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ExecuƟve Summary
This document gives an overview of the three solutions in the Secure Communications
layer of the SafeCloud project.

The SafeCloud middleware components are open-source and available in the following lo-
cations:

• ěęTLS: https://github.com/safecloud-project/vtTLS

• sKnock: https://github.com/safecloud-project/sKnock

• Darshana: https://github.com/safecloud-project/darshana

• Machete: https://github.com/safecloud-project/MACHETE
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1 IntroducƟon
Data communication is one of the most signiϐicant source of concerns about privacy and
conϐidentiality in the Internet. The objective of work package WP1 is to provide middle-
ware services to improve the privacy and security of cloud communications in the Safe-
Cloud architecture. The SafeCloud secure communication has three solutions as shown in
Figure 1.1

SC1
Vulnerability-tolerant	

channels

SC2	
Protected	channels

SC3
Route-aware	channels

SS1
Secure	block	storage

SS2
Secure	data	archive

SS3
Secure	file	system

SQ1
Secure	database	server

SQ2
Secure	multi-cloud	
database	server

SQ3
Secure	multi-cloud	
application	server

Secure	storage

Secure	queries

Secure	communication

Figure 1.1: SafeCloud Secure CommunicaƟon SoluƟons.

The purpose of these communication services is to provide the same properties as se-
cure channels - conϐidentiality, integrity, and authenticity - plus availability - but assum-
ing powerful adversaries that may be able to break some of the assumptions that make
existing channels secure. A speciϐic example of such a broken assumption is to consider
that the Difϐie Hellman key exchange is secure, proved wrong recently by the Logjam at-
tack [ABD+15].

Deliverable D1.1 characterized the threats, communication services, and presented the
overall architecture of the SafeCloud middleware: it is aimed at machine-to-cloud and
cloud-to-cloud communication; it provides only unicast communication between two end-
points (e.g. user terminals, servers, etc). The communicationmodel is connection-oriented,
similarly to protocols like TCP or SSL. The middleware is implemented at the application
layer of the OSI model and of the Internet protocol stack, so that the approach is appli-
cable to as many use cases as possible, as solutions at the lower layers would require an
unfeasible modiϐication of the equipment of Internet service providers.

Deliverable D1.2 presented an initial version of the secure communication middleware
components: vulnerability-tolerant channels (ěęTLS), protected serviceprovisioning (sKnock),
route monitoring (Darshana), and multi-path communication (MACHETE).

The present deliverable, D1.3, presents the ϐinal version of themiddleware. It is organized
as follows:

• Chapter 2 presents the business requirements that motivated the middleware com-
ponents.

• Chapter 3 presents ěęTLS, a vulnerability-tolerant communication channel based on
diversity and redundancy of the cryptographic algorithms.

• Chapter 4 presents the work on protected service provisioning. This includes con-
siderations about certiϐicates and safer authentication and sKnock, SafeCloud’s ap-
proach to port-knocking. This concept hides remote services behind a ϐirewall which
allows access to the listening ports of the services only after the client has success-
fully authenticated to the ϐirewall.
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• Chapter 5 presents Darshana, a network route monitoring solution that detects route
hijacking caused by Border Gateway Protocol (BGP) or other network tampering.
The solution uses active probing techniques that enable detection in near real-time.

• Chapter 6 presents Machete, an application-layer multi-path communication mech-
anism that provides additional conϐidentiality by splitting data streams in different
physical paths.

• Chapter 7 describes how added-value can be derived based on the integration of two
or more SafeCloud middleware components. The ěęTLS and sKnock integration is
presented in detail.

• Finally, the document concludes in Chapter 8.

Deliverable 1.3 3



2 Requirements
This chapter provides our analysis of the business requirements made in WP1. We ad-
dressed the need for communication security, the limitations of the industry-standard so-
lutions, and how the SafeCloud Secure Communication solutions address some of the lim-
itations.

2.1 Perceived need of communicaƟon security

Conϐidentiality, privacy and integrity are widely-acknowledged requirements for commu-
nication over the Internet and with clouds. These requirements became more compelling
with the Snowden revelations andnews on generalized eavesdropping of communications.

There are many reports, pieces of news, and other information that support these asser-
tions. A recent piece of news at CNET pointed out that “In the three years since Snowden’s
initial leak, Apple, Google, Microsoft, Facebook and Yahoo have become some of the biggest
advocates of consumer privacy. They’ve beefed up encryption and other safeguards in
their products and services” [Hau16]. According to the same source, these companies took
such measures “to protect business”. This trend is also shown by the coalition of 40 large
tech companies around Apple to block the FBI’s access to data stored in iPhones [Che16].

Not necessarily related to these revelations, Vodafone, the second largestmobile phone op-
erator worldwide (after ChinaMobile) also considers that “Customer information is one of
the greatest assets we are entrusted with and must be protected appropriately” [Vod14].
Among their “Key Principles on Information Security”, Vodafone lists “Conϐidentiality: Cus-
tomer informationmust not be disclosed to, or accessed by, unauthorised people” and “In-
tegrity: Customer information and software must be accurate, complete and authentic so
that it can be relied upon.”

Microsoft also lists privacy/conϐidentiality in the list of “What customers want from cloud
providers” in a recent report on Windows Azure, one of the largest cloud services world-
wide [Mic15]. This list contains 5 items, two of themdirectly relatedwith these properties:
Secure our data; Keep our data private; Give us control; Promote transparency; Maintain
compliance. The report conϐirms that “Since the revelations of widespread surveillance
by the US government in 2013, privacy concerns have become more accentuated, and the
cloud has come under greater scrutiny as a result.” In relation to data sent over the net-
work it says that “For data in transit, customers can enable encryption for trafϐic between
their own VMs and end users” and that “Azure uses industry-standard transport protocols
between devices and Microsoft datacenters and within datacenters themselves.”

These concerns exist not only in companies but also among the general public. ThePewRe-
search Center studymade in 2014 found out that there aremajor concerns on surveillance
by government and businesses, which justiϐies both the need for secure communications
but also storage and processing (WP2 and WP3) [Pew14]. The report points out specif-
ically that there is little conϐidence in the security (privacy/conϐidentiality) of common
communication channels.
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On a more ofϐicial level, the ITU-T, part of the International Telecommunication Union and
a major standards committee in communications, published in 2012 a report speciϐically
focused on privacy in cloud computing and its communications [IT12]. Also the Cloud Se-
curity Alliance, arguably the most important think tank in cloud security, includes “En-
cryption and Key Management” among its Critical Areas of Focus [Clo11]. Although the
document focuses more on encryption of data inside the cloud, it makes clear that a “se-
cure transfer channel (i.e. TLS)” is essential for communication protection. The American
Federal Communications Commission published a set of cyber-security recommendations
for small companies [Fed16]. It provides counsel such as “Secure internal network and
cloud services” and “Encryption should be employed to protect any data that your com-
pany considers sensitive (...) on disk as well as in transit”. The National Telecommuni-
cations and Information Administration from the United States Department of Commerce
also concluded that lack of trust in Internet privacy and security may be a major deterrent
for online business [Gol16].

In summary, there is a large consensuson theneed for communication security andprivacy,
in general in the Internet but also in particular with clouds. Privacy and conϐidentiality are
the major concerns, but integrity is also often mentioned as a problem.

2.2 LimitaƟons of industry-standard soluƟons

The industry-standard solution to the problems mentioned in the previous section is the
use of protocols that provide secure channels, often designated informally as “encryption”
[Clo11, Fed16, Hau16, Mic15]. The most adopted protocol is SSL/TLS, which has several
variants. This protocol provides transport layer channels, and is widely-adopted for pro-
tecting application layer communication in combinationwith theHTTPprotocol. This bun-
dle of SSL/TLS and HTTP is usually denominated HTTPS.

SSL/TLS provides to some extent the properties required by companies, governments,
and the general public that we mentioned in the previous section: privacy, conϐidentiality,
and integrity of communications. However, they only provide these properties as long as
no vulnerabilities exist in its components: cryptographic hash functions, encryption algo-
rithms,message authentication code schemes, padding schemes, authentication protocols,
client and server-side software, etc. In reality, channels based on SSL/TLS are sometimes
insecure for several reasons:

1. A vulnerability appears in one of these components;

2. An old vulnerability in one of these components is not ϐixed;

3. There is an unknown (or 0-day) vulnerability in one of these components;

4. There is a vulnerability that seems to be impossible to exploit, but that can be ex-
ploited by a strong adversary (e.g., a nation state).

In deliverable D1.1 we already provided extensive references to scientiϐic work that jus-
tiϐies the existence of such vulnerabilities. Nevertheless, we provide some additional evi-
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dence based on very recent research.

In relation to point (1), there are a few vulnerabilities recently published. A speciϐic exam-
ple is a vulnerability in theECDSAsignature algorithm implementation inOpenSSL [FWC16].
Another example is a collision attack on HTTP over TLS [BL16]. Finally, another paper in
the same conference provides a mechanisms to do fuzz testing of TLS libraries, with the
objective of ϐinding implementation vulnerabilities in the source code [Som16].

In relation to point (2), another recent paper shows that vulnerabilities in secure channels
take a long time to be ϐixed [ADHP16b].

In relation to (3), a paper with a few more years presents a study about the duration of
0-day attack campaigns against generic vulnerabilities (not necessarily secure channels),
based on extensive data from Symantec [BD12]. It concludes that the duration of such
campaigns varies between 19 days and 30 months.

Finally, in relation to (4), a very good example appeared in 2015: Logjam [ABD+15]. That
vulnerability allows downgrading the strength of Difϐie-Hellman key-exchange of TLS, then
get access to a decryption key and eavesdrop on communication. The attack however re-
quires the precomputation of a speciϐic group, which in the case of 1024-bit groups can be
done by nation state adversaries.

2.3 Addressing the requirements in SafeCloud

For the attacker to break the conϐidentiality, privacy or integrity of an SSL/TLS channel he
must:

• (i) know about the existence of a vulnerability in the channel; and

• (ii) have access to the endpoints or

• (iii) have access to the communication.

SafeCloud’s middleware provides a set of mechanisms that make it harder for the attacker
to get (i), (ii), and (iii). Speciϐically, the middleware services do the following:

• Vulnerability-tolerant channels (task T1.2) – targets (i) by requiring more than one
vulnerability for attacks to be effective;

• Protected service provisioning (task T1.3) – targets (ii) by hiding the endpoints and
enhancing authentication;

• Routemonitoring (task T1.4) andMulti-path communication (task T1.5) – target (iii)
by detecting if the attacker deviated the trafϐic to have access to it; and by splitting
the trafϐic, thus making it more difϐicult for the attacker to have access to data.

The following chapters present the SafeCloud middleware components along with details
about the security and performance trade-offs that they entail.
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3 Vulnerability-Tolerant Channels
Secure communication protocols are extremely important in the Internet. Transport Layer
Security (TLS) alone is responsible for protecting most economic transactions done using
the Internet, with a value too high to estimate. These protocols allow entities to exchange
messages or data over a secure channel in the Internet. A secure communication channel
has threemain properties: authenticity – no one can impersonate the sender; conϔidential-
ity – only the intended receiver of the message is able to read it; and integrity – tampered
messages can be detected.

Several secure communication channel protocols exist nowadays, with different purposes
but with the same goal of securing communication. TLS is a widely used secure channel
protocol. Originally called Secure Sockets Layer (SSL), its ϐirst versionwas SSL2.0, released
in 1995. SSL 3.0 was released in 1996, bringing improvements to its predecessor such as
allowing forward secrecy and supporting SHA-1. Deϐined in 1999, TLS did not introduce
major changes in relation to SSL 3.0. TLS 1.1 and TLS 1.2 are upgrades to TLS 1.0 which
brought improvements such as mitigation of cipher block chaining (CBC) attacks and sup-
porting more block cipher modes to use with AES.

Other widely used secure channel protocols are IPsec and SSH. Internet Protocol Security
(IPsec) is a network layer protocol that protects the communication at a lower level than
SSL/TLS,which operates at the transport layer [KS05]. IPsec is an extension of the Internet
Protocol (IP) that contains two sub-protocols: AH (AuthenticationHeader) that can assure
full packet authenticity and ESP (Encapsulating Security Payload) that can protect conϐi-
dentiality and integrity of the payload of the packets. Secure Shell (SSH) is an application-
layer protocol used for secure remote login and other secure network services over an
insecure network [YL06].

A secure channel protocol becomes insecure when a vulnerability is discovered. Vulnera-
bilities may concern the speciϐication of the protocol, the cryptographicmechanisms used,
or speciϐic implementations of the protocol. Many vulnerabilities have been discovered in
TLS originating new versions of the protocol, deprecating cryptographic mechanisms or
enforcing additional security measures. Concrete implementations of TLS have been also
found vulnerable due to implementation bugs. The processes of deprecation or software
update are very slow and can take a long time to become effective [ADHP16a]. Also, they
may not even reach all the affected servers and clients. This means that the communi-
cations between devices are at risk of interception or tampering by attackers for a long
period.

ěęTLS is aprotocol, basedonTLS, that provides vulnerability-tolerant communication chan-
nels. ěęTLS stands forVulnerability-Tolerant Transport Layer Security. A vulnerability-tole-
rant channel is characterized by not relying on individual cryptographic mechanisms, so
that if any one of them is found vulnerable, the channel still remains secure. The idea
is to leverage diversity and redundancy of cryptographic mechanisms and keys by using
more than one set of mechanisms/keys. This use of diversity and redundancy is inspired
in previous works on intrusion tolerance [VNC03], diversity in security [LS04, GBG+11]
and moving-target defenses [CF14].

Consider for example SHA-1 and SHA-3, two hash functions that may be used to generate
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message digests. If used in combination and SHA-1 eventually becomes insecure, ěęTLS
would rely upon SHA-3 to keep the communication secure.

ěęTLS is conϐiguredwith a parameter k (k > 1), the diversity factor, that indicates the num-
ber of different cipher suites and different mechanisms for key exchange, authentication,
encryption, and signing. This parameter means also that ěęTLS remains secure as long as
less than k vulnerabilities exist. As vulnerabilities and, more importantly, zero-day vulner-
abilities cannot be removed as they are unknown [BD12], do not appear in large numbers
in the same components, we expect k to be usually small, e.g., k = 2 or k = 3.

Although TLS supports strong encryptionmechanisms such as AES and RSA, there are fac-
tors beyond mathematical complexity that can contribute to vulnerabilities. Diversifying
encryption mechanisms includes diversifying certiϐicates and consequently keys (public,
private, shared). Diversity of certiϐicates is a direct consequence of diversifying encryp-
tion mechanisms due to the fact that each certiϐicate is related to an authentication and
key exchange mechanism.

The main contribution of this chapter is ěęTLS, a new protocol for secure communication
channels that uses diversity and redundancy to tolerate vulnerabilities in cryptographic
mechanisms. The experimental evaluation shows that ěęTLS has an acceptable overhead
in relation to the TLS implementation in OpenSSL v1.0.2g [VMC02].

3.1 Background and Related Work

This section presents related work on diversity (and redundancy) in security, provides
background information on TLS, and discusses vulnerabilities in cryptographic mecha-
nisms and protocols.

3.1.1 Diversity

The term diversity is used to describe multiple version software in which redundant ver-
sions are deliberately created and made different between themselves [LS04]. Without
diversity, all instances are the same, with the same implementation vulnerabilities. Us-
ing diversity it is possible to present the attacker with different versions, hopefully with
different vulnerabilities. Software diversity targets mostly software implementation and
the ability of the attacker to replicate the user’s environment. Diversity does not change
the program’s logic, so it is not helpful if a program is badly designed. According to Little-
wood and Strigini, multi-version systems on average are more reliable than those with a
single version [LS04]. They also state that the key to achieve effective diversity is to make
the dependence between the different programs as low as possible. Therefore, attention is
needed when choosing the diverse versions. The trade-off between individual quality and
dependence needs to be assessed and evaluated, as it impacts the correlation between ver-
sion failures.

Recently there has been some discussion on the need for moving-target defenses. Such
defenses dynamically alter properties of programs and systems in order to overcome vul-
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nerabilities that eventually appear in static defensemechanisms [ENTK11]. There are two
types of moving-target defenses: proactive and reactive [CF14]. Proactive defenses are
generally slower than reactive defenses as they prevent attacks by increasing the system
complexity periodically. Reactive defenses are faster as they are activated when they re-
ceive a trigger from the system when an attack is detected. This may cause a problem
where an attack is performed but not detected. In this case, reactive defenses are worth-
less, but proactive defenses may prevent that attack from being successful. The best ap-
proach would be to implement both [SBC+10]. Nevertheless, these defences are as good
as their ability to make an unpredictable change to the system.

Earlier, Avižienis and Chen introduced N-version programming (NVP) [AC77]. NVP is de-
ϐined as the independent generation of N ≥ 2 functionally equivalent programs from the
same initial speciϐication. The authors state that in order to use redundant programs to
achieve fault tolerance the redundant programmust contain independently developed al-
ternatives routines for the same functions. The N in NVP comes from N diverse versions
of a program developed by N different programmers, that do not interact with each other
regarding the programming process. One of the limitations of NVP is that every version is
originated from the same initial speciϐication. There is the need to assure the initial speci-
ϐication’s correctness, completeness and unambiguity prior to the versions development.

There is someworkonobtainingdiversitywithout explicitly developingNversions [LHBF14].
Garcia et al. show that there is enough diversity among operating systems for several prac-
tical purposes [GBG+11]. Homescu et al. use proϐile-guided optimization for automated
software diversity generation [HNL+13]. Transparent Runtime Randomization (TRR) dy-
namically and randomly relocatesparts of theprogramtoprovidedifferent versions [XKI03].
Proactive obfuscation aims to generate replicas with different vulnerabilities [RS10].

3.1.2 SSL/TLS Protocol

Here we present the SSL/TLS, as this is the protocol in which ěęTLS is based. We start by
presenting its two main sub-protocols: the TLS Handshake Protocol and the TLS Record
Protocol.

3.1.2.1 TLS Handshake Protocol

TheTLSHandshake Protocol is used to establish (or resume) a secure session between two
communicatingparties – a client and a server. A session is established in several steps, each
one corresponding to a different message:

1. The client sends a CđĎĊēęHĊđđĔmessage to the server. Thismessage is sentwhen the
client wants to connect to a server. The CđĎĊēęHĊđđĔ message is composed by the
client’s TLS version, a structure denominated Random (which has a secure random
number with 28 bytes and the current date and time), the session identiϐier, a list
of the cryptographic mechanisms supported by the client and a list of compression
methods supported by the client, both lists ordered by preference. The client may
also request additional functionality from the server.
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2. The server responds with a SĊėěĊėHĊđđĔ message. The message is composed by
the server’s TLS version, a structure denominatedRandom analogous to ClientHello’s
structurewith the samename, the session identiϐier, a cryptographicmechanismand
a compression method, both of them chosen by the server from the lists received in
the CđĎĊēęHĊđđĔ message, and a list of extensions.

3. If the key exchange algorithm agreed between client and server requires authentica-
tion, the server sends its certiϐicate to the client using a CĊėęĎċĎĈĆęĊ message.

4. A SĊėěĊėKĊĞEĝĈčĆēČĊ message is sent to the client after the CĊėęĎċĎĈĆęĊ message
if the server’s certiϐicate does not contain enough information in order to allow the
client to share a premaster secret.

5. The server then sends a request for the client’s certiϐicate – CĊėęĎċĎĈĆęĊRĊĖĚĊĘę.
This message is composed by a list of types of certiϐicate the client may send, a list
of the server’s supported signature algorithms and a list of certiϐicate authorities
accepted by the server.

6. The server sends a SĊėěĊėHĊđđĔDĔēĊmessage to conclude its ϐirst sequence ofmes-
sages.

7. After receiving the SĊėěĊėHĊđđĔDĔēĊmessage, the client sends its certiϐicate to the
server, if requested. If the client does not send its certiϐicate or if its certiϐicate does
not meet the server’s conditions, the server may choose to continue or to abort the
handshake.

8. The client proceeds to send to the server a CđĎĊēęKĊĞEĝĈčĆēČĊ message contain-
ing an encrypted premaster secret. The client generates a premaster secret with 48
bytes and encrypts it with the server’s certiϐicate public key. At this point, the server
and the client use the premaster secret to generate the session keys and the master
secret.

9. If the client’s certiϐicate possesses signing capability, a CĊėęĎċĎĈĆęĊVĊėĎċĞ message
is sent to the server. Its purpose is to explicitly verify the client’s certiϐicate.

10. The client sends a CčĆēČĊCĎĕčĊėSĕĊĈ message to the server. This message is used
to inform the server that the client is now using the agreed-upon algorithms for en-
cryption and hashing. TLS has a speciϐic protocol to signal transitions in ciphering
strategies denominated Change Cipher Spec.

11. The client sends its last handshake message – Finished. The Finished message veri-
ϐies the success of the key exchange and the authentication.

12. After receiving the CčĆēČĊCĎĕčĊėSĕĊĈ message, the server starts using the algo-
rithms established previously and sends a CčĆēČĊCĎĕčĊėSĕĊĈ message to the client
as well.

13. The server puts an end to the handshake protocol by sending a FĎēĎĘčĊĉmessage to
the client.
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At this point, the session is established. Client and server can now exchange application-
layer data through the secure communication channel.

3.1.2.2 TLS Record Protocol

The TLS Record protocol is the sub-protocol which processes the messages to send and
receive after the handshake, i. e., in normal operation.

Regarding an outgoing message, the ϐirst operation performed by the TLS Record protocol
is fragmentation. The message is divided into blocks. Each block contains the protocol
version, the content type, the fragment of application data and this fragment’s length in
bytes. The fragment’s length must be 214 bytes or less.

After fragmenting the message, each block may be optionally compressed, using the com-
pression method deϐined in the Handshake. Although there is always an active compres-
sion algorithm, the default one is CompressionMethod.null. CompressionMethod.null is
an operation that does nothing, i.e., no ϐields are altered.

Each potentially compressed block is now transformed into a ciphertext block by encryp-
tion andmessage authentication code (MAC) functions. Each ciphertext block contains the
protocol version, content type and the encrypted form of the compressed fragment of ap-
plication data, with the MAC, and the fragment’s length. The fragment’s length must be
214 + 2048 bytes or less. When using block ciphers, it is also added padding and its length
to the block. The padding is added in order to force the length of the fragment to be a mul-
tiple of the block cipher’s block length. When using AEAD ciphers, noMAC key is used. The
message is then sent to its destination.

Regarding an incoming message, the process is the inverse. The message is decrypted,
veriϐied, optionally decompressed, reassembled and delivered to the application.

3.1.2.3 TLS Vulnerabilities

We now discuss some of the vulnerabilities discovered in TLS in the past to show the rele-
vance of our work to bring added security to communications. TLS vulnerabilities can be
classiϐied in two types: speciϐication and implementation.

Speciϔication vulnerabilities concern the protocol itself. A speciϐication vulnerability can
only be ϐixed by a new protocol version or an extension. Implementation vulnerabilities
exist in the code of an implementation of TLS, such as OpenSSL. This section presents some
of the most recent [SHSA15].

An example attack that exploits a speciϐication vulnerability is Logjam [ABD+15]. The at-
tack consists in exploiting several weak parameters in the Difϐie-Hellman key exchange.
Logjam is aman-in-the-middle attack that downgrades the connection to aweakenedDifϐie-
Hellmanmode. Thisman-in-the-middle attack changes the cipher suitesused in the DHE_EXPORT
cipher suite, forcing the use of weaker Difϐie-Hellman key exchange parameters. As the
server supports this validDifϐie-Hellmanmode, thehandshakeproceedswithout the server
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noticing the attack. The server proceeds to compute its premaster secret using weakened
Difϐie-Hellman parameters. The client sees that the server has chosen a seemingly nor-
mal DHE option and proceeds to compute its secret also with weak parameters. At this
point, the man-in-the-middle can use the precomputation results to break one of the se-
crets and establish the connection to the client pretending to be the server. One aspect
worth noticing is that this attack will only succeed if the server does not refuse to accept
DHE_EXPORTmode. The solution for this vulnerability is simple and has already been im-
plemented: browsers simply deny the access to servers using weak Difϐie-Hellman cipher
suites, such as DHE EXPORT, although TLS still allows it.

Heartbleed is an example of an implementation vulnerability. It was a bug in C code that
existed in OpenSSL 1.0.1 through 1.0.1f, when the heartbeat extensionwas introduced and
enabled by default [STW12]. The Heartbleed vulnerability allowed an attacker to perform
a buffer over-read, reading up to 64 KB from the memory of the victim [CDFW14].

3.1.3 VulnerabiliƟes in Cryptographic Schemes

Wepresent vulnerabilities in cryptographicmechanisms, speciϐically in someof those used
by the TLS protocol. Not every mechanism supported by TLS is secure. Several of these
mechanismshavevulnerabilitieswhich canmake the communication insecure, if exploited.

3.1.3.1 Public-key Cryptography

RSA is awidely-usedpublic-key cryptography scheme. Its security is basedon thedifϐiculty
of factorization of large integers and the RSA problem [MvOV96]. RSA can be considered
to be broken if these problems can be solved in a practical amount of time.

Kleinjung et al. performed the factorization of RSA-768, a RSA number with 232 digits
[KAF+10]. The researchers state they spent almost two years in the whole process, which
is clearly a non-practical time. Factorizing a large integer is different from breaking RSA,
which is still secure. As of 2010, these researchers concluded that RSA-1024 would be
factored within ϐive years. As for now, no factorization of RSA-1024 has been publicly an-
nounced, but key sizes of 2048 and 3072 bits are now recommended [ENI14].

Shor designed a quantum computing algorithm to factorize integers in polynomial time
[Sho95]. However, it requires a quantum computer able to run it, which is still not publicly
available.

3.1.3.2 Symmetric Encryption

The Advanced Encryption Standard (AES), originally called Rijndael, is the current Amer-
ican standard for symmetric encryption [RD01]. AES can be employed with different key
sizes – 128, 192 or 256 bits. The number of rounds corresponding to each key size is,
respectively, 10, 12 and 14. AES is used by many protocols, including TLS.
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The most successful cryptanalysis of AES was published by Bogdanov et al. in 2011, using
a biclique attack, a variant of the MITM attack [BKR11]. This attack achieved a complexity
of 2126.1 for the full AES with 128-bit (AES-128). The key is therefore reduced to 126-bit
from the original 128-bit, but it would still take many years to successfully attack AES-
128. Ferguson et al. presented the ϐirst known attacks on the ϐirst seven and eight rounds
of Rijndael [FKL+01]. Although it shows some advance in breaking AES, AES with a key of
128 bits has 10 rounds.

3.1.3.3 Hash Functions

The main uses for hash functions are data integrity and message authentication. A hash,
also called message digest or digital ϐingerprint, is a compact representation of the input
and can be used to uniquely identify that same input [MvOV96]. If a hash function is not
collision-resistant, it is vulnerable to collision attacks. Some generic attacks to hash func-
tion include brute force attacks, birthday attacks and side-channel attacks.

The Secure Hash Algorithm 1 (SHA-1) is a cryptographic hash function that produces a
160-bit message digest. Its use is not recommended for some years [ENI14], although the
ϐirst collision was discovered only recently [SBK+17]. There have been some previous at-
tacks against SHA-1. Stevens et al.presented a freestart collision attack for SHA-1’s internal
compression function [SKP15]. Taking into consideration the Damgard-Merkle [Mer79]
construction for hash functions and the input of the compression function, a freestart col-
lision attack is a collision attack where the attacker can choose the initial chaining value,
also known as initialisation vector (IV). Freestart collision attacks being successful does
not imply that SHA-1 is insecure, but it is a step forward in that direction.

In 2005, Wang et al. presented a collision attack on SHA-1 that reduced the number of cal-
culations needed to ϐind collisions from 280 to 269 [WYY05]. The researchers claim that this
was the ϐirst collision attack on the full 80-step SHA-1 with complexity inferior to the 280
theoretical bound. By the year 2011, Stevens improved the number of calculations needed
to produce a collision from 269 to a number between 260.3 and 265.3 [Ste12].

3.2 Vulnerability-Tolerant TLS

ěęTLS is a new protocol that provides vulnerability-tolerant secure communication chan-
nels. It aims at increasing security by using diverse and redundant cryptographic mecha-
nisms and certiϐicates. It is based on the TLS protocol. The protocol aims to solve themain
problem originated by having only one cipher suite negotiated between client and server:
when one of the cipher suite’s mechanisms becomes insecure, the communication chan-
nels using that cipher suite may become vulnerable. Although most cipher suites’ crypto-
graphicmechanisms supported by TLS 1.2 are believed to be secure, 3.1 shows clearly that
new vulnerabilities may be discovered.

Unlike TLS, a ěęTLS communication channel does not rely on only one cipher suite. ěę-
TLS negotiates more than one cipher suite between client and server and, consequently,
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more than one cryptographic mechanism will be used for each phase: key exchange, au-
thentication, encryption andMAC. Diversity and redundancy appear ϐirstly in ěęTLS in the
Handshake protocol, inwhich client and server negotiate k cipher suites to secure the com-
munication, with k > 1.

The strength of ěęTLS resides in the fact that even when (k − 1) cipher suites become in-
secure, e.g., because (k− 1) of the cryptographic mechanisms are vulnerable, the protocol
remains secure. The server chooses the best combination of k cipher suites according to
the cipher suites server and client have available. However, the choice of the cipher suites
might be conditioned by the certiϐicates of both server and client. Diversity and redun-
dancy will be introduced in the following communication between client and server. ěę-
TLS uses a subset of the k cipher suites agreed-upon in the Handshake Protocol to encrypt
the messages.

3.2.1 Protocol SpecificaƟon

The ěęTLSHandshake Protocol is similar to the TLSHandshake Protocol. The names of the
messages are identical in order to provide easier migration and transition from TLS. Using
this simpliϐication, the reader familiarized with TLS can more easily understand ěęTLS.

Themessages that requirediversity areCđĎĊēęHĊđđĔ, SĊėěĊėHĊđđĔ, Đ-SĊėěĊėKĊĞEĝĈčĆēČĊ,
SĊėěĊė and CđĎĊēę CĊėęĎċĎĈĆęĊ, and Đ-CđĎĊēęKĊĞEĝĈčĆēČĊ.

The ϐirst message to be sent is CđĎĊēęHĊđđĔ to inform the server that the client wants to
establish a secure channel for communication. The content of this message consists in the
client’s protocol version, a Randomstructure (analogous toTLS1.2) containing the current
time and a 28-byte pseudo-randomly generated number, the session identiϐier, a list of the
client’s cipher suites and a list of the client’s compressionmethods, if compression is to be
used.

The server responds with a SĊėěĊėHĊđđĔ message. This is where the server sends to the
client the k cipher suites to be used in the communication. The server also sends its pro-
tocol version, a Random structure identical to the one received from the client, the session
identiϐier, and the k cipher suites chosen by the server from the list the client sent. It also
sends the compression method to use, if compression is enabled.

The server proceeds to send a SĊėěĊė CĊėęĎċĎĈĆęĊmessage containing its k certiϐicates to
the client. The k chosen cipher suites are dependent from the server’s certiϐicates. Each
certiϐicate is associated with one key exchange mechanism (KEM). Therefore, the k cipher
suites must use the key exchange mechanisms supported by the server’s certiϐicates.

ěęTLSbehaves correctly if the server has c certiϐicates, with 0 < c ≤ k . The cipher suites to
be used are chosen considering the available certiϐicates. If c < k, the diversity is not fully
achieved due to the fact that a number of cipher suites will share the same key exchange
and authentication mechanisms.

The SĊėěĊėKĊĞEĝĈčĆēČĊmessage is the nextmessage to be sent to the client by the server.
This message is only sent if one of the k cipher suites includes a key exchange mechanism
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Figure 3.1: òãTLS handshake messages using diversity factor k. The points where diversity
and redundancy are introduced are marked in bold and underlined.

like ECDHE or DHE that uses ephemeral keys, i.e., that generate new keys for every key ex-
change. The contents of thismessage are the server’s DH ephemeral parameters. For every
other k − 1 cipher suites using ECDHE or DHE, the server sends additional SĊėěĊėKĊĞEĝ-
ĈčĆēČĊ messages with additional diverse DH ephemeral parameters. Instead of comput-
ing all the ephemeral parameters and sending them all on a single larger message, the
server, after computing one parameter, sends it immediately, sending each parameter in a
separate message.

The remaining messages sent by the server to the client at this point of the negotiation,
CĊėęĎċĎĈĆęĊRĊĖĚĊĘę and SĊėěĊėHĊđđĔDĔēĊ, are identical to those in TLS 1.2 [DR08].

The client proceeds to send a (CđĎĊēę) CĊėęĎċĎĈĆęĊmessage containing its i certiϐicates to
the server, analogous to the (SĊėěĊė) CĊėęĎċĎĈĆęĊ message the client received previously
from the server.

After sending its certiϐicates, the client sendsk CđĎĊēęKĊĞEĝĈčĆēČĊmessages to the server.
The content of these messages is based on the k cipher suites chosen. If m of the cipher
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suites use RSA as KEM, the client sendsmmessages, each one with a RSA-encrypted pre-
master secret to the server (0 ≤ m ≤ k). If j of the cipher suites use ECDHE or DHE,
the client sends j messages to the server containing its j Difϐie-Hellman public values
(0 ≤ j ≤ k). Even if a subset of the k cipher suites share the same KEM, this method-
ology still applies as we introduce diversity by using different parameters for each cipher
suite being used.

The server needs to verify the client’s i certiϐicates. The client digitally signs all the previ-
ous handshake messages and sends them to the server for veriϐication.

Client and server now exchange CčĆēČĊCĎĕčĊėSĕĊĈmessages, like in the Cipher Spec Pro-
tocol of TLS 1.2, in order to state that they are now using the previously negotiated cipher
suites for exchanging messages in a secure fashion.

In order to ϐinish the Handshake, the client and server send each other a FĎēĎĘčĊĉ mes-
sage. This is the ϐirst message sent encrypted using the k cipher suites negotiated earlier.
Its purpose is for each party to receive and validate the data received in this message. If
the data is valid, client and server can now exchange messages over the communication
channel.

3.2.2 Combining Diverse Cipher Suites

Diversity between cryptographic mechanisms can be taken in a soft sense as the use of
different mechanisms, or in a hard sense as the use of mechanisms that do not share com-
mon vulnerabilities (e.g., because they are based on different mathematical problems). In
ěęTLSwe are interested in using strong diversity in order to claim that no common vulner-
abilitieswill appear in differentmechanisms. Measuring the level of diversity is not simple,
sowe leverage previous research by Carvalho on heuristics for comparing diversity among
cryptographic mechanisms [Car14]. Moreover, not all cryptographic mechanisms can be
used together in the context of TLS 1.2 and other security protocols. Herewe consider only
the combinations of two algorithms, i.e., k = 2, for simplicity.

Diversity can be assessed using different metrics. For hash functions, example metrics
are origin, year, digest size, structure, rounds and known weaknesses (collisions, second
preimage and preimage). After comparing several hash functions using the metrics stated
above, Carvalho concluded that the best three combinations are the following:

• SHA-1 + SHA-3: This combination is not possible in ěęTLS as SHA-1 is not recom-
mended and TLS 1.2 does not support SHA-3;

• SHA-1 + Whirlpool: This combination is not possible in ěęTLS as SHA-1 is not rec-
ommended and TLS 1.2 does not support Whirlpool;

• SHA-2 + SHA-3: This combination is not possible in ěęTLS as TLS 1.2 does not sup-
port SHA-3.

All the remaining combinations suggested in that work cannot also be used because TLS
1.2 does not support SHA-3. All ěęTLS cipher suites use either AEAD (MAC-then-Encrypt
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mode using a SHA-2 variant) or SHA-2 (SHA-256 or SHA-384). Having a small range of
available hash functions limits the maximum diversity factor achievable concerning hash
functions. In a near future, it is expected that a new TLS protocol version supports SHA-
3 and makes possible the use of diverse hash functions. Nevertheless, it still possible to
achieve diversity by using different variants of SHA-2: SHA-256 and SHA-384.

Regarding public-key functions, the metrics proposed include origin, year, mathematical
hard problems, perfect forward secrecy, semantic security and known attacks. After com-
paring several public-key encryption mechanisms, using the metrics stated above, Car-
valho concluded that the best four combinations are:

• DSA + RSA: This combination is possible as TLS 1.2 supports both functions for au-
thentication. However, TLS 1.2 speciϐic cipher suites only support DSA with elliptic
curves (ECDSA);

• DSA + Rabin-Williams: This combination is not possible as TLS 1.2 does not support
Rabin-Williams;

• RSA + ECDH: This combination is possible as TLS 1.2 supports both functions for key
exchange;

• RSA + ECDSA: This combination is possible as TLS 1.2 supports both functions for
authentication.

Regarding authentication, although DSA + RSA is stated as the most diverse combination,
TLS 1.2 preferred cipher suites use ECDSA instead of DSA. Using elliptic curves results in
a faster computation and lower power consumption [GGCS02]. With that being said, the
preferred combination for authentication is RSA + ECDSA.

Regarding key exchange, themost diverse combination is RSA+ECDH.However, in order to
grant perfect forward secrecy, theECDHwith ephemeral keys (ECDHE)has to be employed.
Concluding, the preferred combination for key exchange is RSA + ECDHE.

The study did not present any conclusions regarding symmetric-key encryption. There-
fore, considering the metrics – origin, year, and semantic security – employed for public-
key encryption functions, and considering an additional metric – the mode of operation –
we obtained combinations of diverse symmetric-key encryption functions, all possible:

• AES256-GCM + CAMELLIA128-CBC;

• AES256-CBC + CAMELLIA128-GCM;

• AES128-GCM + CAMELLIA256-CBC;

• AES128-CBC + CAMELLIA256-GCM.

Both AES and Camellia are supported by TLS 1.2 and are considered secure. The most di-
verse combination is AES256-GCM + CAMELLIA128-CBC: the origin of the two algorithms
is different, they were ϐirst published in different years, they both have semantic security
(as they both use initialization vectors) and the mode of operation is also different. One
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constraint of using this combination is that there is no cipher suite that uses RSA for key ex-
change, Camellia for encryption and a SHA-2 variant for MAC. Although RFC 6367 [KK11]
describes the support for Camellia HMAC-based cipher suites, extending TLS 1.2, these ci-
pher suites are not supported by OpenSSL 1.0.2g. Using a cipher suite that uses Camellia,
in order to maximize diversity, implies using also SHA-1 for MAC and not using ECDHE for
key exchange nor ECDSA for authentication in that cipher suite. Concluding, using Camellia
increases diversity in encryption but reduces security in MAC, forcing the use of an inse-
cure algorithm. Nevertheless, diversity in encryption is still an objective to accomplish.
We decided that the best option is:

• AES256-GCM + AES128: possible as TLS 1.2 supports both functions.

These functions are, in theory, the same, but employed with a different strength size and
mode of operation, they can be considered diverse, although they have an inferior degree
of diversity comparing to any of the combinations above.

Concluding, the best combination of cipher suites is arguably:

• TLS_ECDHE_ECDSA_WITH_AES_ 256_GCM_SHA384 and

• TLS_RSA_WITH_AES_128_CBC_SHA256

For key exchange, ěęTLS will use Ephemeral ECDH (ECDHE) and RSA; for authentication,
it will use Elliptic Curve DSA (ECDSA) and RSA; for encryption, it will use AES-256 with
Galois/Counter mode (GCM) and AES-128 with cipher block chaining (CBC) mode; ϐinally,
for MAC, it will use SHA-2 variants (SHA-384 and SHA-256).

Using this combination of cipher suites, maximum diversity is achieved using a diversity
factor k = 2. The least diversiϐied part of the communication is the MAC, due to the fact
that TLS 1.2 does not support SHA-3.

3.3 ImplementaƟon

The implementation of ěęTLS was obtained by modifying OpenSSL version 1.0.2g.1. Im-
plementing a ěęTLS from scratch would be a bad option as it might lead to the creation
of vulnerabilities; existing software such as OpenSSL has the advantage of being exten-
sively debugged, although serious vulnerabilities like Heartbleed still appear from time
to time. Furthermore, creating a new secure communication protocol, and consequently
a new API, would create adoption barriers to programmers otherwise willing to use our
protocol. Therefore, we chose to implement ěęTLS based on OpenSSL, keeping the same
API as far as possible. Although being based on OpenSSL, ěęTLS is not compatible with it
due to its diversity and redundancy features. It is noteworthy that OpenSSL is a very large
code base (438,841 lines of code in version 1.0.2g) somodifying it to support diversitywas
a considerable engineering challenge.

ěęTLS adds a few functions to the OpenSSL API. These functions are represented in Figure
1https://www.openssl.org
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const char* SSL_get_n_cipher(short n, const SSL* s);
const SSL_CIPHER* SSL_get_current_n_cipher(short n, const SSL* s);
int SSL_CTX_use_n_certificate(short n, SSL_CTX* ctx, X509* x);
int SSL_CTX_use_n_certificate_file(short n, SSL_CTX* ctx, const char* file,

int type);
int SSL_CTX_use_n_PrivateKey(short n, SSL_CTX* ctx, EVP_PKEY* pkey);
int SSL_CTX_use_n_PrivateKey_file(short n, SSL_CTX* ctx, const char* file,

int type);
int SSL_CTX_check_n_private_key(short n, const SSL_CTX* ctx);
X509* SSL_get_n_peer_certificate(short n, const SSL* s);

Figure 3.2: òãTLS API: addiƟonal funcƟons in relaƟon to the OpenSSL API.

3.2. Themeaning of the functions is pretty straightforward. They allowdeϐining additional
certiϐicates, keys, cipher functions, etc. The parameter n should be set to the number of the
certiϐicate, key, etc. being added. For example, with k = 2 the parameter n takes only value
2 as we have to add just the second of each. For k = 3 every function has to be called twice,
with parameter n set to 2 and 3.

In order to establish a ěęTLS communication channel, additional functions are required
to fulϐill the requirements of ěęTLS, such as loading two certiϐicates and corresponding
private keys. These functions have a similar name of the ones belonging to the OpenSSL
API, to reduce the learning curve. The most relevant functions regarding the setup of the
channel are the functions that allow to load the second certiϐicate andprivate key and allow
to check if the second private key corresponds to the second certiϐicate.

Regarding theHandshakeProtocol, weopted for sendingk SĊėěĊėKĊĞEĝĈčĆēČĊandCđĎĊē-
ęKĊĞEĝĈčĆēČĊmessages instead of sending one single SĊėěĊėKĊĞEĝĈčĆēČĊ and one sin-
gle CđĎĊēęKĊĞEĝĈčĆēČĊ, each one with several parameters. This is due to the fact that it
makes the code easier to understand and to maintain. If k needs to be increased, it is just
needed to send an additional message instead of changing the code related to sending and
retrieving SĊėěĊėKĊĞEĝĈčĆēČĊ and CđĎĊēęKĊĞEĝĈčĆēČĊ messages.

The encryption and signingordering is also important in ěęTLS. Figure3.3 shows the initial
steps of the creation of a data message. The ϐigure considers k = 2, but shows only the
steps regarding the ϐirst encryption and the ϐirst signature.

Figure 3.4 shows the ϐinal steps of the preparation of a ěęTLSmessage. We opted formain-
taining the creation of theMAC prior to the encryption. Using this approach, bothmessage
and MACs are encrypted with both ciphers. In this case there is no chance that both MACs
are identical, if the hash function used is secure (SHA-2 is considered secure).

The whole sequence is the following:

• Apply the ϐirst MAC to the plaintext message;

• Encrypt the original message and its MAC with the ϐirst encryption function;

• Apply the second MAC to the ϐirst ciphertext;

• Encrypt the ϐirst ciphertext and its MAC with the second encryption function.
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Figure 3.3: First four steps regarding the ordering of the encrypƟon and MAC of òãTLS using
a diversity factor k = 2.

In relation to the Record Protocol, signing and encrypting k times has a cost in terms of
message size. Figures 3.3 and 3.4 show also the expected increase of the message size due
to the use of a second MAC and a second encryption function (for k = 2). For TLS 1.2
(OpenSSL), the expected size of a message is first_len = eivlen +msg_length + padding +
mac_size, where eivlen is the size of the initialization vector (IV), msg_length the original
message size, padding the size of the padding in case a block cipher is used, andmac_size
the size of theMAC (Figure3.3). For ěęTLS, the additional size of themessage is eivlen_sec+
first_len+padding_sec+mac_size_sec, where eivlen_sec is the size of the IV associatedwith
the second cipher andmac_size_sec the size of the second MAC.

In the best case, the number of packets is the same for OpenSSL and ěęTLS. In the worst
case, one additional packet may be sent if the encryption function requires ϐixed block size
and the maximum size of the packet, after the second MAC and the second encryption, is
exceeded by, at least, one byte. In this case, an additional full packet is needed due to the
constraint of having ϐixed block size.
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Figure 3.4: Remaining three steps regarding the ordering of the encrypƟon and MAC of
òãTLS using a diversity factor k = 2. Here is represented the second signing and the second

encrypƟon, employing diversity and redundancy in the communicaƟon.

3.4 Experimental EvaluaƟon

WeevaluateděęTLS in termsof twoaspects: performance and cost. We consideredOpenSSL
1.0.2g as the baseline, due to the fact that ěęTLS is based on that software and version.

Diversity has performance costs and creates overhead in the communication. Every mes-
sage sent needs to be ciphered and signed k − 1 times more than using a TLS implemen-
tation and every message received needs to be deciphered and veriϐied also k − 1 times
more. In the worst case, users should experience a connection k times slower than using
OpenSSL. We considered k = 2 in all experiments, as this is the value we expect to be used
in practice (we expect vulnerabilities to appear rarely, so the ability to tolerate one vulner-
ability per mechanism sufϐicient). With this experimental evaluation, we want to be able
to state if ěęTLS is a viable mechanism for daily usage, i.e., if the penalty for replacing TLS
channels by ěęTLS channels is not prohibitive.

In order to perform these tests, we used two virtual machines in the same Intel Core i7
computer with 8 GB RAM. The virtual machines run Debian 8 and openSUSE 12 playing
the roles of server and client, respectively. All the tests were done in the same controlled
environment and same geographic location.

3.4.1 Performance

In order to evaluate the performance of ěęTLS, we executed several tests. The main goal
was to understand if the overhead of ěęTLS is lower, equal, or bigger than k times in rela-
tion toOpenSSL.WeconϐigureděęTLS touse the following cipher suites: TLS_RSA_WITH_AES_256_GCM
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Average (ms) Standard deviation Conϐidence interval (95%)
ěęTLS 3.909 0.963 ±0.180
OpenSSL 2.345 0.933 ±0.174

Table 3.1: Handshake Ɵme comparison

Figure 3.5: Comparison between the Ɵme it takes to send and receive a message using
òãTLS and OpenSSL.

_SHA384 and TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384. The suite used with OpenSSL was the
second.

3.4.1.1 Handshake

To evaluate the performance of the handshake, we executed 100 times the Handshake Pro-
tocol of bothěęTLSandOpenSSL. In average, the ěęTLShandshake took3.909milliseconds
to conclude and the OpenSSL handshake 2.345 milliseconds. Therefore, the ěęTLS hand-
shake is only 1.67 slower than theOpenSSL handshake, which is better than theworst case.
Table 3.1 provides more details.

3.4.2 Data CommunicaƟon

After evaluating the Handshake, we performed data communication tests to assess the
overhead generated by the diversity and redundancy of mechanisms. As the Handshake,
the communication is expected to be at most k = 2 times slower than a TLS communica-
tion. For this test, we considered a sample of 100 messages sent and received with ěęTLS
and 100 messages sent and received with OpenSSL.

Figure 3.5 shows the comparison between the time it takes to send and receive a message
with ěęTLS and OpenSSL/TLS. Tables 3.2 and 3.3 showmore details.
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ěęTLS Send OpenSSL Send
Average St. dev. Conf. I. (95%) Average St. dev. Conf. I. (95%)

1 MB 12.80 3.324 ±0.652 11.28 3.985 ±0.781
10 MB 105.89 17.573 ±3.444 76.61 10.413 ±2.041
50 MB 534.55 149.697 ±29.340 435.01 212.065 ±41.564
100 MB 1004.30 194.701 ±38.161 757.02 206.709 ±40.514
500 MB 4579.40 727.519 ±142.591 2834.18 217.378 ±42.605
1 GB 8289.78 757.167 ±148.402 5851.08 480.423 ±94.161

Table 3.2: Time to send a message with òãTLS and OpenSSL.

ěęTLS Receive OpenSSL Receive
Average St. dev. Conf. I. (95%) Average St. dev. Conf. I.(95%)

1 MB 14.70 3.324 ±0.652 13.48 3.985 ±0.781
10 MB 113.41 17.573 ±3.444 80.42 10.413 ±2.041
50 MB 549.61 149.697 ±29.340 443.10 212.065 ±41.564
100 MB 1004.54 194.701 ±38.161 757.13 206.709 ±40.514
500 MB 4580.13 727.519 ±142.591 2834.37 217.378 ±42.605
1 GB 8227 757.167 ±148.402 5850.96 480.423 ±94.161

Table 3.3: Time to receive a message with òãTLS and OpenSSL.

Themeasurements concern the time each channel needs to perform the local operations in
order to send the message (including encryption, signing, second encryption and second
signing). These values do not include the time taken by the message to reach its destina-
tion through the network. The timer is started before the call to SSL_write and stopped
after the function returns. As for the results regarding the reception of messages, themea-
sured time is the time taken to perform the operations necessary to retrieve the message
(including second decrypting and second verifying), i.e. the time of execution of SSL_read.
This methodology is only possible due to the fact that SSL_write is a synchronous call. It
only returns after writing the message to the buffer. And also due to the fact that SSL_read
is also synchronous as it only returns when the message is read.

In average, a message sent through a ěęTLS channel takes 22.88% longer than a message
sentwith OpenSSL. For example, a 50MBmessage takes an average of 534.55ms to be sent
with ěęTLS. With OpenSSL, the same message takes 435.01 ms to be sent. The overhead
generated by using diverse encryption and MAC mechanisms exists, as expected, but it is
much smaller than the expected worst case.

In Section 3.3, we did an analysis of the expected message size increase. In order to vali-
date the premise that themessage increase is the same considering the samemessage size,
we measured the increase in the message size comparing once again ěęTLS and OpenSSL
channels. A 100 KB plaintext message converts into a ciphertext of 102,771 bytes with ěę-
TLS. With OpenSSL, the same message corresponds to a ciphertext of 102,603 bytes. Con-
cluding, sending a 100 KB message through ěęTLS costs an additional 168 bytes. There-
fore, as stated before, the number of extra bytes sent is not directly proportional to the
message size.

We also evaluated the message size of the ciphertext of a 1 MB plaintext message. A 1
MB plaintext message corresponds to a ciphertext of 1,029,054 bytes using ěęTLS, while
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Message
size

ěęTLS OpenSSL Overhead (diff.)
Encrypted
message size

Average
#packs

Encrypted
message size

Average
#packs Packets Message

size
100,000 102,771 6.3 102,603 5.3 1 168

1,000,000 1,029,054 38.3 1,025,856 37.6 0.7 3,198
100,000,000 105,362,077.10 2,830.2 104,956,194.50 2,553.5 276.7 405,883

Table 3.4: òãTLS and OpenSSL message sizes (in bytes).

Table 3.5: Comparison of Ɵme overhead of adding a second layer of protecƟon (going from
k = 1 to k = 2) in òãTLS and in Mç½ã®TLS

Message size ěęTLS overhead MĚđęĎTLS overhead
1 MB 9.05% 60.00%

100 MB 32.68% 141.65%
1 GB 40.61% 175.93%

using OpenSSL the samemessage has 1,025,856 bytes. Concluding, sending 1 MB through
a ěęTLS channel costs an additional 3,198 bytes than using a OpenSSL channel. Table 3.4
shows all the results obtained and the comparison between the message sizes.

3.5 Comparison with tunneling approach

To further validate theěęTLSapproach,wedevelopedanalternative implementationof the
same idea, but using tunneling2. The term tunneling describes a process of encapsulating
entire data packets as the payloadwithin other packets, which are handled properly by the
network on both endpoints [Sim95].

This alternative approach, that we called MĚđęĎTLS, allows adding the multiple layers of
protection, but without having to modify the internals of the TLS implementation, which
has potential for better code maintenance over time. MĚđęĎTLS uses the socat tool, a vari-
ant of netcat, that establishes two bidirectional byte streams and transfers data between
them. Socat is integrated with OpenSSL to provide security, and with tun/tap virtual net-
work adapters [CK15] to provide tunneling.

To evaluate MĚđęĎTLS, we ran performance tests on a setup with 2 virtual machines, client
and server, both running Debian 8, in the same Intel Core i7 host computer with 8 GB RAM.
We measured the time of receiving messages of different sizes: 1 MB, 100 MB, and 1 GB.

Table 3.5 compares the overhead of going fromone layer of protection (k = 1) to two layers
of protection (k = 2) in vtTLS, and the same in MĚđęĎTLS. We can see that the overheads
in MĚđęĎTLS are an order of magnitude higher, in all reported message sizes. The vtTLS
overhead is below the 100% threshold in all cases. We can conclude that, even though
MĚđęĎTLS is more ϐlexible, it comes at a signiϐicant higher cost, making ěęTLS the best
option at providing both multiple protection and good performance.
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3.6 Summary

ěęTLS is a diverse and redundant vulnerability-tolerant secure communication protocol
designed for communication between clouds. It aims at increasing security using diverse
cipher suites to tolerate vulnerabilities in the encryptionmechanisms used in the commu-
nication channel.

To evaluate the solution, it was comparedwith anOpenSSL 1.0.2g communication channel.
While expected to be k = 2 times slower than an OpenSSL channel, the evaluation showed
that using diversity and redundancy of cryptographic mechanisms in ěęTLS does not gen-
erate such a high overhead. ěęTLS takes, in average, 22.88% longer to send amessage than
TLS/OpenSSL, but considering the increase in security, this overhead is acceptable.

We also compared ěęTLS with an alternative implementation, MĚđęĎTLS, using tunneling
to achieve the same protection, and found the ěęTLS has an order of magnitude less over-
head.

Overall, considering the additional costs of having an extra certiϐicate, the time increase,
and potential management costs, ěęTLS provides a good security-performance trade-off
for a set of critical applications.
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4 Protected Service Provisioning
This component of the SafeCloud secure communication middleware addresses the ques-
tions of how deployed services can be protected, and how can clients accessing these ser-
vices be assured of their identity. In this chapter, we address the deployment of port-
knocking protections, a top state-of-the-art service hardening measures; and we address
enhanced protection of service management and certiϐicates.

4.1 Port Knocking

Port-knocking is the concept of hiding remote services behind a ϐirewall which drops all
incoming connections to the services by default, but allows them only after the client has
authenticated to the ϐirewall. This can be seen as an additional layer of security which
providesprotection fromport scans andexploits on the services fromunauthorized clients.

There are many implementations of port-knocking as of today and most of them employ
authentication based on shared secrets. In these implementations the ϐirewall is conϐig-
ured to authenticate a client based on its corresponding secret. While this approach is
simple and efϐicient for a small number of clients, it quickly becomes unmanageable for a
service provider with a large and dynamically changing client base.

Another problem with authentication based on secrets is that it is common for service
providers to offer multiple servers to a common pool of clients for reasons of providing
redundancy and load-balancing. In such a setup, the servers or the ϐirewalls protecting the
services have to synchronise the port-knocking secrets shared with each client. Further-
more, when a service provider uses a cloud provider for service delivery, the secrets have
to be conϐigured in the cloud provider’s infrastructure whichmay give away the size of the
client base of the service provider to the cloud provider.

To our knowledge there exists no implementation of port-knocking which demonstrates
scalability on-par with what is required for a service provider using cloud computing in-
frastructure. To overcome the scalability barrier, we propose sKnock (named after ‘scal-
able Knock’), our approach towards port-knocking using X.509 [ITU05] certiϐicates to ad-
dress scalability. The motivation behind using certiϐicates is that a certiϐicate’s validity
can be checked by having the certiϐicate of the signer; while adhering to X.509 allows us
to encode authentication information as X.509 extensions and be able to use renowned li-
braries such as OpenSSL to parse the certiϐicates. This, albeit a lookup in the revocation
database which is usually small, aids in improving the scalability of authentication. More-
over, this approach is not subjected to the problem of synchronising the secrets among
different servers and mitigates the privacy problem of knowing the size of client base as
the ϐirewall now only requires the certiϐicate of the certiϐication authority (CA) to authen-
ticate the clients.

The client component provides a C library which allows applications to integrate port-
knocking functionality. The server component integrates with the ϐirewall and dynami-
cally conϐigures it to allow authenticated clients to communicate with the services behind
the ϐirewall.
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The attacker model is introduced next and we use it to evaluate some of the existing port-
knocking approaches and their authentication process in detail to highlight the differences
with our approach in 4.1.2. 4.1.3 introduces sKnock describing the authentication protocol
and the design decisions we took to overcome common pitfalls. 4.1.4 describes our eval-
uations of an implementation of sKnock in Python. Finally, we describe the pros and cons
of sKnock compared to others port-knocking approaches in 4.3.

4.1.1 AƩacker Model

For an attacker interested in attacking the services protected by a port-knocked ϐirewall,
he has to either pose as a valid client of the service or defeat the port-knocking protection.
For public services, an attacker can easily become a valid client. Therefore, we consider an
attacker model where the attacker is interested in attacking the port-knocked ϐirewall.

In thismodel, we consider the following capabilities tomodel different types of attackers:

A1 Record any number of IP packets between a given source and destination and replay
them from own IP address.

A2 Modify, and suppress any number of IP packets from a given source and destination.

A3 Send IP packets from any IP address and receive packets destined to any IP address.

Capability A1 can be acquired by an attacker by snooping anywhere on the network route
between source and destination. Additionally, if the attacker can position himself as a hop
anywhere in the route, he gains capability A2. A3 can be acquired by positioning himself
in the link connecting the ϐirewall to the Internet.

In addition to this, we also consider a valid client to be an attacker if the client’s validity is
revoked due to some reason and the client then tries to exploit the port-knocked ϐirewall.
Therefore, we assign the following properties:

B1 Attacker knows that the ϐirewall uses port-knocking.

B2 Attacker may have previously port-knocked successfully as a valid client.

Notice that capabilities B1 and B2 are easier to acquire than A1, A2, and A3. B1 is even
easier as it is possible to learn the existence of port-knocked ϐirewall if that information is
public (if it is advertised by the service provider).

In the rest of the text, we refer to attackers with a combination of these capabilities using
the set notation: an attacker with capabilities A1 and B1 is termed as {A1, B1} attacker. If
an attacker has a single capability, wewill ignore the braces, i.e. A1, B1 attackersmean two
type of attackers each with a capability, but not both capabilities.

Finally we assume that attackers cannot decrypt encrypted content and cannot forge sig-
natures for arbitrary parties without the knowledge of their keys. This can be ensured in
practise by proper usage of cryptography.
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4.1.2 Related Work

Port-knocking is historically done by sending packets to different ports in a predeϐined
static sequence. The sequence is kept secret and is shared with authorised clients. The
ϐirewall monitors the incoming packets and opens the corresponding port for a remote
service for a client if the destination port numbers of a sequence of packets coming from
that client match the corresponding predeϐined sequence. An A1 attacker can observe this
sequence and later replay it to defeat port-knocking.

Variants of port-knocking which use multiple packets to convey authenticating informa-
tion to the ϐirewall are termed underHybrid Port-Knocking. To defend against A1 attackers,
the sequence can bemade dynamic with the usage of cryptography, e.g. by deriving the se-
quence from a time based one-time password (TOTP)[MMPR11]. However it is vulnerable
to {A1, A2} attackers because the attacker can suppress a suspected sequence of packets
from reaching the ϐirewall and replay it from his host.

To defend against {A1, A2} attackers the IP address of the client needs to be encoded into
the authenticating information in a way that the ϐirewall can retrieve it to open the port
in the ϐirewall for that client. If the client’s IP address is in cleartext, then the authen-
ticating information should contain a message authentication code (MAC), e.g. through
HMAC [KBC97], so that the attacker cannot rewrite it with his IP address.

However, including the client IP address in the authentication information causes prob-
lems for clients behindNAT. Such clients are required to know theirNAT’s public IP address
to be able to successfully knock the ϐirewall. This may, however, lead to NAT-Knocking at-
tacks [MMETC05] as the NAT’s IP address is shared by other clients in the network and
one of them could be an attacker. Aycock et. al.[AJ+05] proposed an approach based on
challenge-response to solve this problem. This approach requires a three-way handshake
where the client initiates by sending a request to the ϐirewall. The request contains an
identiϐier and the client’s IP address. The ϐirewall then sends a challenge containing the IP
address it observed as the request’s source IP, the IP address present in the request, and
a random nounce, together with a MAC over these ϐields. The client then responds to this
challenge by presenting a MAC over these ϐields with its preshared secret with the ϐire-
wall. Since the handshakemessages are authenticatedwithMAC, this approach is immune
to {A1, A2} attackers.

A practical problem with hybrid port-knocking variants is that they fail when packets are
deliveredout-of-order to the ϐirewall. To address this, the authenticating information could
be sent as a single packet. This variant of port-knocking is termed as Single Packet Au-
thorisation and is ϐirst documented to be used in Doorman [Krz03]. Doorman authenti-
cates clients based on a HMAC derived from the shared secret, port number to open for
the client, username, and a random number. The random number is used to provide pro-
tection against A1 attackers as the ϐirewall rejects a request with a number already seen.
Since it does not include the client IP address, it is susceptible to {A1, A2} attackers.

Furthermore, there are variantswhich perform stealthy port-knocking by encoding the au-
thenticating information into seemingly random looking ϐields of known protocols, e.g. the
initial sequence number ϐield of TCP, and the source port number. The advantage of these
variants is that they make it difϐicult for an attacker to suspect port-knocking mechanisms
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Figure 4.1: Packet format of the sKnock authenƟcaƟon packet starƟng with a IPv4 header.
The fields for Port and Protocol provide the port number to be opened in the firewall for
the given protocol (TCP or UDP). The Ephemeral Public Key contains the public key used by

the client and is required for the server to determine the AES key using EllipƟc Curve
Diffie-Hellman (ECDH).

just by observing the trafϐic. Among these are SilentKnock from Vasserman et. al. [VHT09]
and Knock from Kirsh et. al. [KG14].

SilentKnock encodes authentication token into the TCPheader ϐields of the TCP SYNpacket
sent by the client. The ϐirewall intercepts this packet fromthekernel andextracts the token.
The server then veriϐies the token and opens the corresponding port if the token is valid.
The token is generated with keyed MAC with counters to prevent replay attacks from A1
attackers.

Similar to SilentKnock, the stealth property in Knock is achieved encoding the authenti-
cation token into the TCP header ϐields. Additionally, Knock allows for the client and the
server to derive a session keywhich is then used to authenticate application data, thus pre-
venting an {A1, A2, A3} attacker to take over the connection after successful port-knocking.

While the concept of stealthy port-knocking can be applied to any operating system, the
current state of implementations for SilentKnock and Knock are limited to the Linux ker-
nel. This poses a deployment barrier for service providers as they have to require their
consumers to run complying software setup on their hosts.

4.1.3 sKnock

In all of these approaches presented earlier, the client and the ϐirewall depend on a shared
secret to authenticate andgaindefence againstA1, A2 attackers. In the case of B2 attackers,
these approaches require the shared secret to be invalidated at the ϐirewall. This brings in
the inconvenience and scalability problems discussed in 4.1.
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sKnock addresses the scalability problembyusing certiϐicates: each client gets a certiϐicate
which it uses to encrypt and sign the authentication information; the ϐirewall requires the
CA certiϐicate to authenticate the client. B2 attackers are defended by limiting the certiϐi-
cate validity to an expiry date and having a certiϐicate revocation list to invalidate certiϐi-
cates before their expiration.

Next we describe sKnock’s authentication protocol and give a brief description of its im-
plementation in Python.

Protocol

The one-way authentication protocol of sKnock requires the client to send an authentica-
tion packet before opening a connection to the remote services behind the ϐirewall. The au-
thentication packet is a UDP packet containing the client’s certiϐicate and the port number
of the remote service it wants to communicate with on the server. Additionally, it contains
the client’s IP and timestamp to provide protection against A1, A2 attackers. The format
of the packet is shown in Figure 4.1. This information in the packet is encrypted with an
ephemeral key which is derived from the server’s public key using Elliptic Curve Difϐie-
Hellman (ECDH). The client’s Diffe-Hellman share required for generating the ephemeral
key at the server is also included in the packet.

Since we want to keep the overhead of port-knocking low and also reduce the number of
packets involved in the authentication to performwell under packet loss, it is important to
ϐit this payload in oneUDPpacket. The limiting factors here are the networkMTU sizes and
the size of the client certiϐicate. A common networkMTU of 1500 bytes has eliminated the
use of RSA and DSA public keys of lengths 2048 bits and above in the certiϐicates. Fortu-
nately, we were able to use Elliptic Curve Cryptography (ECC) public keys of lengths up to
256 bits offering security equivalent to that of 128 bit AES or 3072 bit RSA keys [BBB+07]
resulting in a packet size of about 800 bytes. While ECC certiϐicates are not as common as
RSA or DSA certiϐicates, this was the only option which gave us the possibility to keep the
payload size low while using X.509 certiϐicates.

Reliability against packet loss is achieved by retrying the authentication protocol. For con-
nections to TCP services, the server could be conϐigured to reject connections to closed
ports by sending a TCP RST such that a failed authentication protocol will immediately re-
sult in TCP connection failure at the client which can then immediately retry. Whereas for
UDP, the application requires its own protocol for determining the failure or, alternatively
a timeout. The optimal value for the timeout would be the sum of round-trip time (RTT)
to the ϐirewall, delay for processing the authentication packet and, delay for opening the
corresponding port in the ϐirewall.

sKnock Certificates

sKnock uses X.509v3 certiϐicateswith the requirement that the certiϐicates’ public and pri-
vate keys should be 256 bits long and generated using Elliptic Curve Cryptography (ECC).
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In addition to authenticating the client, the client certiϐicates also carry authorisation in-
formation specifying the protocol, port pairs the client is authorised to connect to. This
information is encoded in the certiϐicates using X.509v3 extensions under object identiϐier
for Technical University of Munich, 1.3.6.1.4.1.19518 as Other Name in the Subject Alterna-
tive Name (SAN) extension.

sKnock Server

Our implementation of sKnock is developed in Python and works with the Linux iptables2
ϐirewall. The ϐirewall is dynamically conϐigured to allow trafϐic from port-knocked con-
nections after the clients are authenticated, while the rest of the trafϐic is dropped by the
ϐirewall, including the sKnock authentication packets. To read the authentication packets
we used a raw socket, which in Linux is not subjected to the ϐirewall rules and hence can
receive all the trafϐic reaching the host. As the raw socket receives all the trafϐic reaching
the host, an efϐicient ϐiltering process is required to ϐilter out valid authentication packets
from the rest. This is done by discarding packets which do not meet the following criteria
in the order listed:

1. Packet’s IPv4 or IPv6 header is valid

2. Packet is UDP and its header is valid

3. Decryption of the packet succeeded

4. Packet has valid sKnock header

• Byte 32 is 0

• Timestamp within allowed interval

• Client IP matches packets source IP

5. Timestamp is within the allowed period

6. Client certiϐicate is valid and not in the revocation list

7. Client certiϐicate authorised for opening requested port

8. Client signature is valid

If the authentication packet passes all of the above checks, the requested port is opened in
the ϐirewall for the client sending it.

sKnock Client

sKnock client is an implementation of the sKnock protocol for client side applications. The
client implementation is available as a library in Python and C. Applications can use the
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libraries to performport-knocking at a sKnock ϐirewall. The libraries contain the following
functions:

• knock_new (timeout, retires, verify, server certiϔicate, client certiϔicate, client certiϔicate
password): creates a new handle with the given certiϐicates. The ϐields retries and
timeout specify how many times sKnock should retry port-knocking and how long
it should wait before determining a failure; applies to TCP connections. The verify
ϐlag speciϐies whether the library should test whether the port has been successfully
opened or not; applies to TCP connections. server certiϔicate and client certiϔicate
specify the paths to the server and the client certiϐicates. client_cert_passwd is the
ϐield containing the password for the client certiϐicate. This function returns a handle
which is required by the next function.

• knock_knock (handle, host, port, protocol): perform port-knocking by sending the au-
thentication packet to the host. handle is the value returned from knock_new(). Port
and protocol specify which port should be opened in the ϐirewall after successful
port-knocking.

Applications can port-knock a sKnock ϐirewall by using these two functions before they
open a connection to a remote service behind the ϐirewall.

In addition to this, the sKnock client implementation contains a command-line helper pro-
gram to port-knock the server.

4.1.4 EvaluaƟons

Since sKnock is intendedas the scalableport-knocking solution,weevaluated its scalability
and performance using a variety of tests. As part of this we evaluated the performance
of the iptables2 ϐirewall software, our ϐiltering processes for ϐiltering valid authentication
packets, and the latency overhead incurred during connection establishment due to port-
knocking.

All evaluations were performed on two workstations running Ubuntu Linux 12.04.5 LTS
with 16 GB ofmemory and a quad-core Intel(R) Core(TM) i5-4590T CPU running at 2 GHz.
The underlying cryptographic routines were provided by OpenSSL-1.0.1 and the ϐirewall
was iptables2-1.4.12. The machines are connected with a 1 Gbps Ethernet cable when
required to form a network.

Firewall

We evaluated the scalability limitations of using iptables2 ϐirewall by measuring the time
taken to open 131072 ports (65535 TCP + 65535 UDP) for an IPv4 client. The test adds a
rule in the ϐirewall to open a port for the given client and measures the time taken for the
ϐirewall to add this rule. This is repeated sequentially for each port until all of them are
open for the given client. The evaluation data is shown in Figure 4.2. The results show that
the delay in adding new rules is linearly proportional to the number of rules present in the
ϐirewall.
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Figure 4.2: Delay in adding new rules to the firewall. Rules are added sequenƟally to open
131072 (65535 TCP + 65535 UDP) for an IPv4 client.

Packet Processing

Since sKnock uses a raw socket, it has to ϐilter valid sKnock authentication packets from
all the trafϐic reaching the host. For this we deϐined a ϐiltering process in 4.1.3. In this
evaluation we measured the performance limitation of this ϐiltering process with a static
test by pre-generating some valid sKnock authentication packets together with some TCP
and UDP packets complete with an Ethernet header and random payload. This test does
not account for the delay caused by raw sockets as the pre-generated packets are read from
a static list instead of raw sockets.

In our test environment, we decided to run two different measurements: one synthetic
worst-case scenario, which simulates that all incoming packets are valid sKnock authen-
tication packets and a realistic scenario with 1% of port-knocking trafϐic while the rest of
the packets are irrelevant to sKnock. Additionally the test data for the second scenario
contains 5% of packets bigger than the conϐigured minimum authentication packet size.
Among these packets the TCP to UDP ratio is set at 5:1 in order to resemble the Internets’
trafϐic patterns as close as possible [ZDJC09].

The test-run performed to evaluate the worst-case processing power of our implementa-
tion yielded a result of roughly 5300 pps (packets per second), which translates to a pro-
cessing time of less than 0.19 ms per packet for valid sKnock authentication requests.

Analyzing the performance of our second test case, which is an obviously closer approxi-
mation for real-world operation, yields evenhigher processing capabilitieswith an average
throughput of over 6100 pps our implementation can achieve computation times of about
0.16 ms per packet.
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Figure 4.3: Latency overhead caused by sKnock (UDP).

Connection Overhead

In this evaluation we measured the latency incurred while opening connections when us-
ing sKnock’s port-knocking. We used a simple protocol based on timestamps to measure
this latency: the client sends its timestamp to the server as the ϐirst packet after port-
knocking; the server then responds with its timestamp to the client. The server observes
one-way latency while the client observes round-trip latency. The clocks of the client and
the server are kept in sync using Precision Time Protocol (PTP)[Wei05].

Since sKnock server requires some processing time to validate a port-knocking request
and to add a new rule in the ϐirewall to open the requested port, attempts to connect to
a port may fail if the connection packets immediately follow the port-knocking request.
Moreover, out-of-order delivery further increases the risk of such failures. To determine
the optimal wait period between the authentication packet and the subsequent connec-
tion packet, we developed a calibration script. The script tries to open connections with
a wait period derived from a start value and retries successful connections with shorter
wait periods until a tiny (conϐigurable) fraction of connection open requests fail.

In this evaluation the calibration script yielded an optimal value of 11 ms for the wait pe-
riod allowing for a failure rate of 0.2%with an accuracy of 99%. To remove noise from the
underlying network, we repeated the simple timestamp-based protocol a number of times.

The observed latency for UDP run of the simple protocol without port-knocking protec-
tion can be seen in Figure 4.3. The evaluation is also repeated for TCP and the results are
summarized in Table 4.1.
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Table 4.1: sKnock latency due to connecƟon overhead.

TCP UDP
Without port-knocking 1.97 ms 0.74 ms
With port-knocking 18.25 ms 17.37 ms
Port-knocking overhead 16.27 ms 16.63 ms

4.1.5 LimitaƟons

A major limitation of sKnock lies in the amount of overhead caused by the authentication
packet. This is far greater thanwhat is required by other implementations. However, if the
connection is long-lived, this overhead will be tiny and since only one packet is used, the
delay for port-knocking is kept to a minimum. Other limitations of sKnock which we are
aware are presented in the following sections.

Incompatibility with NAT

Since the current protocol requires the client to include its IP address into the authentica-
tion information, clients using NAT gateways cannot successfully port-knock the ϐirewall.
Deployments seeking compatibilitywith NAT could ignore the client IP check, but theywill
then be susceptible to A2 attackers.

Vulnerability to Attacks

Any port-knocking scheme employing encryption is further subjected to theDoS-Knocking
attack [MMETC05]where anattacker carries out aDoSattackby sendingmany legitimately-
looking invalid port-knocking requests to the ϐirewall and keeps the ϐirewall busywhile le-
gitimate trafϐic is left in starvation. We agree that this will be also be the case with sKnock,
but due to the usage of raw sockets, only new valid legitimate port-knocking requests are
denied service as they are to be processed by sKnock which is kept busy with the DoS
requests. Since sKnock’s current implementation in Python cannot not occupy all of exist-
ing processor cores due to the presence of a global interpreter lock1, any already opened
connections are not starved in this case because the ϐirewall is not processing the port-
knocking requests and it has already been conϐigured to allow trafϐic from previously port-
knocked clients.

sKnock is susceptible to replay attacks by {A1, A2, A3, B1} attackers. Such an attacker could
wait for the port-knocking to succeed and then take over the connection by masquerading
as the client. These attackers can be defended by authenticating the connection datawhich
follows port-knocking as done by Knock[KG14]. This defence is not yet implemented in
sKnock.

1In the implementation of CPython, the global interpreter lock is a mutex to ensure that the interpreter
executes bytecode from a single thread at any time. As a consequence the interpreter cannot allow multiple
threads to run simultaneously.
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Performance

The current Python implementation of sKnock has limitations in terms of operational ef-
ϐiciency due to Python interpreter being single threaded. While this implicitly gives par-
tial defence towards DoS-Knocking attacks when run on a systemwith a processor having
more than a single core, the throughput could be improved by parallelising request ϐilter-
ing and validation.

Another implementation speciϐic problem with ECC keys is that ECC is relatively new and
OpenSSL supports only a limited number of well known curves. Moreover, due to their
novel state, there exists no hardware implementations as of this writing to signiϐicantly
speed up their processing, thus limiting the performance of our implementation.

Trust in NIST Curves

sKnock relies on OpenSSL for providing PKI support. As of this writing, OpenSSL does not
yet support any of the curve determined as SafeCurves [BL13] providing 256 bit keys. This
led us to use NIST-P 256 curve whose usage may not be secure [BL13] and hence should
be replaced when the required support is available in OpenSSL.

4.2 Enhanced ProtecƟon for Service Management and CerƟficates

Public key cryptography and certiϐicates are widely used to protect machine-to-machine
communication. WP1 solutions operate in this area and use certiϐicates in a variety of dif-
ferent ways. sKnock uses client certiϐicates to authenticate clients and the services that
authenticate themselves towards clients using server certiϐicates. ěęTLS improves tradi-
tional TLS which is based on server certiϐicates for server authentication. Client authen-
tication is possible in TLS, though less common. The cryptographic ping developed for
Darshana also relies on certiϐicates for host authentication. Host-to-host communication
in Machete can also be protected with certiϐicates.

As SafeCloud aims at a defense in depth approach it is not only desirable to improve the
securitymechanismsusing these certiϐicates, but also consider improvements for theman-
agement and use of the certiϐicates and related keys. There is however no general solution
for this problem. As the SafeCloud solutions are meant to be used in different cloud en-
vironments, the management and AAA (Authentication, Authorization, and Accounting)
designs may prefer to attach the SafeCloud software to traditional AAA solutions such as
storing certiϐicates in LDAP directories.

4.2.1 Enhanced ProtecƟon for Service Management

Secure service provisioning includes setting up and managing services. In a cloud envi-
ronment these are usually virtual machines, yet it also applies to other cases and physical
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machines. The management of such machines is done via SSH. Even though the existence
of an SSH service is usually to be expected in such an environment, sKnock provides an ad-
ditional layer of protection for accessing this service. Typical authentication methods for
SSHare passwordor public key based, where client and the service authenticate each other
using public key cryptography. While the server is conϐigured to know the client authen-
tication via some mechanism, the overall approach for server authentication follows the
duckling, also called as TOFU (Trust on First Use) model. So, the ϐirst contact to a server is,
thus, insecure and key changes or access via other machines will often lead to acceptance
of server key changes and thus is vulnerable to potentialman-in-the-middle attacks.

A recent improvement in this area is the proposal to distribute the server key in addition
to internal distribution within the SSH protocol via DNS. The client accessing the server
for management will look up the server in the DNS to know its network address. Here, the
client in addition to the network address, the clientwill also receive the server’s public key.
CombinedwithDNSSec this provides a secure transmission channel. If DNSSec is not avail-
able a VPN connection to trusted DNS servers is recommended. The current GNU/Linux
of SSH and DNS already support this mechanism, and the inclusion of Ubuntu software in
Microsoft Windows may provide support in a Windows environment as well.

The open issue is to provide a scalable mechanism to export the keys used in themachines
in our SafeCloud clouds into the DNS system. For this, we implemented amanager compo-
nent that manages these keys by interacting with the virtual machines. This manager will
then push changes via nsupdate protocol into the respective DNS zones corresponding to
the virtual machines.

There are two methods of key collection: the light-weight solution is that the manager is
conϐigured to know the servers and it will collect the keys via SSH directly. For this to work
the network between the manager and the servers needs to be secure and trusted. The
alternative option is to have a software and keying material installed on the servers and
they will send update messages to the manager when new keys are created.

4.2.2 CerƟficate Monitoring

The private communications middleware uses X.509 certiϐicates as identities for commu-
nication endpoints. The threat that such communication endpoints facewhenusing certiϐi-
cates is aman-in-the-middle attack. When an endpoint accepts the rogue certiϐicate of the
man-in-the-middle attacker, the other endpoint will not notice this. This is because there is
no back channel in the infrastructure. The idea of this back channel is to provide informa-
tion to the endpoints if their correct certiϐicatewas seen by their peers. Thismeans that, in
case of aman-in-the-middle attack, the compromised channel cannot be used directly and
another secure channel is needed.

Figure 4.4 shows the scenario inwhich CertiϐicateMonitoring ismeant to operate. There is
an application that communicates with other nodes, usually servers belonging to the same
application. While communicating the application can also additionally add a small com-
municationwith a server in the cloud calledMDP tomanage the certiϐicatemonitoring. The
MDP (Manager and Decision Point) is responsible for managing the certiϐicate monitoring
of the application and friendly applications in either same cloud or federated clouds. The
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Figure 4.4: ApplicaƟon Scenario for CerƟficate Monitoring

clients are spread all over theworld andmight have a different view on the communication
to the other nodes, in particular the cloud servers. When they perform monitoring tasks
to other nodes, they see a certain certiϐicate. If malicious nodes sit in the middle, they will
see a different certiϐicate. With themonitoring and the reporting to theMDP, themalicious
certiϐicatemay become known to the service via reporting it to theMDP and it can act upon
it.

An important related work in this context is the Certiϐicate Transparency (CT) [LLK13] as
it tries to make transparent the certiϐicates used in web communication. The idea there is
to force the Certiϐication Authorities to publish all the certiϐicate they generate to public
ledgers called CT logs. With social pressure and enforcement of this by the web browsers
(mainly Google Chrome), presence in the CT logs is about to become a requirement for cer-
tiϐicates used in Internet communications. However, this overall approach does not ϐit to
a small or mid-sized cloud application that wants to protect its certiϐicates and be notiϐied
on what their clients see (e.g. the app lacks the market power, CT is complicated, lack of
direct communication). This leads to a slightly different use case than the general case of
a web browser that communicates with unknown arbitrary servers.

The idea of the overall certiϔicate monitoring is to ϐind cases where an endpoint might see
a wrong certiϐicate because an attacker is interfering with its communication. The certiϐi-
cate monitoring would provide support to check whether other endpoints also see rogue
certiϐicates and to ϐind such cases when there is currently no rogue certiϐicate known. The
idea is that there is a software component where the application can trigger it to do a re-
quest to a service in order to retrieve and report the certiϐicate. To avoid Denial-of-Service
attacks and related ampliϔication attacks, such a scan interaction is limited to one at a time
and only triggered by the application. The component will then interact with the manager
and report its ϐindings.

Client software will run a monitoring component. When the client software is interact-
ing with the cloud, it will contact the MDP on startup and optionally with low probability
contact it in the context of other communication of client and cloud. It opens a TLS com-
municationwith the cloud and authenticates theMDPwith a pinned certiϐicate. It registers
with theMDP and ask formonitoring tasks. The softwarewill store the tasks in a database.

The task processing is done in a randomized way. A random time is selected to wait for
some time. Then it is randomly determined if a task is taken or if the another time will be
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waited. If a task is then selected, the client will open a TLS connection to the requested
server. It records the certiϐicate it has seen and stores it in the database. It will send a
report to the MDP that contains the seen certiϐicate. Reports will not be immediately sent
out, but a processing from time to time checks for new reports and sends them to theMDP.
If the sending fails, the report remains labeled unsent in the database and can be sent the
next time. The further task processing starts againwith a long randomwaiting period. The
motivation for random wait times and the non-immediate interactions is to avoid Denial-
of-Service attacks. The main threat is that the MDP has turned malicious and it provides
all clients with requests to a victim. The randomization and reduced number of task re-
quested by the client spreads out the requests over time, so that a Distributed-Denial-of-
Service attack is avoided.

If client monitoring is used, it seems desirable to consider adding similar functionality to
the TLS certiϐicate processing directly. This can be used to add forensics features to TLS
and improve handling of revocation.

4.3 Summary

In this chapter we presented the work on protected service provisioning.

We presented sKnock, the port-knocking protection developed as part of the SafeCloud
project. We also discussed the enhanced protection of service management and certiϐi-
cates, how they can be used to further protect service provisioning.

The development of sKnock was motivated by the lack of an easy management in the ex-
isting port-knocking protections which require the client authentiϐiers to be kept in sync
across all ϐirewalls. sKnock addresses these issues with public-key cryptography using
X.509 certiϐicates. sKnock has been demonstrated to our partners Cloud&Heat success-
fully and it is being tested in their development environments for eventual deployment.

When compared to other port-knocking implementations sKnock has high overhead in
terms of payload and processing requirements. Furthermore, stealthy port-knocking with
sKnock is not possible. As an advantage, sKnock provides easy deployability to service
providers as it can be readily integrated into their PKI infrastructure and as it does not
require changes to the client’s operating system.

The overhead incurred due to using X.509 certiϐicates could be reduced by implementing a
custom format for encoding the certiϐicates into the authentication information. This will
however deny us the usage of well-audited PKI libraries, increase development costs and
induce security issues. Alternatively, usage of other certiϐicate formats such as OpenSSH
certiϐicates could be explored.

During our evaluations we found that the lack of native parallelism in Python limited the
performance. In addition to this, there was also some overhead involved in converting
data structures between the underlying cryptographic libraries and the ϐirewall interface,
which were available as C libraries. Therefore, we believe that on a multi-core system the
performance of sKnock could be improved by implementing it in a system programming
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language such as C or Rust.

Another improvement could be made to add support for UDP data streams. With UDP,
the current version requires the client to keep sending authentication packets periodically
as long as the application is using the UDP stream to avoid the ϐirewall from timing out
the connection and closing the corresponding port. This could be improved by adding
application level UDP connection tracking at the server, where the remote service can close
the ϐirewall when the connection is no longer required.

Cloud&Heat uses sKnock in their use case CloudBlockStorage which will be presented in
the deliverable D5.5 in M36. This use case involves transfer of data between various data
centers owned by Cloud&Heat. sKnock is used to provide protection for the service offer-
ing the data transfer by allowing the visibility of the service to authorized data centers.

To further protect services, we propose to consider two concepts for enhancing the pro-
tection of identities used in the process. We propose that cloud apps should consider cer-
tiϐicate monitoring support in order to ϐight fake certiϐicates and detect attacks against the
service.
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5 Route Monitoring
The Internet is a network composed by many interconnected networks. Administrative
network domains are called Autonomous Systems (AS), and the routing between these au-
tonomous systems is handled by the Border Gateway Protocol (BGPv4) [YR06]. Each AS
contains one or more Internet Protocol (IP) preϔixes, whereas each preϐix is an identiϐier
for a sub-network. If some AS wants to provide connectivity between its IP preϐixes and
other ASes, it will announce those preϐixes to those ASes. Each AS contains one or more
routers conϐigured with BGP, known as BGP speakers. Each speaker contains forwarding
tables that provide the information necessary to forward a packet based on the destination
and the preϐix available in the table. BGP speakers send UPDATE messages to other BGP
speakers in order to announce orwithdraw routes. Upon receiving these updatemessages,
an AS selects the best route to a certain preϐix based on its internal policy.

AlthoughBGPplays anessential role in the Internet, it has considerable limitations in terms
of security. One example of its lack of security happened on August 2013 when a company
called Hacking Team helped the Italian police regain control over computers that were be-
ing monitored by them. Hacking Team worked with an Italian Web host called Aruba an-
nouncing to the global routing system 256 IP addresses that it did not own. This caused all
the trafϐic directed to the 256 IP addresses to be redirected to the Hacking Team. This was
the ϐirst known case of an ISP performing a route hijacking attack intentionally [Goo15].

These security problemsmainly come from the potential to interferewith route announce-
ments in order to corrupt BGP routing. Attackers can exploit this vulnerability to claim
ownership of victim preϐixes and announce them to their upstream providers. Providers
that do not verify the origin of the announcements may end up injecting these in to the
global routing system, which leads network packets to reach incorrect destinations. In
some cases, attackersmay intercept trafϐic and forward it to its destination, compromising
conϔidentialitywithout being noticed.

The vulnerability of the BGP protocol has been well-known for over two decades. Several
solutions have been proposed, but none is widely adopted and deployed. These solutions
mainly fall into ϐiltering and cryptographymethods [Lep16, SCK00,WJP03, KPW06], which
require changes in routers conϐigurations, router software and a public key infrastructure.
Others proposals [LMPW06, KFR06, HMM07, SXW+12] rely on passive monitoring of BGP
data, so they are easier to deploy; however, they suffer from high false positive rate, since
they access public registries that are frequently outdated. Finally, there are systems that
use only data-plane information, by executing active probing, but can easily be bypassed
[ZZH+08], or require vantage points [ZJP+07].

We present Darshana (or DaRsHANa, from Detecting Route HijAckiNg – in Sanskrit, Dar-
shana means to see, vision or glimpse) that works by continuously observing network
information to detect route hijacking attacks. Our main goal is to detect if Internet traf-
ϐic is diverted to be eavesdropped in arbitrary places around the world, when the ad-
versary has no access to the path normally taken by the trafϐic. Therefore, the security
property we are most interested in is communication conϔidentiality. Darshana has the
advantage of being implemented in the data-plane, above the OSI network layer, there-
fore it can be implemented in terminals connected to the Internet, instead of being speciϐic
to Internet Service Providers (ISP) and other large Internet companies. Darshana uses
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a set of monitoring techniques like: traceroute, latency measurements and IP traceback
mechanisms that can effectively monitor the routes that packets are taking. Ultimately,
this allows detecting route hijacking that could be used to eavesdrop on a communica-
tion to break conϐidentiality. We do not intend to substitute the use of best practices to
conϐigure BGP, or several prevention mechanisms that have already been proposed like
[BFMR10, SCK00, WJP03, KPW06, KFR06, Lep16].

The system applies active probing techniques which enables the detection in near real-
time. The order of execution of these techniques is deϐined in terms of overhead and re-
liability: techniques with lower overhead and reliability are executed more often; when
needed, heavier, more reliable techniques are used. The system does not depend solely on
a speciϐic technique to be able to accurately detect attacks.

We performed an experimental evaluation by deploying nodes in PlanetLab and Amazon
AWS.We show that nodes can identify when trafϐic is being hijacked, although this is more
difϐicult if the hijacker is close to the source.

5.1 Background

BGP does not ensure that BGP routers use the AS number they have been allocated, or
that the ASes holds the preϐixes they originate. Therefore, a router can be conϐigured to
advertise a preϐix from an address space belonging to another AS in an action known as
route hijacking or IP preϐix hijacking [BFMR10]. This action can happen in the following
forms:

Hijack the entire preϔix. The hijacker announces the exact preϐix of the victim, meaning
that the same preϐix has two different origins.

Hijack only a sub-preϔix. The offender announces amore speciϐic preϐix froman already an-
nouncedpreϐix (e.g., the victimannounces200.200.0.0/16, the attacker200.200.200.0/24).
Due to the longest preϐixmatching rule, ASes that receive these announcementsmay direct
trafϐic towards the wrong AS.

These forms of attacks can impact routing, leading to:

Blackhole. An AS drops all the packets received. The Pakistan Telecom / YouTube incident
originated a blackhole where all the trafϐic sent to YouTube was redirected to Pakistan
Telecom. Since there was no working path back to YouTube, Pakistan Telecom was forced
to drop all packets [Bro08].

Interception. The attacker announces a fake route to an AS, that forwards trafϐic of the vic-
tim to the original server. The contents of the intercepted trafϐic can be analyzed/changed,
before sending it to the legitimate destination [BFZ07]. This type of attack requires an un-
tampered working path that will route the trafϐic back to the legitimate destination.
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BGP security procedures today consistmainly on ϐiltering suspicious BGP announcements,
e.g., announcements that contain loopback addresses or addresses that are not owned by
the AS that announced it. The problem of this approach is that detecting invalid route
announcements is more challenging when the offending AS is several hops away.

An accurate routing registry would have preϐix ownership, AS-level connectivity and rout-
ing policies enabled in each AS, helping ASes to verify the legitimacy of the advertisements
that they receive. The drawbacks of this model mainly include, the lack of desire of ISPs to
share their proprietary routing policies.

In this work, we focus on interception attacks and propose a solution that does not rely
completely on Internet registries.

5.2 Darshana

5.2.1 Mechanisms used in the system

The used mechanisms are presented next. We indicate the short names we use for each
between parentheses (e.g., Lat for the ϐirst mechanism).

5.2.1.1 Monitoring network latency (Lat)

One of the metrics used in our system is the RTT (round trip time). Each node that is
monitoring another (node) keeps information about the total time that each packet takes
from source to destination and from destination to source. In a hijacking event the end-
to-end latency between a certain source and a destination tends to change signiϐicantly.
Measuring the RTT has some beneϐits like low overhead and the fact that time is a factor
that is hard for an attacker to evade. On the other hand, an increase in RTT is hard to
distinguish from network congestion.

We designed a new version of ping that we denote as cryptographic ping. The objective is
to avoid having an adversary respond to a ping request earlier, before the request reaches
the destination, leading to readings of RTT that are lower than the real value. The new
mechanism works as follows. The machine that is monitoring A marks time and sends
a nonce to a machine that is being monitored B. B will cipher the nonce with its private
key and send it back. A marks the time again and will verify the received signed nonce
by applying the public key of B. If the nonce matches, A calculates the round trip time by
subtracting the ϐirstmarked time fromthe lastmarked time. Without this ping, thehijacker,
since he has hijacked the trafϐic, could answer to the ping probes sooner, ultimately fooling
the system. This way we can guarantee authenticity and uniqueness. This requires the
server to run code and share its public key.
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5.2.1.2 Estimating hop count (Hop)

We propose adding the hop count, the number of intermediate devices between a source
and a destination, as one more criteria to detect a route hijacking attack. According to
[ZJP+07] the hop count to a certain destination generally remains unchanged over time.
When a preϐix is hijacked, the hop count tends to change. In an interception attack, the
trafϐic takes a detour to the AS of the hijacker, then it is forwarded to the legitimate des-
tination. This deviation can change signiϐicantly the hop count if the hijacker is far from
the source, which is likely due to the size of the Internet. In contrast to the RTT, the hop
count is not affected by congestion. However, other less frequent events like link failures
and operational route changes may cause it naturally.

5.2.1.3 Calculating path similarity (Path)

The system tracks the path that packets are following. It periodically stores the path ob-
tainedusing traceroute and translates the IP addresses found toautonomous systemsnum-
bers (ASN). This mapping increases accuracy, because we only need one router from an
autonomous system to correctly obtain a path that packets are taking. The correlation
between the new path measurement and the previous path measurement may provide in-
sights about the occurrence of the attack. In an hijacking event, since the trafϐic has taken
a detour, the paths measured may end up showing signiϐicant differences. The level of this
difference sets apart legitimate route changes and hijacking situations. On the contrary,
legitimate changes are not expected to result in a dramatic route change.

5.2.1.4 Monitoring propagation delay (Prop)

We propose a new technique that isolates the propagation delay from the RTT and uses
this metric to declare a route hijacking. This technique is divided into two phases. The
second phase is activated only if the system stops obtaining results from the Path mecha-
nism, indicating an attacker is interfering with this mechanism.

Phase one. Consider that theRTTcanbedecomposed in the followingdelays: transmission
delay (σtrans), propagationdelay (σprop), queuing delay (σqueue) andprocessing delay (σproc)
as depicted in RTT = σtrans + σprop + σqueue + σproc. The propagation delay is the time that
a bit takes in the communication medium from a node to another node. This delay can be
calculated as the ratio between the link length and the propagation speed on that medium.

The system uses the IP addresses of the origin and the destination to obtain their approx-
imate geographical coordinates. The link length is calculated by computing the shortest
distance between both. For the propagation speed, wemake a conservative approximation
by considering that all nodes are connected with ϐiber-optics, which has higher propaga-
tion speed than alternative media (copper, air). We use the usual approximation that ϐiber
optics operates at 2/3 the speed of light [opt12]. The minimum possible propagation de-
lay is given by formula 5.1, where o represents the origin, d is the destination and c is the
speed of light:
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Figure 5.1: The maximum propagaƟon delay is represented as a circle defined by the source
o with radius r where the desƟnaƟon d is inside of the circle.

σprop =
3

c
× ShortestDistance(o, d) (5.1)

Besides the propagation delay, the system estimates the sum of the others latencies
(σtrans,queue,proc) by σtrans,queue,proc = RTT− σprop.

Phase two. When the system obtains an anomalous RTT and stops receiving results from
Path, it selects the minimum value of σtrans,queue,proc and the maximum value of the RTT is
estimated. By max(σprop) = max(RTT) − min(σtrans,queue,proc), we obtain an upper bound
on the value of the propagation delay. This allows drawing a circle around the source with
a radius r that represents the maximum propagation delay (represented in Figure 5.1). If
the distance between d and o is greater than rwe detect a route hijacking. Thismechanism
allows detecting route hijacking even if the Path measurements cease to exist. However, it
requires a period of initialization, to estimate the different latencies.

5.2.2 System operaƟon

The operation of Darshana is represented in Figure 5.2 that divides the mechanisms pre-
sented in components and presents their relations. Darshana has the following compo-
nents:

Active Probing. In this component three mechanisms come into play: Lat, Hop, and Prop
(ϐirst phase). The system constantly takes values for RTT, hop count and the path that
packets are taking. The system probes the RTT more often because this is the mechanism
with the lowest overhead. Upon detecting an anomaly in the RTT the system passes to
more reliable mechanisms, as this anomaly could be caused by temporary congestion in
the network. The next mechanism is estimating the hop count, for the reasons explained
in 5.2.1.2. This metric is more reliable than Lat so it is used to ϐilter out small legitimate
changes. This component also executes the ϐirst phase of monitoring propagation delay,
calculates this delay with the shortest distance in a straight line between the source and
the destination and estimates the other latencies belonging to the RTT.

Path Similarity Detection (Path). Tracerouteswith different protocols (ICMP, UDP, TCP) are
issued. The system uses different protocols because routers may be conϐigured to block
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Figure 5.2: Fluxogram of Darshana, with the mechanisms organized in different
components.

certain protocols [LHH08]. The path that contains the most nodes is chosen and stored.
If enough results were received, then the new path will be compared with the last path
obtained by the Active Probing. Disagreement above a certain threshold may indicate the
existence of the attack.

Propagation Delay Validation (Prop, second phase). In case no conclusive results are re-
ceived from path similarity detection, the max(σprop) and the anomalous(σprop) are calcu-
lated. The maximum propagation delay is computed by 5.2 The anomalous propagation
delay is calculatedwith 5.3 This calculated propagation delay is comparedwithmax(σprop)
by subtracting the values.

max(σprop) = max(RTT)−min(σtrans,queue,proc) (5.2)

anomalous(σprop) = anomalous(RTT)−max(σtrans,queue,proc) (5.3)
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Hijacking declared. Upon conclusion of the method chosen, an analysis is made and pre-
sented to the sender of the trafϐic through a notiϐication mechanism. The notiϐication can
be handled automatically or presented to a human user.

5.2.3 The system in detail

Active probing. Darshana issues cryptographicpings andParis traceroute [ACO+06]probes
with different periods. Paris traceroute is known to evade anomalies like loops, cycles and
diamonds. These anomalies stem from the fact that a load balancer sends probes of tracer-
oute to different interfaces based on the header of the probes. By not varying the ϐields
used by a load balancer, Paris traceroute enables probes to be forwarded in the same in-
terface even if load balancers exist.

Three values are obtained by executing traceroute: hop count, trafϐic path and propagation
delay. For calculating the hop count we use traceroute. We only need to execute a partial
traceroute with a TTL that is close to the destination in the majority of times. TTL = 1 is
only used when we do not know about the destination.

We characterize the trafϐic path in terms of a set of autonomous systems, so each node of
the result of the traceroute is mapped to the corresponding autonomous system using the
CYMRU database [cym].

Finally, the propagation delay is calculated by ϐirst, translating the IP of the source and
destination to geographical coordinates using MaxMind database [max], then the short-
est distance is calculated between them and passed to the propagation delay by using the
formula presented in 5.2.1.4.

Each iteration of the cryptographic ping gives a new sample of RTT and by subtracting the
RTT with the propagation delay, we estimate the other latencies of the RTT.

Path Similarity Detection. New samples of RTT and hop count are compared with the ex-
ponential weighted moving average of past samples, the formula for the average is the
following: sample = (1 − α) × sample + α × samplenew. The moving average allows
Darshana to adapt to the normal changes in the network. If the quotients between the
new samples of both RTT and hop count with the exponential weighted moving average
passes certain deϐined thresholds TLat and THop, Paris traceroutes are issued to the desti-
nation in an attempt to reveal the cause of the anomalies. If there are enough elements in
the resulting path, then this path is compared to the last path stored. The comparison of
these two paths can be computed from path and path′ using the Sorensen-Dice coefϐicient:
sim = 2|path ∩ path′|/(|path| + |path′|). This gives the similarity in a number that ranges
from [0,1]. 0 means that there is no similarity at all and 1 means that the items of the two
paths are the same. If the similarity is below a threshold TPath, then a route hijacking is
declared.

Propagation Delay Validation. In case the traceroutes executed in the previous module
do not produce any results, Darshana calculates the σprop with the RTT and σtrans,queue,proc

that were estimated. More precisely, the system will compute the max(σprop), by sub-
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tracting the max(RTT), found before the anomaly, and the min(σtrans,queue,proc). This com-
puted delay will be compared with anomalous(σprop) resulted from the subtraction of the
anomalous(RTT) with the max(σtrans,queue,proc). If anomalous(σprop)

max(σprop)
is higher than a deϐined

threshold TProp, then a route hijacking is declared.

5.3 EvaluaƟon

Simulations of preϐix hijackings were conducted to validate our proposed implementation
in termsof performanceand cost. Theobjectiveof the experimental evaluation is to answer
two important questions: (1) How effective is Darshana in detecting attacks? (5.3.2) (2)
Howmany times is Darshana forced to execute techniqueswith higher overhead in normal
conditions when there is no attack? (5.3.3)

The experiment was done in PlanetLab Europe [pla] and AWS EC2 [Ama]. PlanetLab of-
fers a geographically diverse set of nodes which provides more choice to build scenarios.
However, the restriction of only being able to access nodes from Europe limits the test-
ing in larger scale scenarios. AWS permits access to instances in different continents but
does not provide much geographical diversity. With PlanetLab we use nodes from Portu-
gal (POR), Ireland (IRE), France (FRA), Germany (GER) and Poland (POL). From AWS we
used instances fromN. Virginia (VA), N. California (NA) and South Korea (S. Korea). Figure
5.3 shows a world map with all the nodes used from PlanetLab and AWS marked in black
circles and squares, respectively.

Figure 5.3: Nodes used from PlanetLab and AWS.

5.3.1 SimulaƟng route hijacking aƩacks

Before we present the tests done, it is important to explain how the simulation of the at-
tacks is made. We simulate only the interception attack, because the blackhole attack ends
up being just an interruption of communication, therefore it is easy to detect. In order to
simulate the attack, we need three nodes: one node that is the source of the Internet trafϐic;
a node that will serve as the destination; and another node that is trying to hijack trafϐic
by receiving it and then sending it to the legitimate destination.
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Figure 5.4: The percentage of Ɵmes that each mechanism detects a simulated route
hijacking aƩack. The scenario involves Portugal as the source, Ireland as the desƟnaƟon
and France as the hijacker. The labels soŌ, medium and hard represent different sets of

thresholds for each mechanism.

5.3.2 Performance of the system

In order to evaluate the performance of Darshana, we measured the percentage of times
that Darshana detects existing attacks and assess the false positives in different scenarios
(i.e., false route hijacks reported). We compared Darshanawith the individualmechanism:
Lat, Hop, Path, Prop. Each scenario of the experiment was repeated 30 times.

5.3.2.1 Small scale scenarios

We tested small scale scenarios with nodes from PlanetLab. Each scenario is composed
by three nodes. Two of them have a source-destination relation and the third one serves
as the hijacker. Throughout the scenarios the source and the destination are ϐixed and
the hijacker varies its distance to the source. We selected a node from Portugal as the
source, a node from Ireland as the destination and the hijackers are nodes from France
and Poland. The distances from source to hijacker were chosen in a way that would enable
us to determine the cases when Darshana has more difϐiculty in detecting the attack. The
results are presented in Figures 5.4 and 5.5.

The ϐigures show the percentage of times that each mechanism detects a simulated route
hijacking attack under different scenarios. Each ϐigure contains three labels: soft, medium
and hard. They specify qualitatively the thresholds that were used for each mechanism.
There are four thresholds, TLat, THop, TPath and TProp, that indicate how much measure-
ments of RTT, hop count, path and propagation delay have to deviate in order to declare a
route hijacking. The values of the thresholds used in the experiments were deϐined based
on many experiments done before the evaluation here reported. These values are pre-
sented in Table 5.1.

Observing the results, we can conclude that soft thresholds lead Lat to detect all hijacks.
However, this also leads to false positives and, in the case of Darshana, prevents the other
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Figure 5.5: The percentage of Ɵmes that each mechanism detects a simulated route
hijacking aƩack. The scenario involves Portugal as the source, Ireland as the desƟnaƟon

and Poland as the hijacker.

mechanisms from actuating and removing such false positives, while keeping a high detec-
tion rate. The Hop and the Path mechanism present 0 or 100% values. This is due to the
fact that these mechanisms provide constant results through time. Therefore for certain
values of THop and TPath, these mechanisms will detect or not the simulated attack. In re-
gard to the propagation delaymechanism and observing Figures 5.4, 5.5 and Table 5.1 , the
hard label in Figure 5.4 corresponds to TProp = 4. 6 and the soft label in Figure 5.5 is equal
to TProp = 7.4. In Figure 5.5 with the soft label, the detection of the attack is very close to
100%, but by observing Figure 5.4 we can see that for the hard label, this mechanism can
only identify the attack less than 50%of the times. Thismeans that changes in propagation
delay are much more observable as the hijacker increases its distance to the source of the
trafϐic.

When the source and the hijacker are close, the packets do not traverse many different
autonomous systems and so Darshana is not able to detect the hijackwith the hard thresh-
olds.

5.3.2.2 Real scenarios

While our previous analysis provided some insights about the capacity of detection of our
system,wewanted to test our detectionmechanismusing historical preϐix hijacking events
and conϐirm that our mechanism behaves better by having the hijacker farther away. We
simulated two scenarios. It was not possible to choose nodes from the exact locations in
which these scenarios tookplace sowe chosenearbynodes. The ϐirst scenario corresponds
to the Belarusian Trafϐic Diversion [bel], where trafϐic from New York was diverted to Be-
larusian ISP GlobalOneBel before arriving to the intended destination, Los Angeles. To
simulate this, we deployed two nodes (micro-instances) in two different Amazon AWS re-
gions: N. Virginia and N. California. The node from N. Virginia is the source, the node from
N. California is the destination. We used a node from PlanetLab in Poland to serve as a
hijacker and to represent the Belarusian ISP GlobalOneBel. The second scenario emulates
the China 18-Minute Mystery [Cow10], in which, allegedly, trafϐic between London and
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Figure 5.6: The percentage of Ɵmes that each mechanism detects a simulated route
hijacking aƩack. The scenario involves N. Virginia as the source, N. California as the

desƟnaƟon and Germany as the hijacker.
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Figure 5.7: The percentage of Ɵmes that each mechanism detects a simulated route
hijacking aƩack. The scenario involves Ireland as the source, Germany as the desƟnaƟon

and South Korea as the hijacker.

Germany took a detour through China. We simulate this by selecting a node from Planet-
Lab in Ireland as the source, a node from Germany as the destination and amicro-instance
of Amazon AWS in Seoul as the hijacker. The results can be found in Figures 5.6 and 5.7. In
these scenarios there is substantially more change, between the samples after attack and
the samples prior to the simulated attack, than in the small scenarios experiments. The
values for thresholds are shown in Table 5.1.

To better understand why Darshana presents good detection values in relation to the ex-
periments done in 5.3.2.1, we need to have an idea of the paths that packets take from
source to destination, before the hijacking and after the hijacking. This information is pro-
vided in Table 5.2.

Table 5.2 shows the number of the ASes the trafϐic traverses, before the attack and after.
It is possible to observe that the normal path and the hijacked path from the small scale
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Table 5.1: Values of thresholds used for each scenario. S, D and H are the source,
desƟnaƟon and hijacker, respecƟvely.TABLE II

VALUES OF THRESHOLDS USED FOR EACH SCENARIO. S, D AND H ARE THE SOURCE, DESTINATION AND HIJACKER, RESPECTIVELY.

S:POR | D:IRE | H:FRA S:POR | D:IRE | H:POL S:VA | D:CA | H:POL S:IRE | D:GER | H:S.Korea
Mechanisms Soft Medium Hard Soft Medium Hard Soft Medium Hard Soft Medium Hard
Lat 1.2 1.3 1.4 2.1 2.2 2.3 3.6 3.65 3.7 13 13.5 14
Hop 1.05 1.1 1.15 1.05 1.1 1.15 2.05 2.1 2.15 2.2 2.25 2.3
Path 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7 0.9 0.8 0.7
Prop 3.6 4.1 4.6 7.4 7.9 8.4 12.5 13 13.5 70 75 80

TABLE III
NUMBERS OF THE ASES THAT PACKETS TRAVERSE

Hijacker
From - To

POR - IRE IRE - GER VA - CA
Normal Hijacked Normal Hijacked Normal Hijacked

FRA 1930,21320,1213 1930,21320,2200,15557,1213 - - - -
POL 1930,21320,1213 1930,21320,8501,8890,1213 - - 16509 16509,2603,8501,8890,16509

S.Korea - - 1213,21320,680 1213,3356,2516,
16509,4766,174,680 - -
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Fig. 8. False positive rate of RTT in different scenarios. The Y axis refers to
the false positive rate and the X axis represents the different scenarios tested.

for medium the value was 1.3 and for the hard label the value
chosen was 1.4.

The results for DARSHANA were obtained with the soft
thresholds for Lat. However, on the contrary of Lat, the false
positive rate for DARSHANA was 0 in all scenarios, as the
other mechanisms (Path, Hop, and Prop) filtered the false
positives of Lat, leading to 0 false positives as obtained with
each of the 3 individually.

C. Cost

DARSHANA keeps probing for RTT with period k. Unless
anomalies in RTT are verified, leading the system to use
techniques with bigger overhead, like Hop and Path. We
evaluate the cost as how many times DARSHANA is forced to
execute heavier techniques in normal conditions. The scenarios
used were the same as in Section IV-B3. Setting a probing rate
for RTT to 60 seconds, Figure 9 illustrates the values for round
trip time in different scenarios.

During this period the mean deviations of the samples were
low. The scenario with VA and CA, has the biggest mean
deviation of approximately 5.02. This implies that the RTT
usually remains constant, being difficult to observe anoma-
lies and pass to heavier methods. Considering a value of

Fig. 9. RTT values in different scenarios. The Y axis refers to the RTT values
in milliseconds and the X axis represents the number of samples.

TLat = 1.5, the total ping and traceroute messages for this
period follow the following formulas, where #Msg_Ping
and #Msg_Traceroute correspond to number of ping and
traceroute messages, respectively #Msg_Ping = T × k and
#Msg_Traceroute = #Msg_Ping/n .

Where T is the total time of the experiment, k is the
ping period and n is the traceroute period. For this exper-
iment #Msg_Ping = 100 × 1 = 100 ping messages and
#Msg_Traceroute = 100/5 = 20 traceroute messages. All
of this demonstrates that even for low values of TLat, the
total number of #Msg_Ping and #Msg_Traceroute end
up only being dependent on k and n.

V. RELATED WORK

Many solutions have been proposed for the IP prefix hijack-
ing problem. Some of them are crypto-based such as [3]–[6].
These solutions require deep changes in routers and network
protocols. BGP routers need to sign and verify announcements
which leads to a non negligible overhead.

Other solutions like [7]–[10] are more deployable because
they do not require changes in routers, they only need access
to public registries, like Route Views and European IP Net-
works (RIPE) to conduct passive monitoring and look out for

Table 5.2: Numbers of the ASes that packets traverse.

TABLE II
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S:POR | D:IRE | H:FRA S:POR | D:IRE | H:POL S:VA | D:CA | H:POL S:IRE | D:GER | H:S.Korea
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Lat 1.2 1.3 1.4 2.1 2.2 2.3 3.6 3.65 3.7 13 13.5 14
Hop 1.05 1.1 1.15 1.05 1.1 1.15 2.05 2.1 2.15 2.2 2.25 2.3
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Fig. 8. False positive rate of RTT in different scenarios. The Y axis refers to
the false positive rate and the X axis represents the different scenarios tested.
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chosen was 1.4.

The results for DARSHANA were obtained with the soft
thresholds for Lat. However, on the contrary of Lat, the false
positive rate for DARSHANA was 0 in all scenarios, as the
other mechanisms (Path, Hop, and Prop) filtered the false
positives of Lat, leading to 0 false positives as obtained with
each of the 3 individually.

C. Cost

DARSHANA keeps probing for RTT with period k. Unless
anomalies in RTT are verified, leading the system to use
techniques with bigger overhead, like Hop and Path. We
evaluate the cost as how many times DARSHANA is forced to
execute heavier techniques in normal conditions. The scenarios
used were the same as in Section IV-B3. Setting a probing rate
for RTT to 60 seconds, Figure 9 illustrates the values for round
trip time in different scenarios.
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TLat = 1.5, the total ping and traceroute messages for this
period follow the following formulas, where #Msg_Ping
and #Msg_Traceroute correspond to number of ping and
traceroute messages, respectively #Msg_Ping = T × k and
#Msg_Traceroute = #Msg_Ping/n .

Where T is the total time of the experiment, k is the
ping period and n is the traceroute period. For this exper-
iment #Msg_Ping = 100 × 1 = 100 ping messages and
#Msg_Traceroute = 100/5 = 20 traceroute messages. All
of this demonstrates that even for low values of TLat, the
total number of #Msg_Ping and #Msg_Traceroute end
up only being dependent on k and n.

V. RELATED WORK

Many solutions have been proposed for the IP prefix hijack-
ing problem. Some of them are crypto-based such as [3]–[6].
These solutions require deep changes in routers and network
protocols. BGP routers need to sign and verify announcements
which leads to a non negligible overhead.

Other solutions like [7]–[10] are more deployable because
they do not require changes in routers, they only need access
to public registries, like Route Views and European IP Net-
works (RIPE) to conduct passive monitoring and look out for

scenarios share more numbers than the paths from real case scenarios.

Furthermore, detecting the attack between two instances of Amazon AWS is easy, because
there is not a lot path diversity as we can see from the normal path between N. Virginia
and N. California.

5.3.2.3 False positives

There is a false positivewhen a scheme claims to have detected an attack that did not exist.
We evaluated the false positives for each individual mechanism of our system during a run
of 1h15m. The false positiveswere calculated by executing each detectionmechanismwith
scenarios without running the attack (i.e., without hijacking). By capturing the amount
of alerts given by a mechanism we get the false positive rate #alerts/#samples, where
#alerts is the number of alerts and #samples the number of samples taken. We tested
for three different scenarios and each scenario contains a source and a destination. For
the ϐirst scenario, we chose a node from POR as the source and a node from IRE as the
destination; in the second, the source is a node from IRE and the destination is a node
from GER; ϐinally for the last scenario the source is a node from VA and the destination is
a node from CA.

For Path and Hop the number of false positives observed was 0, because there would have
to be legitimate route changes to cause them, but these are not frequent and none was
observed. For Prop the number of false positives was also 0, as the mechanism always
searches for the maximum RTT stored to compute the maximum propagation delay ever
observed. Unless a great anomaly in RTT is found, the mechanism will not raise an alarm.
For Lat, we received a new sample from 30 to 30 seconds getting a total of 150 samples
per scenario. The results are presented in Figure 5.8. The values for the thresholds were
chosen with the objective to reveal variation in the false positive rate. As we can see in
all sets of columns the false positive rate is bigger for softer thresholds. This makes sense
since small thresholds mean that a small variance of RTT is considered an attack. For the
soft label the value used was 1.2, for medium the value was 1.3 and for the hard label the
value chosen was 1.4.
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Figure 5.8: False posiƟve rate of RTT in different scenarios. The Y axis refers to the false
posiƟve rate and the X axis represents the different scenarios tested.

The results for Darshana were obtained with the soft thresholds for Lat. However, on the
contrary of Lat, the false positive rate for Darshana was 0 in all scenarios, as the other
mechanisms (Path, Hop, and Prop) ϐiltered the false positives of Lat, leading to 0 false pos-
itives as obtained with each of the 3 individually.

5.3.3 Cost

Darshana keeps probing for RTTwith period k. Unless anomalies in RTT are veriϐied, lead-
ing the system to use techniques with bigger overhead, like Hop and Path. We evaluate
the cost as how many times Darshana is forced to execute heavier techniques in normal
conditions. The scenarios used were the same as in 5.3.2.3. Setting a probing rate for RTT
to 60 seconds, Figure 5.9 illustrates the values for round trip time in different scenarios.

During this period the mean deviations of the samples were low. The scenario with VA
and CA, has the biggest mean deviation of approximately 5.02. This implies that the RTT
usually remains constant, being difϐicult to observe anomalies and pass to heavier me-
thods. Considering a value of TLat = 1.5, the total ping and traceroute messages for this
period follow the following formulas, where #Msg_Ping and #Msg_Traceroute corre-
spond to number of ping and traceroute messages, respectively #Msg_Ping = T × k and
#Msg_Traceroute = #Msg_Ping/n .

Where T is the total time of the experiment, k is the ping period and n is the traceroute pe-
riod. For this experiment #Msg_Ping = 100× 1 = 100 ping messages and #Msg_Trace-
route = 100/5 = 20 traceroutemessages. All of this demonstrates that even for low values
of TLat, the total number of #Msg_Ping and #Msg_Traceroute end up only being depen-
dent on k and n.
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Figure 5.9: RTT values in different scenarios. The Y axis refers to the RTT values in
milliseconds and the X axis represents the number of samples.

5.4 Related Work

Many solutions have been proposed for the IP preϐix hijacking problem. Some of them
are crypto-based such as [Lep16, SCK00, WJP03, KPW06]. These solutions require deep
changes in routers and network protocols. BGP routers need to sign and verify announce-
ments which leads to a non negligible overhead.

Other solutions like [LMPW06, KFR06, HMM07, SXW+12] are more deployable because
they do not require changes in routers, they only need access to public registries, like
Route Views and European IP Networks (RIPE) to conduct passive monitoring and look
out for Multiple Origin Autonomous Systems (MOAS) [ZPW+01]. An IP preϐix should only
be generated by a single AS, so this conϐlict may indicate a preϐix hijacking. The problem
associated to these solutions is that many times the public registries may be outdated and
inaccurate, leading to an increase of the number of false positives.

Finally, there are solutions that rely only on the data plane like ours. They are not con-
strained by the availability of BGP information and are more accurate. [ZJP+07] uses a set
of monitors to detect preϐix hijacking in real time. These vantage points monitor a pre-
ϐix from topologically diverse areas. Each monitor keeps track of the hop count and the
path to a target preϐix and if past measurements disagree with new ones then a route hi-
jacking is declared, the need for vantage points end up limiting the system. On the other
hand, [ZZH+08] detects IP preϐix hijacking by observing unreachability events. It is owner-
centric, in a point that themechanismkeeps sending probes to transit ASes. If enoughASes
stop responding, the system declares the attack. If the attacker forwards the responses of
the probes back to the sender, the attack is not detected.

Here we make use of the propagation delay as another criteria to detect route hijacking.
This delay has been used in [LLV+15], which proposed a system that presents undeniable
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proof about trafϐic traversing a certain forbidden zone deϐined by the sender. To know if
a certain relay node is not in the forbidden region, the minimum possible RTT from the
source to any node in the forbidden zone was calculated, with the propagation delay. In
case the RTT from the source to the relay node is less than the RTT calculated earlier, then
the relay node is not in the forbidden region.

The design of the lightweight and end-host-based probing techniques was inspired by Hu-
bble [JKBM+08], where low overhead probing techniques are used ϐirst and heavier, but
more reliable techniques, are only used when there is such a need.

5.5 Summary

This chapter presented Darshana, a route hijacking detection system. By only applying
active probing methods, we ensure accuracy and deployability. Different techniques turn
the system redundant enough to not be avoided by attackers. The design of the detec-
tion system minimizes the overhead, by using techniques with low overhead more often.
Techniques with greater reliability and overhead are only executed when necessary. Our
system is the ϐirst to use the propagation delay in this context, providing one more metric
for the purpose of detection. We evaluated the systemwith small scale and real scenarios.
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6 MulƟ-Path CommunicaƟon
Sending information over the Internet has the disadvantage of making it vulnerable to
eavesdropping by unauthorized third parties. This problem is especially important for
organizations that handle critical data, such as governments, military, or healthcare.

Communication protocols based on cryptographic mechanisms such as HTTPS and IPsec
are the common solution to this problem. However, recent events show that it may be
possible to break these protocols under certain conditions, and suggest that powerful ad-
versaries may be able to do it if they access the encrypted data. For example, Adrian et al.
presented a ϐlaw in the Difϐie-Hellman key exchange that allows downgrading the security
of a TLS connection for a speciϐied 512-bit group [ABD+15]. They claim that a nation-state
may have the computational power to attack 1024-bit groups, which would allow decryp-
tion of many TLS channels over the Internet that implement this method.

We present Multi-pAth Communication for sEcuriTy (Machete or MAChETe), a means to
mitigate the impact of such vulnerabilities. This system consists on using Multi-Path TCP
(MPTCP) [FRH+11, BPB11, PB+] and overlay networks [ABKM01, AD03] to split communi-
cation ϐlows ondifferent physical paths, possibly over amultihomed subnetwork [AMSS08,
AMS+03], as a defense-in-depth mechanism.

The rationale is that more effort is required to eavesdrop data split over several ϐlows, in
comparison to a single end-to-end ϐlow. The problem addressed in this chapter is, there-
fore, achieving communication conϔidentiality assuming the conϐidence on cryptography
mechanisms not containing vulnerabilities is not enough due to the criticality of data be-
ing sent.

Machete has to handle two challenges. The ϐirst consists in sending packets over different
pathswhen Internet’s routing imposes a single path between a pair of source and destina-
tion network addresses. Overlay routing enables doing application-layer routing, allowing
packets to deviate from the routing imposed at network level, by the Internet’s routers and
routing protocols. Overlay networks, possibly in combination with multihoming, are used
to create path diversity, allowing ϐlows to be split over physically disjoint paths. Using a
topology-aware decision algorithm, several overlay nodes are chosen, according to their
location. Each node will create a single-hop overlay path to the destination, generating an
overlay network.

The second challenge is to split the stream of data sent over a TCP connection. MPTCP is a
recent extension of the TCP protocol that has the ability to distribute and send data among
the different network interfaces of a device, e.g., the IEEE 802. 3 (“wired”, “Ethernet”) and
the 802.11 (“wireless”, “WiFi”) interfaces of a personal computer. However, MPTCPneither
ensures the use of different physical paths, not their diversity, as it was createdmostlywith
performance inmind. The paths used by aMPTCP connection are imposed by the network
interfaces of the source and destination hosts.

The combination of MPTCP with application-layer routing is itself a third challenge. Our
objective is thatMacheteworks at the application layer, withoutmodiϐications to lower lay-
ers, but it has to route packets sent at transport layer under the control of MPTCP. MPTCP
is a transport-layer protocol, so applications provide it source anddestination IP addresses
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and ports. However, the overlay nodes have their own IP addresses and ports, unrelated
to the previous ones. Therefore Machete has to play with the destination IP addresses and
ports for communication to be possible.

6.1 Background and Related Work

The current Machete concept covers the use case where only few relays are available. This
corresponds to the current situation. If the technologies of SafeCloud experience a break-
through in usage, relays inmanynetworks all around theworld could be possible. We stud-
ied potential beneϐits of multi-hop multi-path concepts, in particular different options for
diverse path selection algorithms, most prominently Suurballe’s algorithm[Suu74]. This
canbeused for amore controlledmultipath routing and to support geo-diverse routing[CGL+14].
On the basis of a large-scale traceroute scan, we showed that topology-aware algorithms
based on Suurballe’s algorithm can improve multiple metrics for resilience like Effective
Node Diversity or Failure Probability [HNC18].

The most common solutions with respect to network resilience operate in the context of
improving resilience of an ISP (Internet Service Provider) network. This means that all
routers can support the protocol and, thus, there is no limited number of relays. geoDi-
vRP [CGL+14] is optimized to route around large-scale geographic outages. This is achieved
by requiring enough geographic distance between different paths in the multi-path. A dif-
ferent approach is multi-topology routing where the routing protocol is run k times with
different link costs for each run [MM05].

The following sections cover background and related work on the mechanisms used in
Machete: Multi-Path TCP, overlay routing, and multihoming.

6.1.1 MulƟ-Path TCP

Multi-Path TCP (MPTCP) is an extension of the TCP protocol that enables endpoints to
use several IP addresses and interfaces simultaneously when communicating [FRH+11,
BPB11]. The protocol discovers which interfaces are available for use, establishes a con-
nection, and splits the trafϐic among them. It presents the same programming interface
as TCP, however the data is spread across several ϐlows. The option ϐield in the regular
TCP protocol is ϐilled with MPTCP data structures in order to inform the other end-point
about the capability of implementing this protocol and to add ϐlows to the communication.
MPTCP has two important components on its conϐiguration: path manager and packet
scheduler.

The path manager is the module that handles how the ϐlows are created in an MPTCP con-
nection. The implementation of the protocol in Linux currently implements four schemes
[PB+]: default does not create any new ϐlows, but accepts those incoming; fullmesh cre-
ates a full-mesh of ϐlows with all available interfaces/addresses in the device; ndiffports
takes only one pair of IP addresses and modiϐies the source port to create the number of
ϐlows set by the user; binder uses the loose source routing algorithm of the Binder system
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[BFM13].

The scheduler handles the distribution of the TCP packets (segments) over the ϐlows, in
close collaboration with TCP’s congestion control mechanism [WR11]. MPTCP does not
use a single congestion window as TCP, but one per ϐlow. Similarly to TCP, the congestion
control mechanism manages the size of each congestion window based on the round-trip
time (RTT) of the ϐlow and other factors (timeouts, reception of acknowledgments). The
implementation of MPTCP for Linux by default ϐills the ϐlow congestion window before
starting to schedule packets on the next ϐlow. Although in terms of performance it is impor-
tant to take advantage of the throughput of the channels, in terms of splitting data for conϐi-
dentiality itmay be a disadvantage. In a communication composed by two ϐlowswhere one
has twice the throughput of the other, that ϐlow will tend to send twice the amount of data
of the other. If that ϐlow happens to be eavesdropped, a higher amount of data is suscepti-
ble to being spied upon. Linux’sMPTCP implementation provides three scheduling modes:

• default, the one we just presented and the one with best performance; only uses
another ϐlow if the window of the ϐlow in use does not allow sending data that is
pending; starts sending using the ϐlows with lower RTT;

• fast round-robinwhich uses sequentially all ϐlows but ϐills the congestionwindow
of a ϐlow before starting with the next;

• strict round-robin, does real round-robin by sending the same amount of data
through all the ϐlows in sequence; waits for a ϐlow to have free space to send a packet
before scheduling the next one.

MPTCP is very similar to TCP in terms of security. Speciϐically, the RFC says that “The basic
security goal of Multi-Path TCP (...) can be stated as: provide a solution that is no worse than
standard TCP” [FRH+11]. There are a few works concerned with the security of MPTCP
[DBVV11, Bon14].

6.1.2 Path Diversity

Path diversity can be achieved in multiple ways in a multi-path communication. Overlay
Routing andMultihoming are among some of the options.

Overlay routing allows the creation of a virtual network (an overlay network) on top of an
already existing network infrastructure, like the Internet, without modifying it. The nodes
of the network are hosts, i.e., machines that implement the network stack up to the OSI ap-
plication layer. An overlay linkmay connect twonodes either directly or indirectly, through
other nodes. These nodes route (forward) the packets at the application layer to the next
or ϐinal node of the link. This adds a level of indirection in relation to the underlying OSI
network layer topology. At the network layer the packets travel through the routes im-
posed by the Internet routing protocols, namely the Border Gateway Protocol v4 (BGPv4)
[RL95]. At application layer the trafϐic may be deviated from these routes by sending it
through overlay nodes in other locations. The original motivation for overlay routing is
resilience [ABKM01, AD03]. In case a network layer route is congested or faulty, routing
done at the application layer may allow passing the trafϐic through other routes.

Deliverable 1.3 58



Another method of achieving path diversity is to use multihoming. This approach con-
sists of having a customer network linked to two or more ISPs, instead of a single one.
Resilience and performance are the main advantages of this approach [HR08]. Different
providers offer different performance levels to different parts of the network, so choosing
the “right” provider will result in a performance increase [AMSS08, AMS+03]. Akella et
al. [AMS+03] evaluate the use ofmultihoming, using Hand-shake Round Trip Time (HRTT)
as a measurement unit for data centers and enterprises. In [AMS+03], they conclude that
simply by using two providers the performance is increased by at least 25% and that the
improvements are very small beyond four providers. The same authors in 2008 [AMSS08]
performed a similar but deeper k-homing study, measuring the performance based on the
RTT and throughput of small (10 KB) and medium sized (1 MB) ϐile transfers. In gen-
eral, the same conclusion is reached in all multihoming studies: the use of two or three
providers increases the performance in 15-25%.

6.2 Machete

Machete is an application-layer mechanism for improving communication conϐidentiality
by splitting packets in different paths. It uses MPTCP over an overlay network to create
multi-path communication. By setting up a network composed by several nodes it is pos-
sible to implement an overlay network, which consists of several links between the source
and destination of a communication. MPTCP will use these overlay links to split the data
to be transferred. Machete uses single-hop overlay routing as there seems to be no gain
in using more hops. Path diversity is sought by exploiting diversity between Autonomous
Systems (ASs).

The architecture of Machete is represented in Figure 6.1 and has three main components:
multi-path devices which are the devices that communicate using Machete that also can
play the role of server (wait for connections) or client (start connections), similarly to TCP;
Overlay nodeswhich are the nodes of the overlay network that forwardmessages on behalf
of multi-path devices and create alternative communication paths; multi-path manager
which is the component in charge of keeping track of the nodes that compose the overlay
network.

6.2.1 Threat Model

Machete is concerned about attacks against the conϐidentiality of data exchanged, so it con-
siders passive attackers that eavesdrop on communication at certain physical locations.
We assume that the attackers can eavesdrop on all packets at those locations, so conϐiden-
tiality has to be achieved by reducing the locations where all trafϐic passes.

Weassume that the attackers donotmodify thepackets exchanged compromising the com-
munication integrity, but protection against such attacks might be implemented on top of
Machete. For example, message integrity codes or keyed hashing might be used [KBC97].

We assume that the devices and nodes of the system are trustworthy, i.e., that they follow
the protocol. This assumption has to be assured using proper security mechanisms, such
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Figure 6.1: The architecture of Machete. The solid lines represent data communicaƟon
flows and the dashed lines control communicaƟon (e.g., messages to perform node

registraƟon in the overlay network).

as hardening, sandboxing, and access control. Machete is, however, prepared to recover
from node crashes.

The multi-path manager might be a single-point of failure of the architecture, so it is repli-
cated. We assume that a subset of the replicas can be compromised by an attacker or crash
and we use a speciϐic scheme to make overall multi-path manager tolerate these issues.

6.2.2 MulƟ-Path Manager

The multi-path manager is the component that contains information about every entity in
the network. Its function is to register every node and device addresses and to provide
that information to devices that aim to communicate.

The multi-path manager was not developed from scratch but instead is a tuple space that
implements Linda’s generative coordination model [Gel85]. A tuple space is a repository
of data items called tuples and provides mainly three operations: insert tuple (out), read
tuple (rd), and remove tuple (in).

Machete uses a speciϐic tuple space calledDepSpace [BACF08, dep]. DepSpace is replicated
in order to tolerate faults in some of the replicas. Speciϐically, it continues to operate cor-
rectly despite the failure of up to f out of 3f + 1 replicas (typically 1 out of 4). DepSpace
is Byzantine fault-tolerant, so it provides its service correctly even if f replicas are com-
promised or fail arbitrarily. Whenever server multi-path devices and overlay nodes start
to run, they register with the multi-path manager by inserting on the tuple space.
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6.2.3 MulƟ-Path Device

We use the term multi-path device to designate a computer that uses Machete to commu-
nicate. The architecture of such a device is represented in Figure 6.2. This component
dynamically establishes paths and splits the packets among them.

After a device registers itself on the multi-path manager, the process of transferring a
stream of data (e.g., sending a ϐile) is composed of three steps: path setup, data transfer
and path tear down. Figure 6.3 represents this process. Next we describe each of these
steps, dividing the ϐirst in two substeps.

MPTCP requires devices to have several network addresses to create more than one ϐlow.
If the device has several physical interfaces, possibly connected tomore than one provider
– multihoming –, each one has an IP address. If that is not the case or that number of
addresses is not enough, more than one address can be assigned to each interface, e.g.,
using Linux’s virtual network interfaces [KKJ01]. Having two addresses (in total) on each
device is enough to establish a network composed of four paths, which in general is enough
to achieve the objective.
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6.2.3.1 Path setup -- choosing overlay nodes

The process starts by querying the multi-path manager about the available overlay nodes.
Although themanager replieswith all nodes available in the network, the number of nodes
to be used by a certain connection,Nn, is a conϐiguration parameter.

The overlay nodes are chosen taking into consideration the path diversity they provide. If
there are several pathswith the samediversity, the pathwith best performance (e.g., lowest
RTT) is chosen. In the current version of Machete, themetric of diversity among two paths
used is the number common ASs on both paths (higher number means worse diversity).
For a path, the ASs are obtained using layer-4 traceroute [lft], which provides precisely the
ASs of the nodes along a path. The metric of performance is the RTT, measured using the
tokyo-ping tool, which avoids some anomalies in ping [PCVB13]. When available, multi-
homing tends to improve diversity as the ϐirst ASs along the path will already be different,
whereas with single-homming the opposite is true.

In Machete the path manager is set to fullmesh, to allow deϐining the number of ϐlows in
a way that makes MPTCP use the number of overlay nodes deϐined (Nn). This manager
will create a networkmesh composed by all the available interfaces/addresses in both the
source and destination.

Tobalance thedata amongall nodes andobtain the expected conϐidentiality, thebest packet
scheduler is strict round-robin. This scheduler is conϐigured with the number of pack-
ets sent in each ϐlow before passing the turn to the next ϐlow. To reduce the information
sent in each ϐlow (thus in each path), this parameter is set to 1. The fast round-robin
scheduler can also be used if the communication is encrypted and the amount of bytes
sent is high enough to ensure that not all communication passes in the same node, as it is
not possible to decrypt data if it is not complete. This aspect of the amount of bytes sent
being enough or not to make the communication pass in more than one node is analyzed
in 6.3.3.2.

6.2.3.2 Path setup -- managing addresses and ports

As already pointed out, the combination of MPTCP with application-layer routing is chal-
lenging. Machete works at application layer but it has to route packets sent by, and under
the control of, a lower layer protocol: MPTCP, at transport layer.

Similarly to what happens with TCP, in MPTCP all packets sent over a connection take two
pairs of IP addresses and port numbers, one for the source device, another for the destina-
tion (the difference in relation to TCP is that source and destination may have more than
one address/port pair). However, in Machete the destination address and port may have
to be different: (1) if the packet is leaving the sender device, the destination address/port
should be those of the overlay node for the packet’s ϐlow; (2) if the packet is leaving an
overlay node, the destination address/port should be those of the destination device and
the source address/port should be those of the overlay node. (3) if the packet is returning
to the overlay node, the destination address/port should be those of the source device and
the source address/port should be those of the overlay node.
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The application requires Machete, thus also MPTCP, to send packets to the destination ad-
dress and port. When a device does the setup of a path, it has to force these alternative
addresses and ports to be used. To do itMachete leverages Linux’s netϔilter framework and
the iptables command [Rus02]. This framework allows doing network address transla-
tion (NAT), packet ϐiltering, and other forms of packet handling. Machete uses it for NAT.

When a path is setup, Machete uses the iptables command to tell netϐilter to change the
destination IP address and port by those of an overlay node, depending on the ϐlow (case
(1) above; arrow setup in Figure 6.2). MPTCP inserts the destination IP address/port in the
packets, but netϐilter exchanges them before they are transmitted into the network. The
iptables command inserts NAT rules for that purpose in the output chain, which is the
set of rules applied to trafϐic being sent by a computer. For each link, a NAT rule is set1.

Once this is done, the device informs each node about the rules they have to establish. In
the overlay node it is necessary to route the trafϐic in both directions: when forwarding to
the server (case (2) above) and when returning to the client (case (3) above). As soon as
all nodes conϐirm that the rules are set, the data transfer may begin.

Figure 6.3 shows a time diagram that represents this process with a single overlay node.

1The format of the iptables rule is: iptables -t nat -A -p tcp -s <source address> -d
<destination address> -j DNAT --to-destination <new destination address>
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6.2.3.3 Data transfer

Machete uses MPTCP to establish a connection to the destination device. The client ap-
plication will create a socket and provides it one of the server’s address/port pairs; the
MPTCP protocol will handle the passive creation of the ϐlows. Despite the fact that net-
ϐilter modiϐies the destination addresses to deviate the connection’s packets through the
overlay nodes, the connection and each of its ϐlows end up established similarly to what
would normally happen with MPTCP.

This connection has two data streams, one in each direction, so that the client and server
can use to send data to the other. This is represented in Figure 6.2 through the send and
receive arrows. Notice again that the scheduler should be set to round-robin, otherwise
MPTCP will ϐill each ϐlow until its congestion window is full instead of sending packets
using all ϐlows, which is not desirable from the conϐidentiality point of view.

Each packet will suffer changes on its source and destination address twice: ϐirst in the
source device, second in the overlay node. The same will happen to the acknowledgement
packets.

6.2.3.4 Path tear down

To terminate a connection, the client device notiϐies the nodes that compose the overlay
paths to remove the rules. The overlay device is listening on a speciϐic port for receiving
this indication, so that the packets destined to the node itself are never re-routed. Again,
this device waits for all nodes to reply before removing its own rules. After all the steps
are done, the communication can be declared as ϐinished. If the client fails to inform the
nodes about the rules removal, the rules can stay established, since it is speciϐic for a pair
of source and destination addresses and, therefore, does not modify other connection’s
correct behaviour or the possibility for the same source to create an identical connection.

6.2.4 Overlay Node

Theoverlay node is the component that plays the role of application-layer router, i.e., which
forwards the packets received from the client device to the server device and vice-versa.

Overlay nodes receive from clients NAT rules and add/remove them from netϐilter. These
rules are set, again, with the iptables tool, this time using the prerouting and post-
routing chains. The ϐirst chain leverages the changes on the trafϐic immediately after it
was received by an interface and the second leverages the changes right before it leaves.
For each overlay network, four rules are established, two to change the source and des-
tination when forwarding to the destination and two when forwarding to the source, as
mentioned above in cases (2) and (3).
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Pair of paths Common ASs Common ASs
(except ϐirst 7)

Singapore, Tokyo 13 6
Frankfurt, Seoul 12 5
Frankfurt, Tokyo 12 5
California, Seoul 12 5
California, Tokyo 12 5
Oregon, Tokyo 12 5
Seoul, Tokyo 12 5
Seoul, Virginia 12 5

Table 6.1: Least diverse pair of paths in terms of number of common ASs with the
single-home configuraƟon. The paths are designated by the locaƟon of the overlay node.

6.3 Experimental EvaluaƟon

We placed hosts in the Amazon AWS EC2 service [Ama] in nine different regions (Ireland,
Frankfurt, North Virginia, California, Oregon, Tokyo, Seoul, Singapore and Sydney) and one
in Portugal. We used up to 8 overlay nodes, one in each of the AWS regions, except for Ire-
land that contains the server. Moreover we placed the client in the Portugal node. There-
fore, between the client and server there are 8 single-hop overlay paths: one per overlay
node.

Recall that the objective is to provide conϐidentiality by splitting communication over phys-
ically diverse paths with an acceptable performance. Therefore, the evaluation provides
an assessment of the diversity in our scenario, presents a performance benchmark of the
system, and analyses the conϐidentiality achieved.

6.3.1 Diversity

As stated before, conϐidentiality is only achieved if the paths are topologically disjoint, as
attackers eavesdrop on trafϐic at certain locations (6.2.1). The approach used to verify
the topology of the paths is to trace each route’s chain of ASs from the source device to
each node and from that same node to the destination. For that purpose we use layer-4
traceroute (i.e., the lft tool).

Table 6.1 shows the number of common ASs in the pairs of paths with highest value, be-
tween the 8 single-hop overlay paths, where each is designate by the location of the overlay
node. There are at least 7 ASs in common in all paths leaving the client (Portugal). The rea-
son for this lack of diversity is the fact that we did not use multihoming. Moreover, several
ASs belong to Amazon, as also expected.

We did an additional experiment to conϐirm that multihoming is beneϐicial in terms of di-
versity. We connected a second interface of the client device to a public provider of 4G
service through a smartphone, then we used lft to obtain the ASs traversed by the paths.
As shown in Table 6.2, using multi-homing provides an evident diversity, where the com-
mon nodes are again part of AWS’s network. Notice that we used this multihoming con-
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Pair of paths Common ASs
single-homed

Common ASs
dual-homed

Oregon, Sydney 10 3
Oregon, Tokyo 12 3
Oregon, Seoul 11 2
Sydney, Tokyo 10 2
Frankfurt, California 9 1
Frankfurt, Oregon 10 1
Frankfurt, Seoul 12 1
Frankfurt, Singapore 11 1

Table 6.2: Least diverse pair of paths in terms of number of common ASs with the
dual-home configuraƟon, in comparison to the single-home configuraƟon. The paths are
again designated by the locaƟon of the overlay node. In the dual-home configuraƟon the

leŌ path uses the original connecƟon and the right the 4G connecƟon.

ϐiguration only for this test; the single-home conϐiguration was used in all the experiments
presented in the following sections.

In the ϐirst conϐiguration still some level of diversity is achieved considering most nodes
are in AWS, except for the ϐirst 7 common nodes. However, multihoming reveals to be a key
component for Machete to achieve path diversity.

6.3.2 Performance

The performance evaluation considers three different aspects: the impact of adding paths
on the delay of transferring ϐiles, the performance with diverse paths when transferring
ϐiles, and the performance of path set up and tear down.

Figure 6.4 provides some insight on the network by showing the latencies between the
hosts in the different locations, obtained with the tokyo-ping tool.

Machete forced MPTCP to use all the paths deϐined for every experiment by changing the
number of IP addresses at the client (i.e., Portugal): 2 addresses for 2 paths, 3 addresses
for 3 paths, etc. The client had a single network interface; the server had a single interface
and a single IP address. All measurements were repeated 30 times.

6.3.2.1 Impact of adding paths

The evaluation consisted in observing the performance when paths (equivalently, nodes)
were added one by one based on latency to the cluster: ϐirst in Frankfurt, next in N. Vir-
ginia, California, Oregon, Tokyo, Seoul, Singaporeand ϐinally Sydney (that has a the highest
latency, as observed in Figure 6.4). The size of the ϐiles varied from 1 Byte to 1 GByte. In
this experiment we used the fast round-robin scheduler to improve performance (and
the fullmesh path manager which is ϐixed for Machete).
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Figure 6.4: Latencies between the Portugal host and the EC2 hosts used for the
experimental evaluaƟon.
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Figure 6.5: Time to transfer a file versus number of paths. 0 paths means a normal TCP
connecƟon.

File size TCP Fast r.-r. Strict r.-r.
1 B 49 81 97

10 B 49 95 94
100 B 49 87 98
1 KB 49 94 90

10 KB 49 181 122
100 KB 49 265 201
1 MB 304 382 409

10 MB 1644 2295 3106
100 MB 11556 18836 23452

1 GB 121069 172215 218332

Table 6.3: Average Ɵme of sending files using two nodes with two types of round-robin
schedulers, compared to a normal TCP connecƟon. All values are presented in milliseconds.

Each evaluaƟon was repeated 30 Ɵmes.

Figure 6.5 shows the values obtained for the time to transfer ϐiles of all sizes and from 2
to 8 paths, plus using a standard TCP connection (with no overlay nodes), and includes a
95% conϐidence intervals, although most are too small to be visible.

The ϐigure shows that splitting the packets in up to four different paths does not gener-
ate considerable overhead on the communication. With more than 5 paths, the duration
increases due to the overlay nodes that compose the network at that point being farther
away from both the source and destination.

6.3.2.2 Performance with diverse paths

Considering the diversity achieved in each of the four regions used on the previous tests,
this evaluation considers the twopathswith highest diversity, i.e., thosewith overlay nodes
at Frankfurt and California.

Table 6.3, shows the overhead of using these two nodes, in comparison to a normal TCP
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stream. As shown, there is an overhead of 42%when using the fast round-robin sched-
uler and of 80% when using the strict round-robin scheduler, in comparison to TCP.
This overhead is the result of sending trafϐic through a node that is geographically distant
from the source and the destination, California. When using a round-robin packet sched-
uler the whole multi-path connection is conditioned to each path’s throughput. In fact, for
the strict round-robin scheduler, the whole throughput is highly dependant of the path
with the smallest bandwidth or highest congestion, since it waits for this channel to have
free window space before sending to the next one.

6.3.2.3 Path set up and tear down

Figure 6.6 shows the time for setting up and tearing down the overlay paths. The current
Machete implementation is suboptimal in the sense that both the setup and tear down
phases are executed sequentially: the device sends the NAT information to a node and
waits for its acknowledgment before repeating with the next. According to the location of
the node, this timewill vary, however, as it can be seen, it always takes longer than one sec-
ond, but nevermore than two in our scenario. These two processeswill be reimplemented
to do these operations in parallel instead of sequentially.

6.3.3 ConfidenƟality

The usual way of considering conϐidentiality in the security and cryptography literature
is as an absolute property, i.e., a property that is either assured or not. More exactly, in
those works, e.g., in protocols like IPsec AH/ESP or TLS, the property is guaranteed as far
as no vulnerabilities exist in the protocol design, implementation, and conϐiguration. In
this work we do not aim to provide such guarantees but to improve conϐidentiality in case
communication is eavesdropped. Either data is not encrypted or it is but there is a vulner-
ability. This means that conϐidentiality was not studied in an absolute perspective, even

Figure 6.6: Time for seƫng up and tearing down the overlay paths versus number of
overlay nodes used.
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(a) The original image sent. (b) The data sent over the
flows is balanced (strict round

robin).

(c) The data sent over the
flows is unbalanced (fast

round robin).

Figure 6.7: Original image and two reconstrucƟons considering the eavesdropper has access
to 2 of the 4 flows in each case.

1 MB 5 MB 9 MB 13 MB 17 MB

Figure 6.8: Results of capturing the data transferred by the flow with most throughput. The
same image was sent with different sizes.

though it is possible that in the second case, it might mitigate the cryptography vulnera-
bilities providing full conϐidentiality.

This different way of considering conϐidentiality led us to use an uncommonway to assess
it: a visual evaluation of the reconstruction of an image transmitted over Machete with an
eavesdropper with access to one of the ϐlows. For the ϐigures we did the reconstruction
assuming the adversary managed to guess the metadata (ϐigure size, color depth, etc. )
even if the captured ϐlow did not contain it.

When evaluating the conϐidentiality that Machete offers it is necessary to remember the
operation of MPTCP. The most important factor is the scheduling that is used. MPTCP im-
plements different types of scheduling, however, splitting data in packets in a round-robin
fashion is the adequate approach to achieve conϐidentiality. Themulti-path protocol imple-
ments two types of round-robin: fast round-robin, which takes advantage of the whole
throughput of that channel, and strict round-robin, that waits for the next channel to
have window space before sending the packet. The former is expected to perform faster,
but the second to provide access to less data to a potential eavesdropper.

We evaluate two aspects of conϐidentiality: the effect of the scheduling algorithm, and the
effect of the ϐile size.

6.3.3.1 Effect of the scheduling algorithm

Figures 6.7b and 6.7c show the different amount of data captured by two of four chan-
nels when sending the bitmap picture (the Linux penguin) shown in Figure 6.7a, with both
types of round-robin scheduling. The channels shown in each ϐigure are the ones that re-
ceive the most distinct amount of data, i.e., the one that receives the most (on the left) and
the one that receives the least (on the right).
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As shown on Figure 6.7b, using strict round-robin it is possible to notice that both chan-
nels receive approximately the same amount of data, resulting of the even distribution of
packets. However, a pattern can also be noticed on its reconstruction.

Figure 6.7c shows the results of capturing the datawhen the fast round-robin scheduler
is used. As expected, the ϐlowwhere less datawas transferredwas the one passing through
Sydney’s node, the one with lowest throughput. As mentioned before, this scheduler de-
pends on the throughput of each channel when distributing the data, since a channel with
better throughput has a larger congestion window to be ϐilled.

In the standardMachete conϐiguration, the result is the one observed in Figure 6.7b, since it
does not rely on factors that the user cannot control. Theperformance in the two caseswas
different, though. By ϐilling the congestion windows with fast round-robin scheduling,
the ϐile that had 17MB was sent in 4 seconds. By using the strict round-robin the ϐile took
88 seconds to be transferred, which is much slower. The ϐirst mode achieves a throughput
of 34 Mb/s, whereas the second a mere 1,9 Mb/s.

In short both approaches have their advantages and disadvantages: the ϐirst one takes
longer andmight be susceptible to easier data reconstruction, but provides a good control
on how the packets are distributed; the second has its packet distribution dependant of
each ϐlows’ throughput, but transfers the ϐiles faster.

6.3.3.2 Effect of the file size

Another factor to take into account is the size of the ϐiles sent. At this point it is important
to remember MPTCP’s behaviour when creating new ϐlows. The ϐirst ϐlow does not wait
for the creation of new ϐlows to start transferring data. This means that for very small ϐiles
(<10KB) MPTCP does not split the packets through any new ϐlows, since this data is sent
before any new ϐlow can be established for the stream. Regarding larger ϐiles, it is only
necessary to experiment with the fast round-robin mode, since the strict round-robin is
not inϐluenced by congestion window sizes and, therefore, the sizes are not a factor to take
into account.

Figure 6.8 shows the results of capturing the data transferred in the ϐlow with highest
throughput (which is the same as mentioned above of 34 Mb/s), when sending the same
image with different sizes: from 1 MB to 17 MB. As it can be observed, larger ϐiles have
stronger resistance to eavesdropping as data is better split among the paths. When the ϐile
has 1 MB, a considerable part of the data passes on the highest throughput path and the
penguin is somewhat recognizable; with a 17 MB ϐile the contrary is true.

6.4 Summary

Machete is a ϐirst effort on providing conϐidentiality to communications by splitting the
packet ϐlows among different physical paths. By establishing dynamic overlay networks,
composed by several paths with a single overlay node it was possible to provide physi-
cal path diversity. Using MPTCP it was possible to develop a system that transfers data
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streams (instead of isolated packets) without compromising performance. We evaluated
the performance and conϐidentiality achieved by our implementation, showing that, not
only it prevents the attacker from accessing considerable amounts of data, in the case it is
trying to spy on the communication, but it also provides different tradeoffs between conϐi-
dentiality and performance. We believe, that efϐiciently splitting the communication over
physically disjoint channels is the key to maintain conϐidentiality.
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7 Component integraƟon
The security requirements for the SafeCloud middleware were presented in Section 2.3.
There, we discussed that, for the attacker to break the conϐidentiality, privacy or integrity
of an SSL/TLS channel, he must: (i) know about the existence of a vulnerability in the
channel; and (ii) have access to the endpoints or (iii) have access to the communication.

TheSafeCloudmiddleware components, presented in theprevious chapters, providemech-
anisms that make it harder for the attacker to achieve (i), (ii), and (iii) individually. To
addressmultiple concerns at the same time, we need to integrate the existing components.

In this chapter we present examples of the integration of SafeCloudmiddleware solutions.
To address concerns over (i) and (ii), we integrate ěęTLS, for a secure channel with cipher
diversity, with sKnock, for protected service provisioning. Wediscuss this integration next,
in Section 7.1. To better address concerns over (iii), we integrateMachete, to split commu-
nication over different network paths, with Darshana, for detecting possible route inter-
ceptions and allow Machete to react to them. We discuss this integration in Section 7.2.

7.1 sKnock integraƟon with òãTLS

ěęTLS adds two layers of encryption so that the communication is secure even if a vul-
nerability is found in one of the layers. sKnock protects the server from scans and allows
authorized clients to open and establish connections.

sKnock is a ϐirewall which only allows incoming connections after the clients have suc-
cessfully authenticated. Therefore any incoming connection is by default rejected until the
client opening the connection authenticates with sKnock. This is shown in Figure 7.1.

Client Server

sKnock Firewall

TCP
✕

Figure 7.1: sKnock denies unauthenƟcated incoming connecƟons.

A valid client can authenticate to sKnock by sending a knock packet containing authentica-
tion information. If this packet is valid, sKnock opens the ϐirewall for that client to be able
to access the authorized services on the server, as shown in Figure 7.2.

After the ϐirewall is opened, the ěęTLS client and server negotiate, and then build the mul-
tiple layers of protection incrementally, as depicted in Figure 7.3 for 2 levels: ϐirst the inner
layer is built; then another layer is added over it using a different cipher suite such that the
used ciphers are as diverse as possible.

Any other client trying to connect to the server is denied access unless it is authenticated
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Client Server

sKnock Firewall

knock packet ✓

(a) Client sends a knock packet which is validated by sKnock.

Client Server

sKnock Firewall

✓TCP

(b) sKnock's Firewall allows incoming connecƟons from the client.

Figure 7.2: sKnock allows authenƟcated clients which send valid knock packets before
opening connecƟons to services on the server.

using sKnock ϐirst.

Once the ϐirst client’s ěęTLS channel is closed, the ϐirewall closes the access to that client
also. If the same client wants to access the service again, it needs to reauthenticate to
sKnock.

7.2 Darshana integraƟon with Machete

Machete and Darshana are both route-aware communication solutions. Machete allows
the use of multiple communication paths for added security, and Darshana is able tomoni-
tor network connections anddetect possible routedeviations (hijacks). Figure7.4presents
the integrated architecture for Machete and Darshana.

To perform the monitoring of the multiple paths, several Darshana instances have to be
deployed: one instance for each path from Sender to Overlay Node; one instance for each
path from Overlay Node to Receiver.

All instances report to a single DAR (Darshana Alert Receiver), running in the Sender. In
case any Darshana instance detects a path anomaly – that can be interpreted as a route
hijack – it reports back to the DAR. It is now up to Machete to decide what to do when an
alert is received. The default behavior is to stop using the possibly compromised path.

The alerts are sent using UDP communication. A Darshana Alert packet format was de-
ϐined, containing: timestamp, type of alert, and details for the metrics that triggered the
alarm.
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Client Server

sKnock Firewall

✓vtTLS layer 1

(a) Client builds the inner òãTLS protecƟon layer.

Client Server

sKnock Firewall

✓vtTLS layer 1

vtTLS layer 2

(b) Client builds the outer òãTLS protecƟon layer.

Figure 7.3: òãTLS allows mulƟple layers of protecƟon for communicaƟon data.

Figure 7.4: Machete and Darshana integraƟon. DAR is the Darshana Alert Receiver. S stands
for Sender, ON for Overlay Node, and R for Receiver.

7.3 Summary

In this chapter we presented speciϐic examples of how the developed secure SafeCloud
middleware communication solutions can be combined to address multiple security con-
cerns at the same time. By combining ěęTLS and sKnock both endpoints can be protected,
and the data in transit is also further protected. By combining Machete and Darshana, the
multiple path communication is monitored and, in the event of a likely hijack, the com-
munication through the affected path can be stopped. These are just two examples of the
added protection capabilities made possible by the SafeCloud middleware components.

Deliverable 1.3 75



8 Conclusion
This document presents the ϐinal implementation of the SafeCloud private communication
middleware components. These components, as a whole, aim to provide conϐidentiality,
integrity, and authenticity – plus availability - as other secure channels like SSL/TLS, IPsec;
but assuming powerful adversaries thatmay be able to break some of the assumptions that
make existing channels secure e.g., that a certain cryptographic algorithm is secure.

The deliverable presents:

• The business requirements for the middleware components;

• Details about the latest version of each component: vulnerability-tolerant channels
(ěęTLS), protected service provisioning (sKnock), routemonitoring (Darshana), and
multi-path communication (Machete);

• Presentation of middleware component integrations, with details on how added-
value is derived from the integration.

The ϐinal version of the middleware components will be applied in the use cases of the
project, as necessary according to their business requirements.
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