5.4 Integration	with	applications	and	clients	
The	APIs	of	 the	 three	solutions	 follow	standards	and	are	straightforward:	REST-based	
key/value	 store,	 S3-compatible	 REST-based	 document	 store,	 and	 POSIX-compliant	
FUSE-based	file	system	API.	The	actual	implementation	details	will	be	addressed	during	
the	design	and	implementation	phase	of	the	respective	tasks.	
Applications	that	leverage	these	solutions	use	the	APIs	as	regular	clients.	Depending	on	
the	 solution,	 they	 will	 issue	 REST	 requests	 (for	 blocks	 or	 documents),	 or	 simply	
read/write	files	from/to	the	file	system.	
	 	

																																																								
2  http://standards.ieee.org/develop/wg/POSIX.html 
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6 SafeCloud	archival	using	data	entanglement	(Solution	2	
revisited)	

As	part	of	SafeCloud,	we	introduce	STEP-archives.	Using	data	entanglement	and	erasure-
correcting	 codes,	 we	 study	 and	 develop	 a	 data	 storage	 architecture	 where	 a	 stored	
document	 can	 only	 be	 deleted	 or	 modified	 by	 compromising	 the	 integrity	 of	 other	
documents	 in	 the	 system.	 There	 are	 two	main	 objectives	 behind	 this	 work.	 The	 first	
objective	is	data	integrity.	We	want	to	provide	guarantees	to	users	that	their	data	cannot	
be	deleted	or	corrupted	without	compromising	other	data	stored	by	themselves	or	other	
users.	The	second	objective	is	to	provide	censorship	resistance	by	forcing	a	censor	who	
wants	 to	 tamper	 with	 data	 to	 do	 so	 noisily,	 and	 corrupt	 a	 large	 number	 of	 other	
documents	 in	 the	 system.	 An	 ancillary	 result	 deriving	 from	 the	 two	 objectives	 is	
increased	redundancy	and	protection	against	failures,	which	can	be	seen	as	attacks	from	
random	or	failure-specific	censors.	

6.1 Practical	considerations	
We	emphasize	 that	one	of	 the	objectives	of	SafeCloud	 is	 to	achieve	both	data	 integrity	
and	 censorship	 resistance	 in	 a	way	 implementable	 in	 practical	 systems.	 Thus,	we	 use	
practical	constraints	that	keep	an	actual	implementation	realistic	(for	instance	avoiding	
reads	 and	 writes	 requiring	 a	 non-contant	 part	 of	 the	 total	 system	 size)	 while	 being	
simple	enough	to	allow	analysis.	All	our	underlying	assumptions	and	design	choices	are	
implementable	 using	 state-of-the-art	 coding	 and	 storage	 techniques,	 which	 is	
paramount	for	a	large-scale	implementation.	

6.2 Entanglement	architecture	using	erasures	codes	

Definition	 1.	 A	 (s,t,e,p)-archive	 is	 a	 storage	 system	 where	 each	 archived	 document	
consists	of	a	codeword	with	s	source	blocks,	 t	 tangled	blocks,	p	parity	blocks	and	that	
can	correct	e	=	p	-	s	block	erasures. 

When	a	document	is	archived,	it	is	split	into	s≥1	source	blocks.	Using	the	s	source	blocks	
with	 t	 distinct	 old	 blocks	 already	 archived,	 a	 systematic	maximum	distance	 separable	
(MDS)	code	 [LC04]	 is	used	 to	create	p≥s	parity	blocks	which	are	 then	archived	on	 the	
system.	
An	archived	document	 can	be	 recovered	 from	s+t	or	more	of	 its	blocks.	The	 code	 can	
correct	p	block	erasures	per	document	 codeword,	but	 since	 the	 source	blocks	 are	not	
archived	and	are	considered	as	erased,	at	most	𝑒 = 𝑝 − 𝑠	block	erasures	per	document	
on	 the	 storage	 medium	 can	 be	 corrected.	 Note	 that	 increasing	 t	 does	 not	 increase	
storage	overhead	or	error-correcting	capability,	but	does	increase	coding	and	decoding	
complexity.	
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Figure	7:	(1,3,2,3)-archive.	4	out	of	6	blocks	are	required	to	recover	a	document.	

Recoverable	attack.	
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Figure	8:	(1,3,2,3)-archive.	4	out	of	6	blocks	are	required	to	recover	a	document.	

Irrecoverable	attack.	
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An	attacker	can	censor	a	document	𝑑, 	by	erasing	more	than	e	blocks	from	it.	However,	
by	entangling	new	documents	with	documents	already	archived,	it	might	be	possible	for	
the	system	to	recover	the	deleted	blocks	by	decoding	other	documents	that	use	them.	As	
an	 example,	 consider	 the	 (1,3,2,3)-archive	 presented	 in	 Figure	 7.	 Each	 document	
codeword	 consists	 of	 one	 source	 block,	 three	 pointers	 to	 old	 blocks,	 and	 three	 parity	
blocks.	Only	the	parity	blocks	are	stored	when	a	new	document	is	archived;	the	source	
block	 is	 not	 stored	 and	 the	 pointer	 blocks	were	 previously	 stored	 as	 parity	 blocks	 of	
older	documents.	Block	0	is	a	known	anchor	that	cannot	be	corrupted.	If	an	MDS	code	is	
used,	any	four	of	the	six	stored	blocks	belonging	to	a	document	are	sufficient	to	recover	
it	(i.e.,	𝑒 = 2).	In	Figure	7,	an	attacker	wants	to	censor	document	𝑑.	by	erasing	its	blocks	
{2,7,11,13,14,15}	from	the	archive.	However,	although	𝑑.	cannot	be	recovered	directly,	
all	 the	blocks	are	 recoverable:	Block	2	 can	be	 recovered	by	decoding	𝑑/	or	𝑑0,	Block	7	
can	 be	 recovered	 by	 decoding	𝑑1,	𝑑2or	𝑑3,	 Block	 11	 can	 be	 recovered	 by	 decoding	𝑑2,	
Block	14	can	be	recovered	by	decoding	𝑑4,	Block	15	can	be	recovered	by	decoding	𝑑3,	
and	 in	 the	 last	 step	Block	13	can	be	 recovered	by	decoding	𝑑..	Having	been	unable	 to	
erase	𝑑.,	 the	attacker	continues	his	attack	more	cleverly	and	 further	erases	Blocks	20,	
21,	22	and	24,	as	illustrated	in	Figure	8.	Document	𝑑.is	now	destroyed	irrecoverably,	as	
are	also	𝑑4and	𝑑3	(the	irrecoverable	blocks	and	documents	are	shown	in	red).	Blocks	2,	
7	and	11	are	still	recoverable,	which	means	that	the	attacker	could	have	 irrecoverably	
destroyed	𝑑.	without	destroying	them.	
The	challenging	part	of	our	approach	is	thus	to	choose	the	pointers	to	entangled	blocks	
in	a	practicable	way	that	provides	good	anti-tampering	and	data	integrity.	With	a	non-
constant	number	of	pointers	per	document,	maximum	forward	data	integrity	and	anti-
tampering	is	possible:	on	an	archive	with	s=1	and	e≥1,	one	can	use	k-1	entangled	blocks	
for	 document	𝑑, ,	 more	 precisely	 a	 pointer	 to	 the	 first	 parity	 block	 of	 each	 of	 the	 k-1	
documents	already	archived.	If	a	censor	wants	to	delete	a	document	𝑑,  irrecoverably,	it	
must	corrupt	all	the	documents	archived	after	𝑑, .	Of	course,	the	number	of	pointers	to	
tangled	 blocks	 in	 this	 example	 grows	 linearly	 with	 the	 number	 of	 documents,	 which	
makes	encoding	and	decoding	too	complex	to	be	of	any	practical	value.	Since	we	target	
practically	implementable	data	integrity	and	anti-tampering,	we	thus	focus	on	archives	
with	 t	 constant	 and	 small.	 Studying	 how	 to	 assign	 these	 pointers	 to	 maximise	 the	
tamper-proofing	 and	 protection	 against	 censorship	 will	 be	 an	 important	 task	 of	 the	
project.	

6.3 Future	investigations	
We	must	consider	and	investigate	many	questions	and	problems	during	the	project.	For	
instance,	 what	 are	 the	 security	 implications	 of	 directly	 archiving	 the	 source	 blocks?	
Should	 metadata	 be	 publicly	 available	 or	 kept	 privatly?	 Should	 metadata	 be	 mass	
replicated	to	protect	 it	against	attacks?	Should	we	consider	multiple	block	sizes,	and	if	
so,	what	should	those	sizes	be?	How	can	we	avoid	a	malicious	administrator	to	practice	
censorship	 by	 having	 the	 main	 system	 refuse	 to	 perform	 read	 requests	 for	 censored	
data?		
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7 SafeCloud	storage	testbed	
A	 core	 technological	 challenge	 and	 innovation	 of	 SafeCloud	 lies	 in	 its	 ability	 at	 using	
coding	techniques	 to	 secure	 and	 entangle	 data	 in	 the	 system,	 as	 well	 as	 place	data	 at	
specific	 locations	 guided	by	 security	 and	dependability	 requirements.	 To	 facilitate	 the	
development	and	evaluation	of	these	techniques,	we	have	designed	a	“storage	testbed”	
that	 provides	 simplified	 versions	 of	 the	 SafeCloud	 components	 and	 operates	within	 a	
single	 data	 centre,	 but	 can	 support	 identical	 APIs,	 coding	 techniques,	 fine-grained	
entanglement,	and	placement	mechanisms	as	the	final	storage	architecture.	This	testbed	
will	 not	 only	 be	 instrumental	 in	 driving	 the	 development	 of	 the	mechanisms	 of	work	
package	 2,	 but	 can	 also	 be	 used	 during	 the	 implementation	 of	 the	 higher-level	 work	
packages	until	the	final	architecture	has	been	completed.		
The	 storage	 testbed	 exploits	 the	 storage	 capabilities	 of	 an	 existing	 key-value	 store	 to	
persistently	store	on	non-volatile	devices,	as	well	as	to	retrieve	blocks.	This	architecture	
serves	as	a	building	block	to	implement	the	more	elaborate	solutions,	namely	the	long-
term	document	store	and	 the	FUSE-based	 file	 system.	 In	 the	remainder	of	 this	 section	
we	 detail	 the	 various	 components	 of	 the	 architecture:	 a	 proxy	 service,	 an	 encoder-
decoder	service,	and	the	key-value	store	(see	Figure	9).	At	the	time	of	this	writing,	the	
evaluation	of	 various	 libraries	 and	parameters	 that	will	 guide	 future	design	 choices	 is	
still	ongoing.	Results	will	be	reported	in	upcoming	deliverables.	

	
Figure	9:	Storage	architecture	in	a	single	data	centre	(testbed).	

7.1 Proxy	Component	
The	 proxy	 component	 is	 the	 main	 front-end	 to	 the	 system.	 While	 there	 can	 be	 an	
arbitrary	 number	 of	 proxies	 for	 a	 given	 data	 store,	 we	 only	 consider	 one	 in	 our	
evaluation.	 The	 proxy	 exposes	 a	 simple	 stateless	 REST	 interface	 to	 put	 and	 get	 data	
blocks.	 The	 interface	mimics	 the	 operating	 principles	 of	well-established	 services	 like	
Amazon	 S3.	 More	 sophisticated	 operations,	 such	 as	 operating	 on	 subsets	 of	 the	 data	
blocks	for	a	given	file,	can	be	easily	integrated.	The	interactions	between	the	proxy	and	
the	clients	happen	via	synchronous	HTTP	messages	over	pre-established	TCP	channels.	
The	 proxy	 dispatches/collects	 data	 blocks	 to/from	 the	 encoder	 service.	 Note	 that	 the	
three	 solutions	 described	 in	 the	 previous	 section	 can	 advantageously	 leverage	 such	
proxies	 in	 their	 implementation	 to	 mediate	 interactions	 between	 the	 client	 and	 the	
different	 storage	 nodes	 across	 the	 data	 centres	 (the	 alternative	 being	 to	 embed	 this	
functionality	within	the	client	or	the	storage	nodes).	
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7.2 Encoder	Component	

The	 encoder	 component	 performs	 the	 actual	 processing	 and	 transformation	 of	 data	
blocks	before	they	are	stored,	as	well	as	the	reverse	decoding	operation.	The	encoder	is	
co-located	 within	 the	 same	 host	 as	 the	 proxy	 to	 maximize	 throughput	 and	 avoid	
bottlenecks	induced	by	high	pressure	on	the	network	stack.	To	increase	the	flexibility	of	
our	 testbed,	our	encoder	provides	a	plug-in	mechanism	to	dynamically	 load	and	swap	
different	 coding	 libraries.	 This	mechanism	 relies	 on	 a	platform-independent	 transport	
mechanism	(using	protobuf3)	and	a	stable	interface	between	the	proxy	and	the	encoder.	
The	 encoder	 interface	 currently	 exposes	 three	 main	 operations:	 encode,	 decode,	 and	
reconstruct.	

7.3 Storage	nodes	
Once	 the	 blocks	 have	 been	 encoded,	 they	 are	 sent	 by	 the	 proxy	 to	 the	 storage	 nodes.	
Each	storage	node	is	independent	from	the	others	and	all	the	interactions	are	mediated	
by	 the	 proxy.	 Blocks	 are	 dispatched	 to	 storage	 nodes	 using	 an	 explicit	 placement	
strategy:	the	proxy	ensures	that	encoded	block	parts	are	spread	to	distinct	nodes	so	that	
the	 failure	 of	 one	 node	 results	 in	 the	 loss	 of	 only	 one	 part.	 Upon	 reading,	 the	 proxy	
contacts	 a	 random	minimal	 size	 subset	 of	 storage	 nodes	 to	 reconstruct	 the	 requested	
block.	

7.4 Clients	nodes	
The	clients	are	separate	processes	running	on	different	nodes	in	the	same	data	centre.	
They	read	and	write	data	by	contacting	the	proxy,	following	access	patterns	defined	as	
part	of	the	workloads.	
	 	

																																																								
3  https://developers.google.com/protocol-buffers/ 
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8 Prototype	implementation	of	storage	testbed	
We	used	different	languages	and	technologies	to	implement	our	testbed	and	integrate	it	
with	 the	open-source	 erasure	 coding	 libraries.	Our	 implementation	 choices	have	been	
largely	driven	by	performance	and	simplicity	 considerations,	as	well	as	by	constraints	
from	the	evaluated	libraries.	
The	proxy	component	is	implemented	in	Java	and	exploits	the	exporting	facilities	of	the	
Spring	 Boot	 framework4	(v1.3.1)	 to	 leverage	 industrial-grade	 application	 servers.	 We	
configured	the	proxy	to	handle	HTTP	requests	via	the	embedded	Jetty	web-server.	
The	encoder	component	is	implemented	in	Python	to	facilitate	the	integration	with	the	
PyEClib5	library	 (v1.2),	 the	 reference	 Python	 binding	 for	 liberasure.	 This	 library	
implements	wrappers	to	uniformly	access	several	encoding	libraries.	
The	open-source	libraries	under	evaluation	are	implemented	in	C/C++	(e.g.,	liberasure,6	
JErasure,7	LongHair8)	or	a	mix	of	C	and	hand-written	Assembly	(e.g.,	Intel	ISA-L9).	These	
implementation	 choices	 lead	 to	 the	 best	 performance	 and	 can	 take	 advantage	 of	
hardware	 acceleration,	 as	 in	 the	 case	 of	 Intel	 ISA-L	 that	 exploits	 built-in	 SIMD	 CPU	
instructions.	We	 call	 the	 libraries	 via	 a	 common	 access	 layer	 and	 software	 wrappers	
implemented	in	Python.	Python	provides	an	easy	mean	to	bind	to	such	libraries	via	its	
built-in	support	for	native	code.	
The	 suite	 of	 macro-benchmarks	 leverages	 Apache	 Bench10	(v2.3)	 to	 measure	 the	
maximum	 throughput	 and	 per-request	 latencies.	 The	 storage	 nodes	 run	 on	 top	 of	
Redis11	(v3.0.7),	a	lightweight	yet	efficient	in-memory	key-value	store.	Redis	tools	offer	
easy-to-use	probing	mechanisms	 (e.g.,	 the	 redis-cli	 command-line	 tool)	 to	 retrieve	 the	
current	memory	 occupied	 by	 the	 stored	 keys.	We	 exploit	 these	 tools	 to	 calculate	 the	
storage	overhead	of	the	encoded	blocks.	
Our	deployment	machinery	allows	us	to	scale	all	the	mentioned	components	at	will.	To	
do	so,	we	rely	on	the	tools	offered	by	the	Docker12	ecosystem	(v1.6)	and	its	Compose13	
orchestration	tool	(v1.5.3).	
As	 previously	 mentioned,	 the	 objective	 of	 this	 preliminary	 prototype	 is	 to	 conduct	
extensive	 tests	 that	will	allow	us	 to	assess	 the	performance	and	 trade-offs	of	different	
encoding	 algorithms,	 and	 to	 consequently	 drive	 the	 design	 choices	 for	 the	 final	
SafeCloud	storage	architecture.	Results	will	be	reported	 in	an	upcoming	deliverable	as	
they	are	available.	
	 	

																																																								
4 https://projects.spring.io/spring-boot/ 
5 https://pypi.python.org/pypi/PyECLib 
6  https://bitbucket.org/tsg-/liberasurecode 
7  http://jerasure.org/ 
8  https://github.com/catid/longhair 
9  https://github.com/01org/isa-l 
10 https://httpd.apache.org/docs/2.4/programs/ab.html 
11 http://redis.io 
12 https://www.docker.com 
13 https://docs.docker.com/compose/ 
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9 Summary	and	conclusion	
The	 objectives	 and	 contributions	 of	 the	 SafeCloud	 architecture	 are	 twofold.	 First,	 it	
provides	 a	 practical	 set	 of	 “solutions”	 to	 store	 content	 securely,	 at	 the	 level	 of	 raw	
blocks,	 documents,	 or	 file	 systems,	 for	 mutable	 or	 archival	 data.	 Second,	 it	 develops	
innovative	techniques	to	advance	the	state	of	the	art	 in	data	coding	and	entanglement.	
This	 architecture	 document	 has	 covered	 both	 aspects	 and	 highlighted	 the	 specific	
directions	 that	will	 be	 taken	 to	 drive	 the	 SafeCloud	 storage	 infrastructure	 during	 the	
course	of	the	project.	
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