
	 D1.1	-	Private	communication	middleware	architecture	 1	

Private communication middleware
architecture

D1.1

Project reference no. 653884

February 2016

	 D1.1	-	Private	communication	middleware	architecture	 2	

Document	information	

Scheduled	delivery	 	 01.03.2016	
Actual	delivery	 	 01.03.2016	
Version	 	 	 1.0	
Responsible	Partner	 	 INESC-ID	
	

Dissemination	level	

Public		
	 	

Revision	history	

Date	 Editor	 Status	 Version	 Changes	 	 	
23.12.2015	 M.	Correia	 Draft	 0.1	 Initial	version	
04.01.2016	 S.	Totakura	 Draft	 0.2	 Revised	version	
17.02.2016	 M.	Pardal	 Draft	 0.3	 Revised	version	
26.02.2016	 M.	Pardal	 Final	 1.0	 Reviewers	comments	incorporated.	
	

Contributors	

Miguel	Pardal	(INESC-ID)	
Miguel	Correia	(INESC-ID)	
Sree	Harsha	Totakura	(TUM)	
Georg	Carle	(TUM)	
Karan	Balu	(INESC-ID)	
André	Joaquim	(INESC-ID)	
Diogo	Raposo	(INESC-ID)	
	

Internal	reviewers	

V.	Schiavoni	(UniNE)	
K.	Tarbe	(CYBER)	
	

Acknowledgements	
This	 project	 is	 partially	 funded	 by	 the	 European	 Commission	 Horizon	 2020	 work	
programme	under	grant	agreement	no.	653884.	
	
More	information	
Additional	 information	 and	 public	 deliverables	 of	 SafeCloud	 can	 be	 found	 at	
http://www.safecloud-project.eu	

	 D1.1	-	Private	communication	middleware	architecture	 3	

Glossary	of	acronyms	

Acronym	 Definition	
API	 Application	Programming	Interface	
AS	 Autonomous	System	
BSD	 Berkeley	Sockets	Distribution	
BGP	 Border	Gateway	Protocol	
CA	 Certification	Authority	
CBC	 Cipher	Block	Chaining	
CN	 Certificate	Notary	
CRL	 Certification	Revocation	List	
DES	 Data	Encryption	Standard	
DHE	 Diffie-Hellman	
ENISA	 European	Network	and	Information	Security	Agency	
HMAC	 Hashed	Message	Authentication	Code	
ICMP	 Internet	Control	Message	Protocol	
IDS	 Intrusion	Detection	System	
IETF	 Internet	Engineering	Task	Force	
IP	 Internet	Protocol	
IPsec	 IP	Security	
IV	 Initialization	Vector	
MAC	 Message	Authentication	Code	
MD	 Message	Digest	
NIST	 National	Institute	of	Standards	and	Technology	
MPTCP	 Multi-Path	TCP	
OSI	 Open	Systems	Interconnection	
PKI	 Public-Key	Infrastructure	
RFC	 Request	for	Comments	
RIR	 Regional	Internet	Registrars	
RMS	 Relay	Membership	Service		
SCCA	 SafeCloud	Client	Agent	
SCCL	 SafeCloud	Client	Library	
SCRWP	 SafeCloud	Reverse	Web	Proxy	
SCSA	 SafeCloud	Server	Agent	
SCSL	 SafeCloud	Server	Library	
SCWP	 SafeCloud	Web	Proxy	
SCSV	 Signaling	Cipher	Suite	Value	(SCSV)	
SHA	 Secure	Hash	Algorithm	
SSL	 Secure	Sockets	Layer	
SSH	 Secure	Shell	
TCP	 Transmission	Control	Protocol	
TLS	 Transport	Layer	Security	
TTL	 Time	To	Live	
UDP	 User	Datagram	Protocol	

	 	

	 D1.1	-	Private	communication	middleware	architecture	 4	

Table	of	contents	

Document	information	..	2	

Dissemination	level	..	2	

Revision	history	...	2	

Contributors	..	2	

Internal	reviewers	..	2	

Acknowledgements	...	2	

More	information	..	2	

Glossary	of	acronyms	...	3	

Table	of	contents	...	4	

Executive	summary	...	6	

2	 Threats	...	7	

2.1	 Secure	channel	component	vulnerabilities	..	7	

2.1.1	 Vulnerabilities	in	asymmetric	cipher	mechanisms	...	7	

2.1.2	 Vulnerabilities	in	symmetric	cipher	mechanisms	...	8	

2.1.3	 Vulnerabilities	in	hash	functions	...	9	

2.1.4	 SSL/TLS	vulnerabilities	...	10	

2.2	 Service	identification	...	11	

2.3	 Man-in-the-middle	attacks	...	12	

2.4	 Route	hijacking	..	13	

3	 Services	..	16	

3.1	 Vulnerability-tolerant	channels	...	17	

3.1.1	 Description	..	17	

3.1.2	 Components	..	19	

3.1.3	 API	...	19	

3.2	 Protected	service	provisioning	..	20	

3.2.1	 Description	..	20	

3.2.2	 Components	..	21	

	 D1.1	-	Private	communication	middleware	architecture	 5	

3.2.3	 API	...	23	

3.3	 Route	monitoring	..	24	

3.3.1	 Description	..	25	

3.3.2	 Components	..	25	

3.3.3	 API	...	26	

3.4	 Multi-path	communication	...	27	

3.4.1	 Description	..	27	

3.4.2	 Components	..	28	

3.4.3	 API	...	29	

4	 Architecture	...	30	

4.1	 Middleware	entities	...	30	

4.2	 Topological	architecture	...	31	

4.3	 Software	architecture	...	34	

4.3.1	 User	endpoints	..	34	

4.3.2	 Other	components	...	35	

4.4	 API	...	36	

5	 Conclusion	..	37	

6	 References	..	38	

	

	 	

	 D1.1	-	Private	communication	middleware	architecture	 6	

Executive	summary	

Data	 communication	 is	 an	 important	 source	 of	 concerns	 about	 privacy	 and	
confidentiality.	For	example,	in	recent	months	alarms	were	raised	about:	weaknesses	in	
cryptographic	 algorithms	 used	 to	 encrypt	 communications,	 attacks	 against	 the	
algorithm	 used	 to	 agree	 upon	 shared	 keys	 in	 TLS,	 the	 deviation	 of	 huge	 chunks	 of	
Internet	traffic	to	far	away	countries,	and	the	espionage	of	traffic	inside	the	networks	of	
major	 cloud	 computing	 providers.	 All	 these	 issues	 are	 related	 to	 communication	
insecurity	and	privacy	leaks.	

The	 objective	 of	 work	 package	WP1	 is	 to	 provide	middleware	 services	 to	 improve	 the	
privacy	and	security	of	cloud	communications	in	the	SafeCloud	architecture.	The	purpose	
of	these	communication	services	is	to	provide	the	same	properties	as	secure	channels	–	
confidentiality,	 integrity,	 and	 authenticity	 –	 plus	 availability,	 but	 assuming	 powerful	
adversaries	 that	 may	 be	 able	 to	 break	 some	 of	 the	 assumptions	 that	 make	 existing	
channels	 secure.	 An	 example	 of	 such	 a	 broken	 assumption	 is	 to	 consider	 that	 the	
Diffie-Hellman	 key	 exchange	 is	 secure,	 proved	 wrong	 recently	 by	 the	 Logjam	 attack	
[ABD+15].	

The	present	deliverable	(D1.1)	is	the	first	of	WP1.	It	presents	a	preliminary	design	of	the	
secure	communication	middleware:	the	threats	it	assumes,	the	service	it	will	provide,	and	
its	architecture.	

The	middleware	is	concerned	with	two	forms	of	communication:	machine-to-cloud	and	
cloud-to-cloud.	 SafeCloud	 does	 not	 envisage	 the	 need	 to	 protect	 data	 privacy	 in	
multicast,	 anycast	 or	 broadcast	 communications,	 so	 the	 middleware	 provides	 only	
unicast	communication,	i.e.,	communication	between	two	endpoints.	These	endpoints	can	
be	 user	 terminals,	 computers	 in	 the	 clouds,	 among	 others.	 Communication	 is	
connection-oriented,	similarly	to	protocols	 like	TCP	or	SSL,	as	we	also	do	not	envisage	
the	need	to	support	datagram	communication	(e.g.,	as	UDP).	

The	middleware	 is	 implemented	 at	 the	 application	 layer	 of	 the	 OSI	model	 and	 of	 the	
Internet	protocol	stack,	following	the	end-to-end	argument	(most	complexity	should	be	
implemented	 at	 the	 higher	 layers	 of	 the	 protocol	 stack)	 and	 practical	 considerations	
about	 the	difficulty	of	 implementing	mechanisms	at	 lower	 layers	 in	 the	 Internet	(from	
the	 network	 layer	 down	 changes	 may	 be	 needed	 in	 equipment	 of	 Internet	 service	
providers,	which	is	unpractical).		

This	deliverable	is	organized	as	follows.		

• Section	 2	 presents	 the	 threats	 that	 the	 middleware	 has	 to	 tackle,	 i.e.,	 the	
problems	it	has	to	solve	or	at	least	mitigate.		

• Section	3	presents	the	services	that	the	middleware	will	provide,	explaining	how	
they	address	the	threats	of	Section	2.		

• Section	4	presents	the	architecture	of	the	middleware.		
• Finally,	Section	5	concludes	the	report.	

	 	

	 D1.1	-	Private	communication	middleware	architecture	 7	

2 Threats		

As	 mentioned	 in	 the	 previous	 section,	 we	 aim	 to	 provide	 security	 despite	 powerful	
adversaries	 that	may	be	able	 to	break	 some	of	 the	usual	 assumptions	made	by	 secure	
channel	solutions	such	as	SSL/TLS,	IPsec,	and	SSH.	Specifically,	we	consider	four	threats,	
which	we	explain	in	the	following	sections:	

• Secure	channel	component	vulnerabilities:	 secure	 channels	 (e.g.,	 TLS,	 IPsec)	
are	based	on	components	that	may	be	vulnerable	(e.g.,	RC4,	MD5,	SHA-1);	

• Service	 identification:	 servers	 that	 offer	 services	 via	 well-known	 ports	 are	
vulnerable	to	attacks	that	identify	services	(port	scanning/fingerprinting);	

• Man-in-the-middle	attacks:	an	attacker	may	impersonate	an	endpoint	 identity	
and	 thereby	 defeat	 security	 mechanisms	 that	 keep	 the	 communication	 to	 the	
endpoint	secure;	

• Route	hijacking:	traffic	may	be	deviated	and	then	eavesdropped.	

We	consider	as	main	example	of	secure	channel	protocol	the	widely	adopted	Transport	
Layer	 Security	 (TLS)	 [DR08].	 Originally	 called	 Secure	 Sockets	 Layer	 (SSL),	 its	 first	
version	 was	 SSL	 2.0,	 released	 in	 1995.	 SSL	 3.0	 was	 released	 in	 1996,	 bringing	
improvements	 to	 its	 predecessor	 such	 as	 allowing	 forward	 secrecy	 and	 supporting	
SHA-1	[FKC11].	Defined	in	1999,	TLS	did	not	introduce	major	changes	to	SSL,	but	they	
were	enough	to	make	TLS	1.0	incompatible	with	SSL	3.0.	In	order	to	grant	compatibility,	
a	TLS	1.0	connection	can	be	downgraded	to	SSL	3.0,	bringing	security	issues	(cf.	Section	
2.1.4).	 TLS	 1.1	 and	 TLS	 1.2	 are	 upgrades	 that	 brought	 some	 improvements	 such	 as	
mitigating	CBC	(cipher	block	chaining)	attacks	and	supporting	more	block	cipher	modes	
of	 operation	 to	 use	 with	 AES.	 TLS	 is	 divided	 into	 two	 sub-protocols,	 Handshake	 and	
Record,	 constituted	 by	 several	 mechanisms	 each.	 The	 Handshake	 protocol	 is	 used	 to	
establish	 or	 re-establish	 communication	 between	 a	 server	 and	 a	 client.	 The	 Record	
protocol	is	used	to	protect	the	messages	sent	and	received.	

2.1 Secure	channel	component	vulnerabilities	

This	 section	 provides	 an	 argument	 that	 secure	 channels	 may	 be	 vulnerable	 because	
their	components	may	contain	vulnerabilities	(Sections	2.1.1-2.1.3)	or	the	protocol	itself	
may	be	vulnerable	(Section	2.1.4).	

2.1.1 Vulnerabilities	in	asymmetric	cipher	mechanisms	

Proposed	by	Rivest	et	al.	in	1978,	RSA	is	a	cryptographic	mechanism	used	to	cipher	and	
sign	messages	or	data	[RSA78].	RSA's	security	is	based	on	two	problems:	factorization	of	
large	 integers	 and	 the	 RSA	 problem	 (the	 task	 of	 performing	 an	 RSA	 private-key	
operation	given	only	the	public	key)	[MOV96].	RSA's	strength	is	inversely	proportional	
to	the	available	computational	power.	As	the	years	pass,	it	 is	expected	that	performing	
the	 factorization	 of	 large	 integers	 becomes	 a	 feasible	 task.	 RSA	 will	 be	 broken	 when	
those	problems	can	be	solved	within	a	practical	amount	of	time.	

Kleinjung	et	al.	performed	the	 factorization	of	RSA-768,	a	RSA	number	with	232	digits	
[KAF+10].	The	researchers	state	that	they	spent	almost	two	years	in	the	whole	process,	
which	 is	 clearly	 a	 non-feasible	 time.	 Factorizing	 a	 large	 integer	 is	 a	 very	 different	
concept	 from	breaking	RSA.	RSA	 is	 still	 secure.	As	of	2010,	 the	 researchers	 concluded	

	 D1.1	-	Private	communication	middleware	architecture	 8	

that	 RSA-1024	 would	 be	 factored	 within	 five	 years,	 i.e.,	 in	 2015.	 As	 for	 now,	 no	
factorization	of	RSA-1024	has	been	publicly	announced.	

Shor	 invented	 an	 algorithm	 to	 factorize	 integers	 in	 polynomial	 time	 using	 quantum	
computing	 [S95].	 However,	 for	 the	 time	 being	 quantum	 computers	 able	 to	 do	 such	
factorization	are	still	theoretical.	

Other	 attacks,	 unrelated	 to	 the	 problems	mentioned	 above,	 can	 target	 RSA.	 A	 chosen	
plaintext	 attack	 [DH76]	 exploits	 the	 fact	 that	 RSA	 is	 deterministic	 –	 given	 the	 same	
input,	the	same	output	will	be	produced.	Let	us	assume	the	attacker	has	the	public	key,	
knows	 some	 of	 the	 content	 of	 the	 original	 message,	 and	 has	 the	 original	 message	
ciphered.	 He	 can	 try	 to	 cipher	 multiple	 plaintexts	 of	 his	 own	 with	 the	 public	 key,	
compare	them	with	the	original	ciphered	message,	and	discover	the	message.	

A	chosen	ciphertext	attack	[RS92]	is	another	possible	attack	to	RSA.	It	benefits	from	the	
multiplicative	property	of	RSA.	The	product	of	two	ciphertexts	is	equal	to	ciphering	the	
product	of	the	two	plaintexts.	In	these	attacks,	an	attacker	sends	a	ciphered	message	of	
his	own,	consisting	on	the	original	ciphered	message	M	multiplied	by	a	random	value	
R,	 ciphered	with	 the	 same	 key	 as	M.	 If	 the	 attack	 is	 successful,	 the	 attacker	 can	 now	
obtain	M	by	decomposing	the	message	sent.	These	attacks	assume	that	an	attacker	can	
obtain	plaintexts	from	ciphertexts	from	the	system.	Adaptive	chosen	ciphertext	attacks	
are	an	adaptive	form	of	chosen	ciphertext	attacks	in	the	sense	that	they	use	the	results	
of	previously	sent	ciphertexts	to	select	future	ciphertexts.	

2.1.2 Vulnerabilities	in	symmetric	cipher	mechanisms	

Triple	 DES,	 or	 3DES,	 is	 an	 encryption	 mechanism	 based	 on	 DES	 [F99].	 As	 the	 name	
suggests,	 Triple	 DES	 consists	 on	 multiple	 encryption	 using	 DES.	 Triple	 DES	 can	 be	
implemented	using	one	of	three	keying	options:	

i All	three	keys	are	independent;	
ii Key	1	is	equal	to	Key	3.	Key	1	and	Key	2	are	independent;	
iii All	three	keys	are	equal.	

Associated	with	each	keying	option	there	is	a	set	of	vulnerabilities.	Keying	option	i	uses	
three	different	56-bit	keys,	i.e.,	a	168-bit	key,	but	due	to	meet-in-the-middle	attacks,	the	
real	security	is	112-bit.	Lucks	presented	an	attack	to	keying	option	i	of	Triple	DES	[L98].	
The	proposed	attack	consists	in	a	meet-in-the-middle	attack	that	reduced	the	number	of	
steps	 needed	 to	 roughly	 2108	 steps	 from	 2112	 steps.	 While	 being	 an	 improvement	
compared	 to	 the	 brute	 force	 attack,	 this	 attack	 still	 requires	 a	 lot	 of	 time	 to	 be	
performed,	which	makes	it	impracticable.	NIST	states	that	Triple	DES	with	keying	option	
i	is	secure	until	the	end	of	2030.	From	there	onwards,	its	use	is	disallowed	[NIST12].	

Keying	option	ii	uses	two	different	56-bit	keys,	i.e.,	a	112-bit	key.	Keying	option	ii,	also	
known	as	two-key	triple	encryption,	can	be	attacked	using	chosen	plaintext	attacks	with	
about	2k	steps	with	k	=	56	[MH81].	Merkle	et	al.	concluded	it	is	preferable	to	use	a	single	
encryption	algorithm	with	a	longer	key	rather	than	a	multiple	encryption	algorithm	with	
a	smaller	key.	

Keying	option	iii	has	the	same	security	as	DES,	which	makes	it	an	insecure	option.	

	 D1.1	-	Private	communication	middleware	architecture	 9	

2.1.3 Vulnerabilities	in	hash	functions	

A	hash	function	is	a	function	that	outputs	a	hash	given	a	byte	array	as	input.	The	main	
applications	 of	 hash	 functions	 in	 modern	 cryptography	 regard	 data	 integrity	 and	
message	authentication.	Sometimes	also	called	message	digest	or	digital	fingerprint,	the	
hash	 is	 a	 compact	 representation	 of	 the	 input	 array	 and	 can	 be	 used	 to	 identify	 it	
[MOV96].	

According	 to	 Menezes	 et	 al.,	 a	 hash	 function	 h	 must	 have	 at	 least	 two	 properties	
[MOV96]:	

• Compression	–	h	maps	an	input	array	s	of	finite	length	to	an	output	h(s)	of	a	fixed	
length	x;	

• Ease	 of	 computation	 –	 given	 h	 and	 an	 input	 array	 s,	 the	 hash	 h(s)	 is	 easy	 to	
compute.	

Menezes	et	al.	also	list	three	potential	properties,	additionally	to	those	above:	

• Preimage	 resistance	 –	 for	 all	 pre-specified	 outputs,	 it	 is	 computationally	 in-	
feasible	to	find	any	input	array	which	hashes	to	that	output,	i.e.,	finding	the	input	
array	s,	given	the	output	h(s);	

• Second	preimage	resistance	 –	 it	 is	 computationally	 infeasible	 to	 find	any	 second	
input	array	which	has	 the	same	hash	as	any	specified	 input	array,	 i.e.,	given	s1,	
finding	s2	<>s1,	where	h(s1)	=	h(s2);	

• Collision	 resistance	 –	 it	 is	 computationally	 infeasible	 to	 find	 two	 input	 arrays	
whose	hash	is	identical,	i.e.,	finding	s1	!=	s2,	where	h(s1)	=	h(s2).	

If	 a	 hash	 function	 is	 not	 preimage	resistant	 or	 2nd-preimage	 resistant,	 it	 is	 therefore	
vulnerable	 to	 preimage	 attacks.	 If	 a	 hash	 function	 is	 not	 collision	 resistant,	 it	 is	
vulnerable	to	collision	attacks.	Some	generic	attacks	to	hash	function	include	brute	force	
attacks,	birthday	attacks	and	side-channel	attacks.	

MD5	is	a	cryptographic	hash	function	that,	although	being	proved	to	be	insecure,	is	still	
widely	used	nowadays.	MD5	supersedes	MD4,	and	was	created	by	Rivest	in	1991	[R92].	
MD5	produces	a	128-bit	message	digest	and	is	commonly	used	to	verify	data	integrity.	
Wang	et	al.	proved	that	MD5	is	not	collision-resistant	[WY05].	The	employed	attack	was	
a	differential	attack	that	is	a	form	of	attack	that	consists	in	studying	how	differences	in	
the	input	affect	the	output.	

The	 Secure	 Hash	 Algorithm	 1	 (SHA-1)	 is	 another	 cryptographic	 hash	 function.	 It	
produces	a	160-bit	message	digest.	Although	there	have	not	been	publicly	found	actual	
collisions	 for	 SHA-1,	 it	 is	 considered	 insecure	 and	 the	 use	 of	 SHA-2	 or	 SHA-3	 is	
recommended	 [S15].	 Other	 attacks	 have	 been	 successful	 against	 SHA-1.	 Stevens	 et	 al.	
presented	a	freestart	collision	attack	for	SHA-1’s	internal	compression	function	[SKP15].	
Taking	 into	 consideration	 the	Damgard-Merkle	 [M79]	 construction	 for	hash	 functions,	
and	the	input	of	the	compression	function,	a	freestart	collision	attack	is	a	collision	attack	
where	 the	 attacker	 can	 choose	 the	 initial	 chaining	 value,	 also	 known	 as	 Initialization	
Vector	(IV).	Even	though	there	are	successful	freestart	collision	attacks	on	SHA1	it	does	
not	imply	that	SHA1	itself	is	insecure.		

In	2005,	Wang	et	al.	presented	a	collision	attack	on	SHA-1	that	reduced	the	number	of	
calculations	needed	to	find	collisions	from	280	to	269	[WY05].	The	researchers	claim	that	

	 D1.1	-	Private	communication	middleware	architecture	 10	

this	was	 the	 first	collision	attack	on	the	 full	80-step	SHA-1	with	complexity	 inferior	 to	
the	 280	 theoretical	 bound.	 By	 the	 year	 2011,	 Stevens	 improved	 the	 number	 of	
calculations	needed	to	produce	a	collision	from	269	to	a	number	between	260.3	and	265.3	
[St12].	

Nowadays	it	is	still	computationally	expensive	to	perform	these	number	of	calculations.	
It	is	expected	that	by	the	year	of	2021,	a	collision	attack	will	be	affordable	[Ss12].	

2.1.4 SSL/TLS	vulnerabilities	

This	section	concludes	by	showing	that	the	SSL/TLS	protocol	itself	may	be	vulnerable.		

TLS	 vulnerabilities	 can	 be	 classified	 in	 two	 types:	 specification	 vulnerabilities	 and	
implementation	vulnerabilities.	Specification	vulnerabilities	concern	the	protocol	 itself.	
A	specification	vulnerability	can	only	be	fixed	by	a	new	protocol	version	or	an	extension.	
We	may	argue	that	the	deprecation	of	a	cryptographic	mechanism	is	a	protocol's	design	
flaw	 as	 the	 protocol	 should	 not	 support	 an	 insecure	 mechanism.	 Implementation	
vulnerabilities	are	related	to	vulnerabilities	in	certain	implementations	of	SSL/TLS,	such	
as	OpenSSL,	or	browsers'	implementations.	The	Internet	Engineering	Task	Force	(IETF)	
released	RFC	7457	[SHS15]	on	February	2015	containing	the	summary	of	known	attacks	
to	 TLS	 specifications	 and	 TLS	 implementations.	 In	 this	 section	 we	 present	 the	 most	
recent	(known)	attacks	to	TLS.		

Starting	with	specification	vulnerabilities,	Logjam	 is	 the	most	 recent	attack	and	 it	was	
presented	 in	 May	 2015	 [ABD+15].	 The	 Logjam	 attack	 consists	 in	 exploiting	 Diffie-
Hellman	 key	 exchange	 weaknesses.	 Logjam	 is	 a	 man-in-the-middle	 attack	 that	
downgrades	 the	 connection	 to	 a	 weakened	 Diffie-Hellman	 mode.	 This	 Diffie-Hellman	
with	weak	parameters	 is	one	attack	made	possible	by	 the	 restrictions	 imposed	by	 the	
U.S.A.	 export	 of	 cryptography.	 In	 the	 1990's,	 the	 United	 States	 of	 America	 legislated	
some	 restrictions	 over	 exporting	 cryptography.	 In	 order	 to	 support	 SSL/TLS	 in	 some	
countries	not	allowed	to	import	U.S.A.	cryptography,	SSL/TLS	supports	weakened	Diffie-
Hellman	modes	that	are	called	the	EXPORT	modes	[V15].	

Previous	 attacks,	 such	 as	 the	 one	 made	 possible	 due	 to	 the	 FREAK	 vulnerability	
[BBD+15]	have	already	made	use	of	this	weakness.	Adrian	et	al.	consider	Logjam	a	result	
of	 a	protocol	 specification	vulnerability	due	 to	 the	 fact	of	TLS	 still	 allowing	 the	use	of	
Diffie-Hellman	with	weak	parameters	[ABD+15].	

In	order	to	understand	the	attack	itself,	we	introduce	the	concept	of	number	field	sieve	
algorithm.	 A	 number	 field	 sieve	 algorithm	 is	 an	 efficient	 algorithm	 used	 to	 factor	
integers	 bigger	 than	 one	 hundred	 digits.	 The	 authors	 used	 a	 number	 field	 sieve	
algorithm	 to	 precompute	 two	weak	512-bit	Diffie-Hellman	 groups	 used	 by	more	 than	
92%	of	 the	vulnerable	servers	parameters	 [ABD+15].	This	approach	was	 taken	due	 to	
the	 fact	 that	 it	 is	 computationally	 heavy	 to	 generate	 prime	 numbers	with	 the	 desired	
characteristics.	

The	Logjam	man-in-the-middle	attack	changes	the	current	cipher	suites	to	DHE_EXPORT	
(which	 provides	 EXPORT	 modes),	 forcing	 the	 use	 of	 weakened	 Diffie-Hellman	 key	
exchange	 parameters.	 As	 the	 server	 supports	DHE_EXPORT,	 a	 completely	 valid	Diffie-
Hellman	 mode,	 the	 handshake	 proceeds	 without	 the	 server	 noticing	 the	 attack.	 The	
server	 proceeds	 to	 compute	 its	 premaster	 secret	 using	 weakened	 Diffie-Hellman	
parameters.	 From	 the	 client's	 point-of-view,	 the	 server	 chose	 a	 seemingly	 normal	

	 D1.1	-	Private	communication	middleware	architecture	 11	

ephemeral	 Diffie-Hellman	 (DHE)	 option	 and	 proceeds	 to	 compute	 its	 secret	 also	with	
weak	 Diffie-Hellman	 parameters.	 By	 this	 point,	 the	 man-in-the-middle	 can	 use	 the	
precomputation	results	to	break	one	of	the	secrets	and	establish	the	connection	to	the	
client	pretending	to	be	the	server.	One	aspect	worth	noticing	is	that	this	attack	will	only	
succeed	if	the	server	does	not	refuse	to	accept	DHE_EXPORT	mode.	

The	 solution	 for	 this	 vulnerability	 is	 simple	 and	 has	 already	 been	 implemented.	
Browsers	and	other	clients	simply	deny	the	access	to	servers	using	weak	Diffie-Hellman	
cipher	suites,	such	as	DHE_EXPORT,	although	TLS	still	allows	it.	

Another	 attack	 concerning	 the	 protocol	 specification	 is	 a	 padding	 attack	 named	
POODLE.	 POODLE	 stands	 for	 Padding	 Oracle	 On	 Downgraded	 Legacy	 Encryption	 and	
was	 presented	 by	 Google	 engineers	 in	 2014	 [MDK14].	 The	 origin	 of	 this	 attack	 is	 the	
backward	compatibility	with	SSL	3.0	of	many	TLS	implementations.	To	be	successful,	the	
attacker	should	 induce	a	downgrade	attack	first,	 in	order	to	transition	from	TLS	1.x	to	
SSL	3.0.	

POODLE	 targets	 the	CBC	mode	of	 operation	used	 in	 SSL	3.0.	Although,	 an	 assumption	
that	the	attacker	can	modify	communications	between	the	client	and	the	server	must	be	
made.	 POODLE	 is	 a	 padding	 attack	 which	 exploits	 the	 given	 assumption.	 As	 the	 CBC	
padding	is	not	deterministic	and	not	covered	by	the	message	authentication	code	(MAC),	
the	integrity	of	the	CBC	padding	is	not	fully	verified	when	decrypting.	

The	POODLE	attack	can	be	used	to	decrypt	HTTP	cookies	in	web	sites.	The	authors	state	
that	 for	 every	 byte	 revealed,	 256	 SSL	 3.0	 requests	 are	 needed.	 The	 attack	 has	 been	
proved	to	be	possible	in	TLS	[L14].	The	implementations	affected	are	those	that	do	not	
properly	check	the	padding	used.	

The	 most	 obvious	 solution	 is	 to	 avoid	 SSL	 3.0	 by	 disallowing	 the	 backwards	
compatibility	and	deprecating	SSL	3.0.	Another	solution	is	to	use	TLS	Fallback	SCSV,	as	
described	 in	 [ML14].	 This	 signaling	 cipher	 suite	 value	 (SCSV)	 intends	 to	 prevent	
unnecessary	 downgrade	 of	 the	 connection	 when	 both	 client	 and	 server	 actually	 do	
support	the	most	recent	version	of	TLS.	

Regarding	TLS	implementation	vulnerabilities,	Heartbleed,	discovered	in	2014,	is	one	of	
the	most	recent	ones	(CVE-2014-0160).	Its	name	comes	from	the	mechanism	where	the	
vulnerability	 lies,	 the	 heartbeat	 extension.	 Heartbleed	 was	 a	 security	 vulnerability	 in	
OpenSSL	1.0.1,	 through	1.0.1f,	when	 the	heartbeat	 extension	 [STW12]	was	 introduced	
and	enabled	by	default.	The	Heartbleed	vulnerability	allowed	an	attacker	to	perform	a	
buffer	 over-read	 [CDF+14].	 A	 buffer	 over-read	 happens	when	more	 data	 is	 read	 than	
allowed.	 This	 can	 be	 used	 to	 access	 the	 contents	 of	 other,	 possibly	 sensible,	 program	
variables.	

2.2 Service	identification	

Almost	all	of	the	cyberattacks	are	performed	after	identifying	the	vulnerabilities	of	the	
targeted	 system.	 These	 are	 found	 out	 by	 acquiring	 knowledge	 about	 the	 type	 of	
operating	system	the	system	is	running,	and	the	type	of	services	running	on	it.	Often,	the	
vulnerabilities	are	a	result	of	a	programming	error	in	services,	which	result	in	a	buffer-
overflow	or	a	similar	exploit,	or	as	a	result	of	misconfiguration	of	services.	Either	way,	
knowledge	about	the	running	services	helps	an	attacker	to	determine	the	attack	vector	

	 D1.1	-	Private	communication	middleware	architecture	 12	

to	be	used.	If	this	information	is	hidden	to	the	attacker,	its	attack	vector	is	reduced	and	
thus	the	attacks	hindered.	

A	common	and	easy	way	of	hiding	information	about	the	services	running	on	the	server	
is	 to	 run	 them	 on	 non-standard	 port	 numbers.	 This	 helps	 to	 evade	 port	 scans	 by	 an	
attacker	 over	 commonly	 used	 port	 numbers.	 However,	 should	 the	 attacker	 conduct	 a	
scan	over	all	ports	or	by	sheer	luck	learn	a	non-standard	port	being	open,	he	would	be	
able	to	determine	the	type	and	in	some	cases	the	version	of	service	by	connecting	to	the	
service	and	observing	how	the	service	responds.	This	process	is	called	banner	grabbing	
or	service	fingerprinting.	

A	defense	 against	 service	 fingerprinting	 is	 to	use	 a	 Firewall	 or	 an	 Intrusion	Detection	
System	 (IDS)	 to	 observe	 and	 block	 port	 scans.	 However,	 this	 could	 be	 defeated	 if	 the	
attacker	has	enough	patience	to	temporally	spread	out	the	scans	over	a	 long	period	of	
time	or	has	enough	IP	addresses	to	conduct	the	scans	(as	in	the	case	with	a	botnet).	

2.3 Man-in-the-middle	attacks	

In	these	attacks	an	attacker	places	himself	 in	between	the	communicating	entities	and	
tries	to	impersonate	them	for	each	other.	If	successful,	the	attacker	is	able	to	learn	their	
communications	 and	 alter	 them.	 These	 attacks	 are	 prominent	 in	 the	 cases	where	 the	
communication	 entities,	 for	 example	 a	 server	 and	 a	 client,	 have	 to	 agree	 on	 an	
encryption	key	 for	 the	 first	 time	without	 the	knowledge	of	 either	of	 their	public	keys.	
This	is	because	the	client	presents	its	public	key	to	the	server	which	may	likely	be	new	
to	it	and	hence	could	be	easily	replaced	by	an	attacker.	The	client	when	presented	with	
the	server’s	key	may	not	know	if	it	is	indeed	the	server’s	key	and	is	not	replaced	by	the	
attacker.	

Modern	 secure	web	 communication	protocols	 such	 as	Transport	 Layer	 Security	 (TLS)	
used	 in	 the	 HTTPS	 protocol	 depend	 upon	 Public-Key	 Infrastructure	 (PKI)	 to	 defend	
against	 these	 attacks.	PKI	 enables	 communication	entities	 to	obtain	digital	 certificates	
from	 trusted	 third	 parties,	 referred	 to	 as	 Certification	 Authorities	 (CA)	 as	 an	
endorsement	 of	 their	 identity.	 Through	 a	 digital	 certificate,	 the	 CA	 cryptographically	
conveys	 that	 the	 certified	party	has	 a	particular	name,	public	 key	and	 communication	
address.	 Since	 a	 digital	 certificate	 could	 be	 obtained	 from	 anyone,	 the	 CA	 should	 be	
trusted	by	both	the	communication	entities	for	their	certificates	to	be	valid.	With	digital	
certificates	 in	 place,	 the	 attacker	 in	 the	 middle	 has	 to	 impersonate	 either	 the	 CA	 or	
impersonate	 the	 public	 key	 and	 the	 communication	 address,	 either	 of	 which	 are	
theoretically	hard.	

In	practice,	however,	a	communication	entity	 trusts	many	CAs.	For	example	a	modern	
web	 browser	 such	 as	 Firefox	 or	 Internet	 Explorer	 trusts	 up	 to	 100	 of	 CAs.	 This	 is	
because	 of	 political	 and	 commercial	 reasons	 behind	 the	 PKI:	 each	 country	 or	 a	 big	
organization	 wants	 to	 have	 its	 own	 CA.	 Since	 the	 PKI	 does	 not	 limit	 the	 validity	 of	
certificates	issued	by	a	CA	locally	to	some	region	or	domain,	a	CA	which	is	trusted	by	a	
communication	 entity	 can	 issue	 valid	 certificates	 to	 anyone.	 This	means	 that	 1)	 if	 an	
attacker	 succeeds	 in	 placing	 himself	 as	 a	 trusted	 CA	 list	 or	 2)	 if	 he	 attacks	 and	
compromises	 a	 certification	 authority,	 he	 can	 again	 perform	 the	 man-in-the-middle	
attacks.	Such	attacks	on	PKI	are	not	rare	[HRE+14].		

	 D1.1	-	Private	communication	middleware	architecture	 13	

2.4 Route	hijacking	

Information	 travels	 on	 the	 Internet	 as	 packets	 that	 follow	 routes	 from	 machine	 to	
machine.	The	Internet	itself	is	a	network	composed	by	many	interconnected	networks.	
Administrative	network	domains	 are	 called	Autonomous	Systems	 (AS),	 and	 the	 routing	
between	these	autonomous	systems	is	handled	by	the	Border	Gateway	Protocol	(BGPv4)	
[RLH06].	

The	Border	Gateway	Protocol	does	not	ensure	that	BGP	routers	use	the	AS	number	that	
has	 been	 allocated,	 or	 that	 the	 AS	 holds	 the	 prefixes	 it	 originates.	 So	 a	 router	 can	 be	
configured	 to	 advertise	 a	 prefix	 from	an	 address	 space	belonging	 to	 another	AS	 in	 an	
action	known	as	IP	prefix	hijacking	[BFM+10].	This	action	can	happen	in	the	forms:	

• Hijack	 the	 entire	 prefix	 –	where	 the	 hijacker	 announces	 the	 exact	 prefix	 of	 the	
victim,	meaning	that	the	same	prefix	has	two	different	origins.	

• Hijack	only	a	sub-prefix	–	the	offender	announces	a	more	specific	prefix	from	an	
already	 announced	 prefix.	 For	 example	 if	 the	 victim	 is	 announcing	
200.200.0.0/16	 the	 attacker	 announces	 200.200.200.0/24.	 Due	 to	 the	 longest	
prefix	matching	rule,	an	AS	that	receives	these	announcements	may	direct	traffic	
toward	 the	wrong	AS.	 This	 type	 of	 hijacking	 is	 associated	 to	 blackhole	 attacks,	
where	the	malicious	AS	drops	all	the	packets	received.	

• Interception	hijack	–	the	attacker	announces	a	 fake	route	to	an	AS.	The	AS	now	
forwards	 traffic	 from	 a	 victim	 intended	 to	 a	 legitimate	 destination	 to	 the	
malicious	 interceptor.	 The	 contents	 of	 the	 intercepted	 traffic	 can	 be	
analyzed/changed,	 before	 being	 sent	 to	 the	 legitimate	 destination.	 Figure	 1	
illustrates	this	type	of	attack.	

	

Figure	1.	AS	route-interception	attack.	

Schlamp	et	al.	described	an	attack	where	an	offender	claims	ownership	of	an	entire	AS	
[SCB13].	To	perform	an	AS	hijacking	attack,	the	attacker	pretends	that	he	owns	the	AS	of	
the	 victim.	 These	 types	 of	 attacks	 are	 harder	 to	 detect	 because	 unlike	 the	 prefix	
hijacking	attack,	there	are	no	signs	of	duplicate	origin	announcements,	the	only	change	

	 D1.1	-	Private	communication	middleware	architecture	 14	

that	does	occur	is	the	formation	of	a	new	link	to	the	upstream	provider	from	the	victim	
AS.	According	to	the	authors,	to	perform	this	attack,	the	offender	needs	to	have	a	router	
configured	with	BGP	and	prove	the	ownership	of	the	victim	AS,	to	an	upstream	provider,	
by	 controlling	 Regional	 Internet	 Registrars	 (RIR)	 databases	 where	 the	 information	
about	 ownerships	 is	 stored.	 The	 authors	 conclude	 by	 suggesting	 an	 early	 detection	
system	 that	 combines	 multiple	 data	 sources	 and	 verifies	 the	 expiration	 date	 of	 the	
domain	of	the	autonomous	systems,	sending	a	warning	to	ASes	in	which	an	expiry	date	
is	close.	This	is	important	because,	if	a	domain	expires,	an	attacker	can	re-register	that	
domain	claiming	the	ownership.

Autonomous	systems	are	bound	by	business	relationships,	therefore	network	operators	
specify	routing	policies	that	affect	which	BGP	routes	are	chosen.	BGP	UPDATE	messages	
contain	 route	attributes	 that	 are	used	by	BGP	 routers	 to	 compare	 the	announcements	
received.	Some	of	 the	most	 important	route	attributes	are	 the	 local	preference,	 the	AS	
path	length	and	the	origin	type.	A	BGP	router	selects	a	route	with	a	maximum	value	of	
local	preference	and	a	minimum	value	for	the	AS	path	length.

A	survey	[GSG13]	was	conducted	in	order	to	obtain	some	information	about	the	routing	
policies	in	place,	in	which	almost	100	responses	from	network	operators	were	obtained.	
The	questions	asked	involved	mainly	the	usability	of	models	of	routing	policies,	like	the	
Gao	 and	 Rexford	 model,	 and	 the	 criteria	 of	 BGP	 decision	 process	 (steps	 which	 help	
decide	 the	 route	 to	 choose).	 In	 the	 Gao	 and	 Rexford	 model,	 ASes	 that	 buy	 transit	
services,	to	obtain	access	to	other	parts	of	the	Internet,	are	called	customers,	ASes	that	
provide	 these	 services	 are	named	as	providers,	 and	 finally	ASes	 at	 the	 same	 level	 are	
known	as	peers.	The	model	assumes	the	following	conditions:

• By	 having	 a	 choice,	 the	 ASes	 always	 choose	 to	 route	 traffic	 to	 neighboring	
customers	 instead	of	a	neighboring	peer,	or	provider.	This	preference	 is	due	 to	
the	 monetary	 gain	 obtained	 by	 choosing	 customer	 routes	 and	 the	 way	 to	
explicitly	define	it	is	by	using	a	criteria	known	as	local	preference.

• ASes	 only	 export	 providers	 or	 peers	 routes	 to	 neighboring	 customers.	 This	
implies	that	an	AS	only	exports	traffic	if	it	was	paid	to	do	so.

According	to	the	responses,	68%	applied	both	conditions	and	19%only	applied	the	first	
condition.	Reasons	registered	for	the	non-usability	of	the	export	condition	include	secret	
agreements	and	that	export	restraining	techniques	may	end	up	breaking	routing.	These	
evidences	 show	 that	 it	 is	 difficult	 to	 predict	 the	 paths	 that	 packets	 take	 due	 to	 the	
heterogeneity	of	routing	policies	in	different	ASes.

Autonomous	systems	can	modify	forwarding	attributes	for	their	own	convenience.	For	
example,	they	can:	

• Reduce	an	AS	path	 in	order	 to	 look	more	attractive	according	 to	 some	 routing	
metric;	

• Put	 additional	 AS	 hops	 at	 the	 end	 to	 make	 a	 hijacked	 route	 look	 like	 it	 was	
originated	by	the	proper	AS;

• Add	the	victim	AS	to	the	AS	path,	and	once	the	advertisement	reaches	the	victim	
AS	the	BGP	looping	system	will	drop	the	misleading	announcement	[BFM+10].	

	 D1.1	-	Private	communication	middleware	architecture	 15	

BGP	 security	 today	 mainly	 consists	 of	 filtering	 suspicious	 BGP	 announcements,	 like	
announcements	 that	 contain	 loopback	 addresses,	 or	 addresses	 that	 are	 not	 owned	 by	
the	AS	 that	announced	 it.	The	problem	of	 this	approach	 is	 that	detecting	 invalid	route	
announcements	 is	 more	 challenging	 when	 the	 offending	 AS	 is	 several	 hops	 away.	
Therefore,	 having	 a	 global	 view	 of	 correct	 routing	 information	 would	 make	 it	 much	
easier	to	detect	invalid	routes.

An	 accurate	 routing	 registry	 would	 have	 prefix	 ownership,	 AS-level	 connectivity	 and	
routing	 policies	 enabled	 in	 each	 AS,	 helping	 ASes	 in	 verifying	 the	 legitimacy	 of	 the	
advertisements	that	they	receive.	The	drawbacks	of	this	model	mainly	include	the	lack	
of	desire	of	ISPs	to	share	their	proprietary	routing	policies.	Moreover	the	registry	itself	
is	often	untrusted	due	to	its	power	to	manipulate	the	route	information	at	will.

Ultimately,	the	adoption	of	security	solutions	is	limited	by	the	lack	of	sharing	of	reliable	
information	in	public	Internet	registries	of	about	the	correct	mapping	of	IP	addresses	to	
ASes.	

	 D1.1	-	Private	communication	middleware	architecture	 16	

3 Services		

The	SafeCloud	middleware	will	provide	a	set	of	 four	services	that	solve	or	mitigate	the	
threats	presented	in	the	previous	section.	The	services	correspond	to	Tasks	T1.2	to	T1.5	
of	WP1,	as	shown	in	Table	1.	Task	1.1	defines	the	middleware	architecture	and	its	first	
outcome	is	the	present	deliverable,	D1.1.	The	table	also	summarizes	the	threats	handled	
by	each	service.	

Service	 Task	 Section		 Threat	handled	

Vulnerability-tolerant	channels	 T1.2	 3.1	 Secure	channel	component	
vulnerabilities	

Protected	service	provisioning	 T1.3	 3.2	 Service	identification	

Route	monitoring	 T1.4	 3.3	 Man-in-the-middle	attacks,	route	
hijacking	

Multi-path	communication	 T1.5	 3.4	 Man-in-the-middle	attacks,	route	
hijacking	

Table	1:	Correspondence	between	the	middleware	services,		
WP1’s	tasks,	and	the	threats	in	Section	2.	

Figure	 2	 presents	 these	 services	 in	 the	 context	 of	 the	 SafeCloud	 framework.	 In	
particular,	the	secure	communication	(WP1)	is	described	in	the	second	row	and	contains	
three	solutions:	

(1) Vulnerability-tolerant	 channels	 –	 this	 solution	 corresponds	 to	 the	 first	 service,	
which	has	the	same	name	(T1.2).	

(2) Protected	services	–	 this	solution	 includes	solution	1,	and	 it	extends	 it	with	the	
second	service,	protected	service	provisioning	(T1.3).	

(3) Route-aware	channels	–	includes	solution	2,	and	extends	it	with	route	monitoring	
(T1.4)	and	multi-path	communication	(T1.5).	

	

	 D1.1	-	Private	communication	middleware	architecture	 17	

	

Figure	2.	The	SafeCloud	framework.	

The	following	sections	present	the	four	services.	Each	section	starts	with	a	description	
of	 the	 mechanism,	 then	 presents	 the	 main	 components	 that	 implement	 the	 service,	
finally	presents	the	service	API.	

3.1 Vulnerability-tolerant	channels	

3.1.1 Description	

Secure	 communication	 channels	 are	 mechanisms	 that	 allow	 two	 entities	 to	 exchange	
messages	 or	 information	 in	 some	 sense	 securely	 in	 the	 Internet.	 A	 secure	
communication	 channel	usually	provides	 three	properties:	authenticity,	confidentiality,	
and	 integrity.	Regarding	authenticity,	 in	an	authentic	channel,	no	one	can	 impersonate	
another.	The	information	regarding	the	original	sender	of	a	message	cannot	be	changed.	
Regarding	 confidentiality,	 in	 a	 confidential	 channel,	 only	 the	 original	 receiver	 of	 a	
message	 is	 able	 to	 read	 that	 message.	 Regarding	 integrity,	 the	 messages	 cannot	 be	
tampered	with.		

Several	protocols	to	implement	secure	communication	channels	exist	nowadays,	such	as	
TLS,	 IPsec	or	SSH.	Each	of	 these	channels	 is	used	 for	a	different	purpose,	but	with	 the	
same	goal	of	securing	the	communication.	We	introduced	TLS	in	Section	2.	The	Internet	
Protocol	Security	(IPsec)	is	a	network	layer	protocol	that	protects	the	communication	at	
a	 lower	 level	 than	 SSL/TLS,	which	operates	 at	 the	 transport	 layer	 [KS05].	 The	 Secure	
Shell	(SSH)	is	an	application	layer	protocol,	similarly	to	SSL/TLS,	that	is	used	for	secure	
remote	 login,	 secure	 file	 copy,	 and	 other	 secure	 network	 operations	 over	 an	 insecure	
network	[YL06].	

A	secure	communication	channel	becomes	insecure	if	a	vulnerability	is	discovered	in	its	
specification	 or	 implementation.	 Vulnerabilities	 may	 concern	 the	 protocol's	
specification,	 cryptographic	 mechanisms	 used	 by	 the	 protocol	 or	 specific	

SafeCloud framework draft

State of

the Art

SafeCloud framework

Secure

commu

nication

TLS secure

channels

Solution 1: Vulnerability-tolerant

channels

Solution 2: Protected channels Solution 3: Route-aware channels

Gives: tolerance to vulnerabilities

in components (e.g., in hash

function)

Gives: improved confidentiality

thanks to a lesser chance of fake

certificates; resistance to port

scans and enumeration of network

infrastructure

(notary and portknocking)

Gives: improved confidentiality

with warnings about route

hijacking and making harder

access to communication

API: extended secure socket API API: extended secure socket API API: extended socket API

Technology provided by: INESC-

ID/TUM

Technology provided by: INESC-

ID/TUM

Technology provided by: INESC-

ID/TUM

Secure

storage

Encrypted

database

Solution 1: Distributed encrypted

filesystem

Solution 2: Long-term distributed

encrypted document storage

Solution 3: Secure block storage

Gives: file storage Gives: long-term (entangled)

document storage (immutable)

Gives: block storage on individual

data centers

API: POSIX API: REST (S3 or similar) API: Key/value

Technology provided by: UniNE /

INESC-ID

Technology provided by: UniNE /

INESC TEC

Technology provided by: UniNE /

INESC TEC

Secure

queries
None

Solution 1: SQL on encrypted

values

Solution 2: SQL on encrypted keys

and values

Solution 3: SQL on encrypted keys

and values with untrusted clients

Gives: privacy of data values

against server

Gives: privacy of data and keys

against server

Gives: privacy of data and keys

against client and server

API: SQL API: SQL API: SQL

Technology provided by: INESC-

TEC

Technology provided by: INESC-

TEC and CYBER

Technology provided by: CYBER

	 D1.1	-	Private	communication	middleware	architecture	 18	

implementations	of	the	protocol.	Many	vulnerabilities	have	been	discovered	in	SSL/TLS	
originating	 new	 versions	 of	 the	 protocol	 with	 renewed	 security	 aspects	 such	 as	
deprecating	 cryptographic	 mechanisms	 or	 enforcing	 security	 measures.	 Certain	
implementations	 of	 SSL/TLS	 have	 also	 been	 considered	 vulnerable	 by	 having	
implementation	details	causing	a	breach	in	security	and	affecting	devices	worldwide.	

Our	solution	 is	a	secure	communication	channel	 tolerant	 to	vulnerabilities	which	does	
not	 rely	 on	 only	 one	 cipher	 suite.	 It	 is	 our	 belief	 that,	 in	 order	 to	 solve	 the	 problem,	
diversity	 and	 redundancy	 are	 helpful	 to	 mitigate	 vulnerabilities.	 Diversity	 and	
redundancy	consist	in	using	two	or	more	different	mechanisms	with	the	same	objective.	
For	example,	MD5	and	SHA-3	are	both	hash	functions	used	to	generate	digests.	In	a	real	
case,	where	MD5	 has	 become	 insecure,	 our	 secure	 communication	 channel	 resorts	 to	
other	mechanisms,	 such	 as	 SHA-3,	 in	 order	 to	 keep	 the	 communication	 secure.	 Using	
diversity	 and	 redundancy,	 when	 a	 mechanism	 is	 targeted	 by	 an	 attack,	 another	
mechanism	is	able	to	maintain	the	security	and	availability	of	the	communication.	

The	 objective	 of	 this	 solution	 is	 to	 mitigate	 the	 problem	 of	 secure	 communication	
channels	being	vulnerable	to	attacks.	The	task	involves	studying	the	use	of	diversity	and	
redundancy	 to	 improve	 security,	 in	 general,	 and	 to	 improve	 secure	 communication	
channels'	security,	in	particular.	More	specifically,	our	proposal	to	achieve	this	objective	
is	 to	 develop	 a	 new	 secure	 communication	 channel	 tolerant	 to	 vulnerabilities	 that	
provides	 authenticity,	 confidentiality	 and	 integrity,	 and	 uses	 diverse	 and	 redundant	
mechanisms	 aimed	 at	 making	 the	 communication	 more	 secure.	 Our	 approach	 will	
introduce	 redundancy	 and	 diversity	 through	 specific	 entry	 points	 of	 our	 secure	
communication	channel.	

One	of	the	challenges	of	this	work	is	to	evaluate	if	diversity	and	redundancy	have	a	real	
impact	 on	 increasing	 the	 security	 of	 a	 communication	 channel	 while	 still	 having	
reasonable	performance.		

Our	 proposal	 is	 a	 diverse	 secure	 communication	 channel.	 It	 aims	 to	 increase	 security	
using	diverse	and	redundant	mechanisms	and	it	is	based	on	the	TLS	1.2	standard.	

Our	 proposal	 solves	 the	 problems	 originated	 from	 having	 only	 one	 cipher	 suite	
negotiated	 between	 client	 and	 server.	 In	 the	 case	 when	 one	 of	 the	 cipher	 suites	
mechanisms	is	insecure,	the	secure	communication	channels	using	that	cipher	suite	may	
be	 vulnerable.	 Our	 diverse	 secure	 communication	 channel	 negotiates	 more	 than	 one	
cipher	 suite	 between	 client	 and	 server	 and,	 consequently,	 more	 than	 one	 encryption	
mechanism	will	be	used	for	each	purpose.	Hence,	the	channel	does	not	rely	in	only	one	
cipher	suite.	Although	most	cipher	suites	used	by	TLS	1.2	are	regarded	as	secure,	there	
is	no	assurance	that	an	agency	or	company	with	high	computational	power	is	not	able	to	
break	that	encryption	mechanism	today	or	in	the	near	future.	

Diversity	 and	 redundancy’s	 primary	 entry	 point	 in	 our	 proposal	 is	 in	 the	 Handshake	
where	 client	 and	 server	 negotiate	 the	 k	 cipher	 suites	 to	 be	 used,	 where	 k	 >	 1	 is	 the	
diversity	factor,	representing	the	number	of	different	cipher	suites.	 In	a	case	when	the	
diversity	factor	is	1,	 it	 is	considered	that	the	channel	has	no	diversity,	and	the	channel	
becomes	regular	TLS	1.2.	

	 D1.1	-	Private	communication	middleware	architecture	 19	

Even	when	k−1	cipher	suites	become	vulnerable,	our	proposal	remains	secure	due	to	the	
existing	 diversity.	 The	 remaining	 redundant	 cipher	 suite	 ensures	 that	 the	
communication	is	secure	by	remaining	invulnerable.	

Nevertheless,	not	all	ciphers	suites	are	compatible	with	each	other.	Cipher	suites	must	
be	combined	in	a	way	that	security	increases,	not	the	opposite.	The	server	chooses	the	
best	 combination	 of	 k	 cipher	 suites	 according	 to	 the	 cipher	 suites	 the	 client	 has	
available.	

Diversity	and	redundancy	will	also	be	introduced	in	the	communication	between	client	
and	server.	It	is	our	intent	to	use	a	subset	of	the	k	cipher	suites	defined	in	the	Handshake	
Protocol	to	cipher	the	messages.	While	performance	must	be	taken	into	account,	we	will	
proceed	to	estimate	the	reasonable	k	cipher	suites,	and	also	the	reasonable	subset	of	k	
to	be	used	to	cipher	the	messages.		

3.1.2 Components		

The	channel	 is	 implemented	by	two	components:	 the	server	and	the	client.	 Just	 like	 in	
TCP,	 the	 server	 awaits	 connection	 requests,	 and	 the	 client	 takes	 the	 initiative	 of	
contacting	 the	 server	 for	 establishing	 a	 connection.	 Just	 like	 in	TLS,	 there	 is	 an	 initial	
handshake	protocol	between	client	and	server	that	is	intended	to	exchange	information	
about	 the	 identities	 and	 supported	 cryptographic	 protocols,	 to	 authenticate	 the	
communicating	parties	and	to	perform	the	distribution	of	session	keys.	

3.1.3 API	

The	classical	programming	interface	for	TCP	and	UDP	is	the	Berkeley	UNIX	Socket	API	
[S90].	It	provides	primitives	like	socket	(to	create	a	communication	endpoint),	bind	(to	
associate	an	IP	address	and	a	port	 to	a	socket),	send	and	sendto	(to	send	data),	receive	
and	receivefrom	(to	receive	data)	and	select	(to	block	waiting	for	receiving	from	several	
endpoints).	

The	API	 for	Secure	Sockets	(a	socket	that	uses	SSL/TLS	with	protection	guarantees)	 is	
provided	 in	 the	 Java	 programming	 language	 in	 the	 javax.net.ssl	 package.	 The	 classes	
extend	 regular	 sockets	 and	 add	 a	 layer	 of	 security	 over	 the	 underlying	 network	
transport	protocol.	

The	typical	server	code	consists	in:	

• SSLServerSocketFactory.getDefault()	
• sslServerSocketFactory.createServerSocket(portNumber)	
• sslServerSocket.accept()	
• sslSocket.getInputStream()	

The	typical	client	code	consists	in:	

• SSLSocketFactory.getDefault()	
• sslSocketFactory.createSocket(hostName,	portNumber)	
• sslSocket.getOutputStream()	

The	 creation	 of	 a	 secure	 socket	 is	 done	 through	 a	 factory	 object	 that	 abstracts	 the	
concrete	 class	 that	 is	 instantiated.	 This	 indirection	 level	 can	 be	 leveraged	 to	 return	

	 D1.1	-	Private	communication	middleware	architecture	 20	

modified	secure	sockets,	 like	our	proposed	vulnerability-tolerant	secure	sockets,	while	
maintaining	overall	API	compatibility.	

A	secure	server	socket	is	created	by	providing	the	desired	binding	with	usually	the	port	
number.	The	accept	method	leaves	the	server	awaiting	connection	requests.	

Reading	from	and	writing	to	the	socket	is	performed	using	the	Input	and	Output	stream	
objects	that	are	found	in	the	java.io	package.	

When	 secure	 sockets	 objects	 are	 first	 created,	 no	 handshaking	 is	 done	 so	 that	
applications	may	 first	 set	 their	 communication	 preferences	 e.g.	 what	 cipher	 suites	 to	
use.	However,	security	is	always	provided	by	the	time	that	application	data	is	sent	over	
the	connection	because	the	security	handshake	is	done	implicitly	once	the	client	tries	to	
read	from	or	write	to	the	socket.	

The	handshake	can	be	also	be	explicitly	started	by	calling	the	startHandshake()	method.	
This	method	can	be	extended	to	add	options	related	with	vulnerability-tolerance,	if	the	
default	values	need	to	be	modified.	The	managing	of	the	cipher	suites	will	also	need	to	
be	modified,	as	the	supported	and	enabled	cipher	suites	will	have	to	deal	with	multiple	
simultaneous	choices.	

3.2 Protected	service	provisioning	

3.2.1 Description	

Protected	 service	 provisioning	 addresses	 the	 threat	 that	 attackers	 can	 identify	 the	
services	running	on	a	host	to	determine	their	attack	vector.	This	is	done	by	employing	
port-knocking	tactics.	

Port-knocking	limits	the	availability	and	visibility	of	a	service	only	to	authorized	clients.	
An	 advantage	when	 compared	 to	 other	 authentication	mechanisms	 is	 that	 with	 port-
knocking	unauthorized	clients	will	neither	be	able	 to	access	 the	service	nor	be	able	 to	
determine	if	the	service	is	even	available	and	running	on	the	host.	This	is	because	port	
knocking	 works	 at	 the	 transport	 layer	 in	 OSI	 networking	 stack.	 In	 the	 case	 of	 a	 TCP	
connection	 attempt	 to	 the	 protected	 service,	 the	 first	 TCP	 SYN	 packet	 the	 TCP	
handshake	contains	a	unique	authentifier	authenticating	 the	TCP	connection.	Whereas	
in	case	of	a	UDP-based	connection,	the	UDP	header	could	contain	the	authentifier.	

Since	 neither	 TCP	 nor	 UDP	 protocols	 incorporate	 fields	 for	 authentifier	 data,	 it	 is	
accommodated	in	fields	which	allow	arbitrary	values,	 for	example,	the	initial	sequence	
number	 field	 in	TCP.	 In	 the	 case	of	UDP	only	 the	 source	and	destination	port	number	
fields	 can	 have	 arbitrary	 numbers,	which	 restricts	 the	 number	 of	 bits	 for	 authentifier	
data.	

The	following	factors	are	considered	while	devising	our	port-knocking	mechanism:	

• Protection	coverage:	 should	only	some	subset	of	 services	 running	on	 the	host	
be	 protected	 or	 all	 of	 them?	 This	 question	 impacts	 the	 design	 decisions	 to	
provide	port-knocking	authentication	of	each	service	or	to	just	one	proxy	service	
running	on	the	host.	

• Authentication	 mechanisms:	 How	 is	 the	 authentication	 between	 hosts	
achieved?	 Is	 this	 done	 through	 a	 PKI	 based	 on	 certificates	 where	 the	 cloud	

	 D1.1	-	Private	communication	middleware	architecture	 21	

service	provider	deploys	a	CA	and	certifies	all	of	the	hosts	and	the	service	users?	
Or	 is	 it	 done	 through	 sharing	 passphrases	 to	 individual	 service	 users	 and	 also	
among	hosts?	This	 impacts	whether	we	could	 reuse	off-the-shelf	port-knocking	
solutions	such	as	knockknockd,	which	currently	only	supports	passphrase	based	
authentication.	

• Deployability:	how	far	are	service	providers	and	users	willing	to	go	to	configure	
the	operation	systems	on	 their	hosts?	The	answers	 to	 this	question	 lets	us	rule	
out	 solutions	 involving	 complex	 configurations	 which	 involve	 patching	 the	
operation	system's	kernel.	

• Scalability:	 there	 are	 off-the-shelf	 software	 solutions	 providing	 port-knocking,	
knockknockd	 is	 an	 example	 of	 this.	 However,	 it	 requires	 each	 client	 to	 be	
authorized	by	 a	 passphrase	 stored	 in	 a	 file.	While	 this	 approach	 is	 simple,	 this	
limits	 its	 scalability	 as	 the	 knockknockd	 service	 has	 to	 scan	 through	 the	
passphrases	each	 time	a	port	 is	knocked.	Also,	 it	hinders	deployment	scenarios	
where	 a	 service	 provider	 has	 multiple	 servers,	 for	 either	 load	 balancing	 or	
redundancy,	and	a	client	should	be	able	 to	access	any	of	 those	services	with	 its	
port-knocking	passphrase.	In	this	case,	the	passphrase	profiles	of	clients	have	to	
be	synchronized	on	all	servers	providing	access	to	the	clients.	Also,	when	a	client	
has	to	be	permitted	or	restricted,	its	corresponding	passphrase	profile	has	to	be	
added	or	removed	respectively.	

Considering	 these	 factors,	 our	 solution	 is	 to	 provide	 a	 complete	 protection	 coverage	
extending	 to	 all	 system	 services,	 if	 need	 be.	 To	 address	 the	 scalability	 concerns,	 we	
propose	to	use	PKI	based	authentication	approach	as	this	removes	the	requirement	to	
synchronized	 passphrase	 profiles	 and	 only	 requires	 CA	 certificate	 to	 authenticate	 any	
client.	The	requirement	of	synchronizing	passphrase	profiles	is	in	this	case	replaced	by	
having	 a	 requirement	 of	 implementing	 revocation	 lists.	 However,	 there	 exist	
frameworks	for	dealing	with	revocation	lists	and	provided	that	we	choose	a	reasonable	
certificate	expiry	dates,	we	can	bound	the	size	of	the	revocation	lists.	

3.2.2 Components		
3.2.2.1 Protocol

The	 protocol	 for	 port-knocking	 involves	 a	 one-way	 handshake	 between	 client	 and	
server.	 The	 handshake	 is	 always	 initiated	 by	 the	 client.	 As	 part	 of	 the	 handshake	 the	
client	transfers	its	certificate	in	the	payload	of	an	UDP	packet	to	a	pre-determined	port	
on	the	server.	This	payload	will	also	contain	the	port	number	the	client	wants	to	open	on	
the	 server,	 current	 timestamp,	 IP	 address	 and	 port	 number	 of	 the	 client's	 transport	
endpoint,	 and	 a	 HMAC	 over	 these	 fields.	 The	 payload	 is	 encrypted	 with	 the	 server’s	
public	 key.	 If	 the	port	 knocking	 service	 on	 the	 server	 determines	 the	 certificate	 to	 be	
valid,	the	client	is	said	to	have	successfully	port-knocked.	

If	 the	 UDP	 packet	 is	 malformed	 or	 the	 client’s	 certificate	 is	 invalid,	 the	 server	
immediately	responds	with	an	ICMP	port	unreachable	message	to	the	client,	giving	the	
impression	 that	 the	UDP	port	 is	closed.	For	an	attacker	or	an	unauthorized	client,	 this	
message	conveys	that	no	service	is	using	the	given	port.	

In	the	case	of	a	successful	port-knock	by	a	client,	the	server	does	not	respond	back	to	the	
client’s	first	UDP	packet.	It	 instead	waits	for	the	client	to	send	its	connection	packet	to	
the	 intended	port.	Any	packets	 to	 this	port	received	 from	the	client	within	a	period	of	
time	will	then	be	allowed	by	the	firewall.	The	port	is	closed	for	the	client	after	a	timeout	

	 D1.1	-	Private	communication	middleware	architecture	 22	

for	 TCP	 and	 UDP	 connections	 or	 by	 explicit	 connection	 teardown	 in	 the	 case	 of	 TCP	
connections.	

	

Figure	3:	Format	of	the	UDP	knock	packet	

The	format	of	the	UDP	knock	packet	is	shown	in	Figure	3.	The	format	is	not	finalized	at	
the	time	of	writing	this	deliverable.	Since	the	format	impacts	the	implementation	which	
is	however	abstracted	by	the	client	 library	API,	any	changes	 in	the	payload	format	are	
less	 likely	to	 impact	higher	 layers	which	use	the	provided	API.	Version	incompatibility	
for	the	payload	format	is	addressed	by	being	as	backwards	compatible	as	possible.	

A	handshake	packet	from	a	client	is	considered	malformed	if:	

• It	is	not	a	UDP	packet;	
• It	is	smaller	than	a	minimum	length	required	by	the	protocol;	
• The	 destination	 port	 is	 not	 the	 pre-defined	 port	 on	 which	 the	 port-knocking	

service	will	be	expecting	to	receive	it;	
• The	payload	fails	to	decrypt	with	the	server’s	private	key;	
• The	decrypted	payload	does	not	match	the	payload	format;	
• The	 decrypted	 payload	 has	 a	 different	 version	 than	 those	 supported	 by	 the	

server;	
• The	client	certificate	is	in	unknown	format.	

Additionally,	the	certificate	in	the	decrypted	payload	is	treated	as	invalid	if:	

• The	client	certificate	has	expired	or	the	validity	starts	in	future;	
• The	client	certificate	is	not	signed	by	a	CA	trusted	by	the	server;	
• The	client	certificate	is	in	a	latest	CRL	issued	by	the	server.	

3.2.2.2 Server component

This	is	a	service	running	on	the	server	providing	port	knocking	for	the	services	running	
on	 the	 same	 server.	 It	 interacts	 with	 the	 firewall	 of	 the	 system	 to	 determine	 which	
clients	are	to	be	authorized.	To	participate	in	the	port	knocking	handshake,	the	firewall	
is	made	to	log	all	incoming	UDP	packets	to	a	pre-determined	port.	The	service	will	read	
these	packets	and	discard	malformed	ones	by	responding	with	ICMP	port	unreachable	
messages	to	their	respective	senders.	These	messages	are	also	sent	if	the	packet	is	well-
formed	but	the	client	certificate	is	invalid.	

For	 well-formed	 packets	 containing	 valid	 client	 certificates,	 the	 service	 opens	 up	 the	
intended	port	on	the	firewall	for	the	respective	client.	

The	server	component	is	configurable	via	a	configuration	file.	The	configuration	includes	
the	port	number	of	the	UDP	handshake	packets,	a	 list	of	CAs	whose	certificates	should	

	 D1.1	-	Private	communication	middleware	architecture	 23	

be	 a	 treated	 as	 valid,	 and	 a	 certificate	 revocation	 server	 address	 for	 periodically	
downloading	the	certificate	revocation	lists.	

3.2.2.3 Client library

Client	applications	have	to	implement	the	port-knocking	protocol	before	they	can	access	
the	 services	 on	 a	 server	 implementing	 our	 port-knocking	 solution.	 The	 client	 library	
implements	 this	 client-side	 protocol	 of	 the	 port-knocking	 protocol.	 This	 helps	 in	 code	
reuse	and	maintenance	as	any	minor	changes	in	the	protocol	only	concern	with	changes	
to	the	library	instead	of	the	client	applications.	

The	programming	interface	of	this	library	is	described	in	the	API	section	below.	

3.2.2.4 Proxy

The	proxy	is	a	service	running	on	the	client	side.	It	is	used	solely	for	convenience	and	is	
implemented	 to	 improve	deployability.	 It	provides	 transparent	access	 to	 services	on	a	
port-knocked	server	without	requiring	the	client	application	to	use	the	client	library.	

This	works	by	having	the	client	application	connect	to	the	proxy's	local	SOCKS	port	and	
asking	the	proxy	to	open	connections	to	a	port-knocked	service.	The	proxy	then	does	the	
port	knocking	handshake	by	using	the	client	library	and	forwards	the	application	traffic	
the	between	the	client	application	and	the	port-knocked	service.	By	using	the	proxy,	the	
client	 application	 need	 not	 require	 to	 interface	with	 the	 client	 library	 to	 access	 port-
knocked	services.	

3.2.3 API	

The	API	for	the	client	library	will	provide	a	single	function	call,	which	inherits	from	the	
BSD	socket	API’s	open	function	call.	

int knock_open(AF, TYPE,
 client_cert, server_cert,
 server_addr, knock_port, service_port)

1. AF:	 Communication	 address	 family.	 Used	 to	 select	 either	 IPv4	 or	 IPv6	 sockets.	
Only	AF_INET	and	AF_INET6	are	supported	

2. TYPE:	STREAM	or	DGRAM	for	TCP	or	UDP	respectively	

3. client_cert:	client's	certificate	to	use	in	the	port-knocking	handshake	

4. server_cert:	server's	certificate	

5. server_addr:	 socket	 address	 for	 server.	 This	 should	 correspond	 to	 the	 AF	
parameter.	

6. knock_port:	the	port	to	which	the	initial	UDP	packet	has	to	be	sent	to	

7. service_port:	 the	port	 of	 the	 service	 to	which	 the	 connection	has	 to	be	 granted	
after	successful	port-knocking	at	the	server	

8. Return:	-1	upon	error;	fd	>0	for	a	file	descriptor	corresponding	to	the	socket	

	 D1.1	-	Private	communication	middleware	architecture	 24	

This	function	tries	to	port	knock	the	server	identified	by	server_cert	and	is	reachable	on	
server_addr.	 It	 does	 so	 by	 first	 sending	 the	 first	 UDP	 packet	 of	 the	 handshake	 to	
knock_port.	 If	 the	 requested	 TYPE	 is	 STREAM,	 then	 it	 also	 connects	 the	 socket	 to	 the	
service_port	on	the	server.	

The	 return	 value	 of	 the	 function	 is	 a	 file	 descriptor	 corresponding	 to	 the	 underlying	
socket.	In	the	case	of	TCP,	i.e.,	when	TYPE	is	STREAM,	the	socket	will	be	in	a	connected	
state.	

Caveats:	 the	 connection	 to	 the	 port-knocked	 service	 may	 expire	 after	 a	 period	 of	
inactivity.	 This	 will	 be	 more	 relevant	 if	 UDP	 (TYPE	 set	 to	 DGRAM)	 is	 used,	 for	 TCP	
implements	TCP	keep-alives	as	part	of	its	stack.		

3.3 Route	monitoring	

Our	 approach	 to	 route	monitoring	 involves	 various	 techniques	 to	 collectively	 deduce	
any	 anomalies	 in	 the	 routes	 used	 by	 SafeCloud	 endpoints.	 For	 this	 we	 use	 network	
measurements	 deriving	 from	 actively	 probing	 the	 characteristics	 of	 the	 routes	 and,	
optionally,	 passively	 inferring	 routing	 changes	 from	 BGP	 route	 advertisements	 as	
described	 by	 Feamster	 et	 al.	 [FAB+03].	 The	 collected	 data	 is	 then	 analyzed	 on	 the	
endpoints,	and	a	response	is	triggered	by	routing	anomalies.	

Through	active	probing	we	determine	the	number	of	involved	hops,	latency	and	packet	
loss	in	the	route.	This	requires	traffic	to	be	exchanged	on	the	route	periodically.	Usually,	
this	traffic	is	generated	by	the	application	layers,	however,	in	the	case	the	upper	layers	
do	not	supply	enough	traffic,	active	probing	requires	dummy	traffic	 to	be	sent	to	keep	
the	 route	 characteristics	 updated.	 The	 measurements	 determined	 in	 this	 way	
correspond	 to	 the	 amount	 of	 traffic	 in	 the	 route.	 With	 a	 varying	 traffic	 rate,	 the	
measured	 route	 characteristics	 vary	 due	 to	 queuing	 and	 scheduling	 involved	 at	 the	
route’s	hops.	

This	work	does	not	 intend	 to	 substitute	 the	use	of	best	practices	 to	 configure	BGP,	or	
several	 prevention	mechanisms	 that	 have	 already	 been	 proposed	 [BFM+10]	 [KFR06],	
but	to	present	a	route	hijacking	detection	system	using	a	set	of	monitoring	techniques	
like,	 traceroute,	measuring	 latencies	and	 IP	 traceback	mechanisms	 that	 can	effectively	
and	reliably	monitor	the	routes	the	packets	are	taking,	ultimately	leading	to	a	conclusion	
about	the	existence	of	a	route	hijack.	

Moreover,	since	routing	in	the	Internet	is	susceptible	to	changes	due	to	varying	network	
load	and	connectivity	conditions,	not	all	routing	anomalies	are	to	be	treated	as	attacks	
on	the	routing	protocol.	This	causes	difficulty	for	detecting	attacks	automatically,	while	
keeping	the	false	positive	rate	low	is	aggravated	by	the	fact	that	we	measure	the	route	
characteristics	 from	 the	 endpoints.	 Hence,	 our	 route	 monitoring	 approach	 does	 not	
attempt	 to	 identify	 such	 attacks,	 however	 it	 will	 provide	 mechanisms	 to	 statistically	
evaluate	the	route	measurements	and	trigger	response	callbacks	from	applications	upon	
finding	an	anomaly.	It	is	left	up	to	the	applications	to	either	log	the	anomaly	for	future	
investigations	or	take	preventive	actions	anticipating	a	possible	routing	attack.	

	 D1.1	-	Private	communication	middleware	architecture	 25	

3.3.1 Description	

The	 objective	 of	 this	 service	 is	 to	 provide	 a	 route	 monitoring	 system.	 The	 system	
employs	 various	 techniques	 to	measure	 route	 characteristics	 in	 a	 comprehensive	way	
such	 that	 they	 are	 harder	 to	 be	 manipulated	 by	 an	 active	 attacker	 in	 the	 route.	
Additionally,	we	consider	the	following	requirements:	

• Efficient	–	The	overhead	associated	to	the	measurements	has	to	be	kept	as	low	as	
possible;	

• Scalable	 –	 The	 monitoring	 system	 has	 to	 scale	 well	 i.e.,	 the	 number	 of	 routes	
being	monitored	shall	not	become	a	bottleneck	for	the	performance	of	the	system	

• Easy	to	deploy	 –	The	 system	shall	 not	depend	on	vantage	points	 and	privileged	
information	like	BGP	messages	that	limit	its	ability	to	be	used	in	practice;	

• Resilient	 –	 The	 techniques	 that	 constitute	 the	 system	 have	 to	 be	 redundant	
enough	to	prevent	attackers	from	manipulating	the	route	characteristics;		

Our	monitoring	 system	 takes	 into	 considering	 three	 important	 route	metrics:	 latency,	
hop	count,	and	the	path	between	the	source	and	destination.	

Since	packets	in	a	route	take	non-negligible	amount	of	time	to	traverse	a	route,	an	attack	
causing	the	packets	to	traverse	a	longer	route	would	increase	the	delay.	However	due	to	
the	 congestion	 in	 the	network,	 caused	by	 legitimate	 reasons,	 this	method	of	detecting	
route	hijacking	is	not	reliable.	For	this	reason,	we	propose	to	also	consider	the	number	
of	 hops	 in	 the	 route	 along	with	 the	 delay.	 The	 number	 of	 hops	 in	 the	 route	 could	 be	
measured	reliably	by	observing	the	Time-to-Live	(TTL)	field	of	the	Internet	Protocol	(IP)	
packets	at	the	source	and	destination.	An	attacker	that	has	hijacked	the	route	can	bypass	
this	 monitoring	 technique	 by	 adjusting	 the	 TTL	 field	 of	 the	 IP	 packets	 in	 order	 to	
reproduce	the	number	of	hops	of	a	normal	path	between	the	source	and	the	destination.	
Therefore,	 our	proposal	will	 keep	 state	both	of	 the	number	of	hops	 and	 the	 time	 that	
packets	take	from	end-to-end.	

An	anomaly	caused	by	the	two	states,	latency	and	hop	count,	gives	us	enough	reason	to	
start	 investigating	 the	 path	 the	 packets	 are	 taking.	 Furthermore,	 less	 extreme	 change	
cases,	 like	 20-30%	 changes	 in	 the	 metrics,	 may	 also	 require	 investigation.	 For	 this,	
traceroute	is	used	but	routers	may	be	configured	to	block	traceroute	requests	or	certain	
protocols	like	ICMP	or	UDP.	Thus	traceroutes	with	different	protocols	are	executed	and	
the	results	are	merged	generating	the	most	complete	path	possible.	Any	difference	in	the	
observed	path	further	confirms	the	anomaly.	

3.3.2 Components		

The	route	monitoring	system	comprises	of	a	monitoring	service	run	on	top	of	SafeCloud	
communication	endpoints.	The	service	comprises	of	the	following	components:	

• TTL	monitor	
• Route	metrics	monitor	
• BGP	monitor	(optional)	
• Anomaly	detector	

The	TTL	monitor	estimates	 the	number	of	hops	 involved	 in	 the	 route.	For	 this	 task,	 it	
uses	 a	 multitude	 of	 approaches	 based	 on	 Traceroute	 (ICMP,	 TCP,	 UDP),	 Secure	
Traceroute	[PS03],	IP	options	(Record	Route,	Strict	Source	Record	Route,	Loose	Source	

	 D1.1	-	Private	communication	middleware	architecture	 26	

Route),	and	estimations	based	on	Return	TTL.	None	of	these	approaches	are	guaranteed	
to	work	universally.	This	 is	due	 to	 the	 fact	 that	each	hop	 in	 the	 involved	route	can	be	
configured	independently	and	behaves	differently	for	each	approach.	For	example,	some	
IP	 routers	 are	 known	 to	 discard	 IP	 packets	with	 any	 of	 the	 Record	 Route	 options	 by	
default;	 some	 do	 not	 respond	 to	 ICMP	 traceroute	 requests,	 but	 will	 respond	 to	 UDP	
traceroute.	 Therefore,	 each	 of	 these	 approaches	 will	 be	 implemented	 as	 a	 pluggable	
module.	This	helps	us	to	prioritize	implementation	of	some	of	them	and	to	develop	and	
to	 test	 them	 individually.	 It	 also	helps	us	 to	 compare	 results	of	 each	module	and	 thus	
determine	the	hop	count	with	good	confidence	should	multiple	modules	determine	the	
same	number	of	hops.	

Route	 metrics	 monitor	 is	 tasked	 with	 the	 responsibility	 of	 determining	 the	 latency,	
bandwidth	and	packet	loss	in	a	network.	The	metrics	are	observed	for	each	or	some	of	
the	traffic	sent	by	higher	 layer	applications.	 In	the	case	where	the	metrics	needs	to	be	
kept	updated	without	application	layer,	dummy	traffic	is	used.	The	observed	metrics	for	
the	individual	packets	are	subjected	to	statistical	filtering	with	bounded	history	to	even	
out	noise.	

BGP	monitor	observes	BGP	updates	 for	 anomalies	 and	anticipated	 changes	 in	 existing	
routes.	 BGP	 updates	 are	 collected	 from	 different	 vantage	 points	 such	 as	 PlanetLab	
[C+03]	and/or	3rd	party	providers	such	as	Route	Views	Project1.	Since	BGP	data	 is	not	
expected	to	be	available	in	most	deployment	scenarios,	we	consider	it	as	optional.	

The	 anomaly	 detector	maintains	 a	 history	 of	 inputs	 from	 the	monitors	 and	 processes	
them	through	statistical	analysis.	This	analysis	considers	the	available	data,	both	current	
and	 historical,	 to	 identify	 changes	 to	 the	 route.	 If	 a	 change	 is	 perceived,	 an	 alert	 is	
propagated	to	the	application	using	the	API.	

3.3.3 API	

The	 API	 consists	 of	 calls	 to	 get	 information	 about	metrics	 of	 a	 route.	 Since	 these	 are	
statistical	measurements,	the	calls	return	the	metrics	and	predicted	error	bounds.	This	
information	 is	provided	synchronously.	The	API	also	 supports	 registering	callbacks	 so	
that	 applications	 can	 be	 notified	 asynchronously	 through	 registered	 callbacks	 upon	
specific	events.	

route_register(source, destination, modules)

This	 function	 registers	 a	 route	 between	 given	 source	 and	 destination	 to	 be	
monitored.	It	instantiates	the	route	object	with	the	necessary	monitoring	modules.	

1. source:	the	source	address	
2. destination:	the	destination	of	the	route	
3. modules:	list	of	various	route	monitoring	modules	to	be	used	for	monitoring	this	

route.	The	choice	determines	the	route	monitoring	metrics	that	will	be	available	
for	this	route.	

route_get_info(route, metric_type)

1. route:	the	route	object	which	is	created	from	an	earlier	call	to	route_register	
																																																								
1 https://www.routeviews.org/

	 D1.1	-	Private	communication	middleware	architecture	 27	

2. metric_type:	 the	 type	 of	 the	metric	 to	 be	 used.	 This	 depends	 on	 the	modules	
registered	for	monitoring	the	route	in	the	call	to	route_register	

3. return:	 the	corresponding	route	metric	object.	 If	no	metric	type	is	available,	an	
error	or	an	exception	is	thrown.	

route_monitor_callback(closure, event, route_metrics)

	 This	 is	 the	 type	 of	 callback	 to	 be	 implemented	 by	 an	 application	 interested	 in	
monitoring	 the	 route.	 After	 implementing	 this	 callback,	 it	 should	 be	 registered	with	 a	
call	to	route_monitor().	It	will	then	be	called	asynchronously	whenever	an	interesting	
event	happens.	The	events	could	be	a	change	in	the	number	of	hops,	change	in	the	TTL	
number,	etc.	

1. closure:	 a	 pointer	 to	 a	 block	 of	 memory	 which	 is	 registered	 along	 with	 this	
callback.	 This	 is	 used	 to	 associate	 the	 callback	 with	 some	 state	 information	
defined	by	the	application.	

2. event:	the	event	due	to	which	this	callback	is	called	
3. route_metrics:	the	associated	metric	object.	
4. return:	nothing.	

route_monitor(route, events, monitor_callback, closure)

	 Register	a	monitoring	callback	for	a	route.	

1. route:	the	route	object	for	which	this	monitoring	callback	has	to	be	registered.	
2. events:	set	of	events	of	interest	for	the	caller.	An	event	from	this	set	will	trigger	

the	callback	
3. monitor_callback:	the	callback	to	be	called	when	an	event	happens	
4. closure:	State	which	should	be	associated	with	the	callback.	It	will	be	available	in	

the	callback	as	the	first	argument	when	the	callback	is	called.	
5. return:	a	monitoring	handle	which	can	be	used	to	cancel	the	monitoring	of	this	

route	and	thereby	unregistering	the	callback.	

route_monitor_cancel(monitor)

	 Cancel	a	previously	registered	monitoring	callback	

1. monitor:	monitoring	handle	previously	obtained	from	route_monitor.	

3.4 Multi-path	communication	

3.4.1 Description	

Multi-path	communication	consists	 in	 dividing	 the	data	 to	 be	 sent	 over	 a	 network	 and	
split	it	across	two	or	more	paths,	spreading	on	the	source	and	sinking	on	the	destination.	
This	 idea	 may	 allow	 providing	 data	 confidentiality	 even	 if	 the	 attacker	 can	 break	
cryptographic	protocols	like	TLS.	

A	 problem	 faced	 by	 implementing	 multi-path	 routing	 is	 the	 possibility	 of	 having	 a	
limited	number	of	channels	where	to	distribute	the	information	due	to	path	failures.	For	
example,	 assume	 a	 network	 composed	by	 ten	possible	 paths	 from	a	 certain	 source	 to	
destination,	where	only	two	paths	are	available	to	send	the	data.	These	path	failures	can	
be	 caused	by	different	 reasons,	 but,	 in	 this	 case,	 it	 is	 important	 to	 study	 the	denial	 of	
service	or	selective	forward	as	the	main	malicious	cause	for	these	failures	[SP10].		

	 D1.1	-	Private	communication	middleware	architecture	 28	

This	service	provides	an	additional	layer	of	security	by	distributing	the	communication	
through	 several	 channels.	 In	 order	 to	 do	 so,	 four	 mechanisms	 can	 be	 leveraged.	 The	
communication	 starts	 with	 path	 discovery,	 where	 network	 nodes	 (routers	 or	 other	
devices	with	routing	capabilities)	are	discovered,	i.e.,	the	source	acquires	information	on	
which	 nodes	 it	 can	 send	 the	 information	 through.	 This	 discovery	will	 be	 based	 on	 an	
upper	and	lower	bound	on	geographic	location.	Using	a	topology-aware	and	trust-based	
decision	algorithm,	several	nodes	from	different	Internet	Service	Providers	are	chosen,	
according	to	their	location	and	trust	level	–	this	approach	is	called	(1)	Multi-homing.	The	
trust	level	is	calculated	according	to	the	amount	of	packets	dropped	and	response	time	
to	the	source	in	the	discovery	phase.	This	selection	and	the	number	of	nodes	used	will	
be	based	in	the	amount	of	physical	paths	available	and	the	amount	of	information	to	be	
sent.	Each	node	will	create	a	single-hop	overlay	link	to	the	destination,	generating	an	(2)	
Overlay	Network.	 Successively	 the	 packets	 are	 split	 among	 the	 different	 overlay	 links	
that	 were	 previously	 created	 and	 sent	 to	 the	 destination	 using	 Multi-path	 TCP	 (3)	
MPTCP	[FRHB13].	This	protocol	is	an	extension	of	the	generic	TCP	implementation	that	
has	the	ability	to	distribute	and	send	data	between	different	interfaces	or	IP-addresses.	
Therefore,	it	will	be	used	to	distribute	the	data	among	all	links	in	the	overlay	network.	In	
the	 case	 when	 not	 enough	 channels	 are	 acquired	 to	 provide	 resilience	 against	 the	
interception	of	packets,	(4)	Network	Coding	is	applied	to	the	packets	in	order	to	provide	
some	resistance	to	these	eavesdropping	attacks.	

Some	requirements	for	the	service	are:	

• The	path	selection	should	be	as	physically	disjoint	as	possible;	
• The	path	selection	should	be	randomized	according	to	 lower	and	upper	bounds	

of	geographic	location;	
• The	 framework	 should	 resort	 to	 network	 coding	 when	 there	 are	 not	 enough	

paths	to	use;	
• The	 security	 of	 communication	 should	 always	 overcome	 the	 performance,	

however	the	performance	should	be	acceptable.	

3.4.2 Components		

Implementing	 this	 architecture	 requires	 a	 set	 of	 components	 other	 than	 the	
communicating	endpoints.	

For	implementing	application-layer	routing	a	set	of	nodes	have	to	be	used	to	route	the	
data.	We	call	these	nodes	relays.	These	relays	will	typically	be	servers	in	the	clouds	that	
implement	 the	 SafeCloud	 architecture.	 Nevertheless,	 additional	 computers	 may	 be	
obtained	 for	 that	 purpose.	 In	 this	 case,	 it	 is	 useful	 to	 increase	 the	 diversity	 of	 the	
available	channels.	These	computers	can	be	rented	to	additional	cloud	service	providers,	
or	 provided	 by	 interested	 users	 (e.g.,	 large	 companies	 committed	 to	 supporting	 the	
SafeCloud	architecture).	

The	second	component	is	a	membership	service	that	tracks	which	nodes	are	available	to	
play	the	role	of	relays	at	each	moment.	This	component	is	critical	for	the	availability	of	
the	 communication,	 so	 it	 has	 to	 be	 secure,	 dependable,	 and	 disaster-tolerant.	 We	
envisage	 to	 implement	 this	 service	 on	 top	 of	 a	 coordination	 service	 called	 DepSpace	
[BAC+08].	DepSpace	is	replicated	so	if	these	replicas	are	scattered	geographically	it	can	
continue	 operating,	 even	 if	 disasters	 occur.	 Moreover	 it	 uses	 Byzantine	 fault-tolerant	
protocols	to	provide	data	integrity	and	availability	despite	intrusions	in	a	subset	of	the	

	 D1.1	-	Private	communication	middleware	architecture	 29	

servers.	This	service	will	keep	a	list	of	active	relays,	removing	them	from	the	list	if	they	
are	 unavailable.	 DepSpace	 is	 a	 tuple	 space,	 not	 a	 membership	 service,	 but	 it	 can	 be	
programmed	for	that	purpose.	

3.4.3 API	

The	API	of	 the	service	 is	again	essentially	 the	sockets	API,	with	 two	extra	 functions	 to	
define	and	get	the	number	of	channels	to	use:	

• setNChannels()	
• getNChannels()	

	 D1.1	-	Private	communication	middleware	architecture	 30	

4 Architecture		

This	 section	 presents	 the	 first	 version	 of	 the	 private	 communication	 middleware	
architecture,	 the	 core	of	 this	deliverable.	This	architecture	expresses	how	 the	 services	
will	be	deployed,	so	it	may	still	be	revised	depending	on	the	evolution	of	the	project.	The	
final	version	of	the	architecture	will	appear	in	deliverable	D1.3.	

The	 purpose	 of	 the	 SafeCloud	 middleware	 is	 to	 provide	 private	 and	 secure	 unicast	
communication	 within	 the	 SafeCloud	 architecture.	 In	 terms	 of	 privacy/security	 the	
middleware	aims	to	provide	four	properties	despite	the	threats	explained	in	Section	2:	

• Confidentiality	or	Privacy2:	absence	of	disclosure	of	data	to	unauthorized	parties;	
• Integrity:	absence	of	unauthorized	message	modifications;	
• Authenticity:	 absence	 of	 personification	 of	 message	 senders	 (i.e.,	 the	 message	

sender	is	the	one	indicated	in	the	message);	
• Availability:	the	middleware	shall	be	ready	to	provide	its	service	when	requested.	

4.1 Middleware	entities		

From	Section	3	it	is	possible	to	extract	the	main	entities	of	the	architecture:	

Endpoints.	These	are	the	computers	involved	in	the	communication:	servers,	desktops,	
laptops,	smartphones,	tablets,	etc.	The	communication	takes	two	basic	flavors:	machine-
to-cloud	(i.e.,	between	external	endpoints	and	cloud	endpoints),	and	cloud-to-cloud	(i.e.,	
between	endpoints	in	clouds).		

Public	key	 infrastructure	 (PKI).	 The	middleware	 assumes	 that	 every	 endpoint	 has	 a	
long-term	public-private	key	pair,	with	the	key	size	selected	to	be	secure	 in	the	 future	
(i.e.,	 “expected	 to	 remain	 secure	 in	 10-50	 year	 lifetime”)	 according	 to	 ENISA’s	
recommendations	 [Eni14].	 The	 public	 key	 of	 this	 key	 pair	 is	 distributed	 using	
certificates	through	a	PKI.	The	PKI	is	composed	of	several	components	[CSF+08]:3	

• Certification	authorities	 (CAs):	 entities	 that	 generate	 certificates;	 CAs	 should	 be	
replicated	 using	 intrusion-tolerant	 schemes	 [ZSR02,VCB+13]	 so	 they	 can	 be	
resilient	before	strong	adversaries;	

• Registration	 authorities	 (RAs):	 components	 to	 which	 CAs	 may	 (optionally)	
delegate	certain	management	functions,	e.g.,	the	enrollment	of	users;	

• CRL	 issuers:	 components	 that	 generate	 and	 sign	 certificate	 revocation	 lists	
(CRLs);	

• Repositories:	components	that	store	and	distribute	certificates	and	CRLs.	

Certificate	 notary	 (CN).	 This	 notary	 service	 will	 be	 provided	 by	 some	 SafeCloud	
deployments	by	running	the	Crossbear	[HRK+12]	notary	service.	The	certificates	of	the	

																																																								
2 The term privacy is also used in the sense of confidentiality of personal data. Here we consider it in a broader
sense of confidentiality of any data being transported in messages.

3 Endpoints (end entities in the RFC nomenclature) may also be considered part of the PKI but we leave them
out for the purpose of considering the PKI a service.

	 D1.1	-	Private	communication	middleware	architecture	 31	

notaries	 will	 be	 included	 with	 the	 middleware	 to	 avoid	 man-in-the-middle	 attacks	
against	 the	 notaries.	 The	 notaries	 provide	 the	 certificate	 verification	 service	 to	
SafeCloud	endpoints	as	a	defense	against	SSL	man-in-the-middle	attacks.	

Relaying	 infrastructure.	 The	 multi-path	 communication	 service	 involves	 sending	
messages	 through	different	physical	paths	over	 the	 Internet.	The	 IP	protocol	does	not	
provide	 to	 endpoints	 the	 option	 to	 define	 the	 network	 layer	 path,	 so	 this	 has	 to	 be	
implemented	 at	 application	 layer,	 using	 an	 overlay	 network	 and	 multi-homing.	 The	
relaying	infrastructure	has	two	main	components:	

• Relays:	 the	 relays	 are	 the	 intermediate	 nodes	 of	 the	 overlay	 network,	 i.e.,	
computers,	 typically	 servers,	 that	 support	 application	 layer	 routing	 for	 multi-
path	 communication	 purposes.	 The	 relays	 will	 provide	 a	 simple	 forwarding	
service	 so,	 from	 the	 security	 point	 of	 view,	 they	 are	 critical	mainly	 in	 terms	 of	
availability.		

• Relay	 membership	 service	 (RMS):	 an	 online	 database	 of	 relays,	 which	 can	 be	
joined	and	left	by	relays	that	come	online	or	go	offline	for	some	reason.	From	the	
security	point	of	view	this	component	is	critical	for	availability	so	it	is	replicated	
using	 intrusion-tolerant	 schemes,	 similarly	 to	 CAs.	 This	 service	 can	 be	
implemented	 using	 an	 intrusion-tolerant	 coordination	 service	 like	 DepSpace	
[BAC+08].	

4.2 Topological	architecture	

The	 topological	 architecture	 consists	 in	 deploying	 these	 components	 in	 the	
environment.	Very	roughly	we	can	consider	three	basic	realms:	

• SafeCloud	clouds:	 the	SafeCloud	clouds	where	data	and	processing	are	scattered	
for	security	purposes;	

• SafeCloud	 users:	 users/consumers	 of	 the	 SafeCloud	 architecture,	 typically	
companies	and	other	organizations	or	individuals;	

• Third-parties:	 other	 organizations,	 e.g.,	 a	 PKI	 or	 an	 organization	 contracted	 for	
monitoring	or	relaying;	such	organizations	may	even	be	cloud	service	providers,	
but	their	clouds	are	not	SafeCloud	clouds.	

Figure	4	represents	the	abstract	topological	architecture	of	SafeCloud,	with	N	SafeCloud	
clouds,	N’	SafeCloud	user	networks	 (organizations),	 and	N’’	 third-parties.	The	 Internet	
interconnects	 these	 networks.	 We	 say	 that	 this	 is	 an	 application	 layer	 view	 of	 the	
architecture	 in	 the	 sense	 that	 it	 only	 presents	 components	 that	 implement	 the	whole	
OSI/Internet	stack.	

	

	 D1.1	-	Private	communication	middleware	architecture	 32	

	

Figure	4.	Abstract	topological	architecture:	N	SafeCloud	clouds,	N’	SafeCloud	user	
networks,	and	N’’	third-parties,	all	interconnected	by	the	Internet.	

	

There	are	several	options	 in	terms	of	how	the	components	of	 the	previous	section	are	
placed	in	the	realms:	

• Endpoints:	can	be	at	SafeCloud	clouds	or	users;	
• PKI	components:	can	be	at	SafeCloud	clouds	or	third-parties;	
• Certificate	notary:	services	could	be	installed	at	some	SafeCloud	deployments	or,	

alternatively	run	through	third-party	cloud	service	providers;	
• Relays:	 may	 be	 at	 SafeCloud	 clouds,	 third-parties,	 or	 even	 at	 large	 SafeCloud	

users	willing	to	commit	to	the	operation	of	the	SafeCloud	architecture;	
• Relay	membership	service:	placed	typically	at	SafeCloud	clouds.	

	

	 D1.1	-	Private	communication	middleware	architecture	 33	

	

Figure	5.	Topological	architecture:	application	layer	view;	no	third	parties.	

Figure	5	 represents	 a	more	 concrete	 topological	 architecture	with	N	SafeCloud	 clouds	
and	N'	SafeCloud	users,	showing	also	the	middleware	services,	some	of	them	replicated,	
and	a	few	endpoints.	Figure	6	presents	a	similar	architecture,	now	including	one	third-
party	that	provides	a	PKI	service.	

	

Figure	6.	Topological	architecture:	application	layer	view;		
one	third-party	providing	the	PKI	service.	

	 D1.1	-	Private	communication	middleware	architecture	 34	

Figure	7	provides	a	network	layer	view	of	 the	architecture	 in	Figure	5,	as	 it	shows	also	
devices	that	implement	the	protocol	stack	up	to	that	layer.	This	means	adding	(network	
layer)	 routers	 to	 Figure	 5.	 This	 allows	 us	 to	 show	 multi-path	 communication	 using	
different	network	paths,	meaning	different	(network	layer)	routers	and	links.	

	

Figure	7.	Topological	architecture:	network	layer	view;	no	third-parties.	Endpoint	A	
communicates	with	endpoint	B	using	2-path	communication.	

4.3 Software	architecture	

The	 software	 architecture	 will	 differ	 considerably	 between	 endpoints	 and	 other	
components	such	as	RMS	or	CAs.		

4.3.1 User	endpoints		

In	endpoints	the	main	SafeCloud	software	components	are:	

• SafeCloud	 Client	 Library	 (SCCL)	 –	 used	 to	 implement	 applications	 that	 use	 the	
middleware	for	communication;	provides	the	API	presented	in	Section	4.4.	

• SafeCloud	 Client	 Agent	 (SCCA)	 –	 a	 process	 that	 runs	 in	 background	 and	
implements	 some	 of	 the	 services	 that	 require	 activity	 at	 the	 client	 side,	 e.g.,	
monitoring	the	diversity	and	error	rate	of	overlay	paths.	

Moreover	we	envisage	the	need	of	using	the	middleware	to	provide	tunnels	to	transport	
the	 communication	 of	 legacy	 applications.	 The	 most	 obvious	 example	 is	 web	
communication.	To	support	it	we	consider	the	following	component:	

• SafeCloud	 Web	 Proxy	 (SCWP)	 –	 it	 allows	 browsers	 to	 use	 SafeCloud’s	 secure	
channels;	it	uses	the	APIs	of	the	middleware,	implemented	by	the	SCCL.	

Figure	8	represents	these	components.	

	 D1.1	-	Private	communication	middleware	architecture	 35	

	

Figure	8.	SafeCloud	user	endpoint	software	architecture	with	one	browser	and	several	
applications	using	the	middleware.	

4.3.2 Other	components	

The	non-endpoint	components	are	implement	as	daemons	running	in	servers.	Several	of	
these	components	can	be	 instantiated	 in	 the	same	physical	and/or	virtual	servers.	For	
example,	 if	 the	 RMS	 and	 the	 CA	 both	 have	 4	 replicas,	 we	 can	 have	 only	 4	 physical	
servers,	each	one	playing	both	the	role	of	RMS	replica	and	CA	replica.	However,	security	
considerations	have	to	be	taken	into	account	when	sharing	physical	machines	this	way.	

There	 is	 one	 daemon	 per	 component	 (e.g.,	 one	 for	 relays,	 one	 for	 RMSs,	 one	 for	 CAs,	
etc.).	However	there	are	components	that	are	used	by	all	daemons:	

• SafeCloud	Server	Library	(SCSL)	–	server-side	of	SafeClouds’	secure	channels.	
• SafeCloud	 Server	 Agent	 (SCSA)	 –	 a	 process	 that	 runs	 in	 background	 and	

implements	some	of	the	services	that	require	activity	at	the	server	side,	similarly	
to	the	SCCA.	

There	is	also	a	specific	daemon	for	supporting	stock	web	applications:	

• SafeCloud	 Reverse	 Web	 Proxy	 (SCRWP)	 –	 a	 server-side	 proxy	 that	 receives	
requests	and	sends	replies	using	SafeCloud’s	middleware	(secure	channels)	and	
calls	 web	 applications	 running	 in	 unmodified	 web	 or	 application	 servers	 (e.g.,	
Apache,	Tomcat,	or	WildFly/JBoss).	

Figure	9	represents	these	components.	

	

Figure	9.	SafeCloud	node	software	architecture	with	one	web/application	server	and	
several	daemons	using	the	middleware	(e.g.,	Relay,	RMS,	CA).	

	

	 D1.1	-	Private	communication	middleware	architecture	 36	

4.4 API		

The	API	has	two	parts:		

• Communication	API	(provides	primitives	to	send	and	receive	messages)		
• Management	 API	 (provides	 primitives	 to	 manage	 the	 middleware	 and	 the	

communication,	e.g.,	for	monitoring,	add/remove	relays,	etc.)		

The	functions	of	the	API	are	those	described	in	the	previous	section.	Table	2	summarizes	
this	information,	mentioning	the	section	that	describes	each	part.	

	

API	Part	 Service	 API	Functions		 Section	

Communication	
API	

Vulnerability-
tolerant	channels	

+	

Multi-path	
communication	

SSLServerSocketFactory.getDefault()	
sslServerSocketFactory.createServerSocket()	
sslServerSocket.accept()	
sslSocket.getInputStream()	
SSLSocketFactory.getDefault()	
sslSocketFactory.createSocket()	
sslSocket.getOutputStream()	

3.1.3	

Management	
API	

Vulnerability-
tolerant	channels	

–	 3.1.3	

Protected	service	
provisioning	

knock_open()	 3.2.3	

Route	monitoring	 register_route()	
route_get_info()	
route_monitor_callback()	
route_monitor()	

3.3.3	

Multi-path	
communication	

setNChannels()	
getNChannels()	

3.4.3	

Table	2:	SafeCloud	middleware	API.	

	

	 D1.1	-	Private	communication	middleware	architecture	 37	

5 Conclusion	

This	 document	 presents	 the	 first	 version	 of	 the	 SafeCloud	middleware,	which	 aims	 to	
provide	 the	 same	 properties	 as	 common	 secure	 channels	 (e.g.,	 SSL/TLS,	 IPsec)	 –	
confidentiality,	 integrity,	 and	 authenticity	 –	 plus	 availability,	 but	 assuming	 powerful	
adversaries	 that	 may	 be	 able	 to	 break	 some	 of	 the	 assumptions	 that	 make	 existing	
channels	secure	(e.g.,	that	a	certain	cryptographic	algorithm	is	secure).	

The	deliverable	presents:		

• The	threats	that	the	middleware	is	aimed	to	handle:	secure	channel	component	
vulnerabilities,	 service	 identification,	 man-in-the-middle	 attacks,	 and	 route	
hijacking;	

• The	 services	 the	 middleware	 will	 provide:	 vulnerability-tolerant	 channels,	
protected	service	provisioning,	route	monitoring,	and	multi-path	communication;	

• The	architecture	of	the	middleware:	its	entities,	the	topological	architecture,	the	
software	architecture	at	the	nodes,	and	its	API.	

The	architecture	presented	is	necessarily	preliminary,	as	the	components	are	still	being	
developed	and	 there	 is	 still	not	 a	 complete	understanding	on	how	 they	will	work	and	
interact.	The	final	version	will	appear	in	deliverable	D1.3.	

	 	

	 D1.1	-	Private	communication	middleware	architecture	 38	

6 References	

[ABD+15]	D.	Adrian,	K.	Bhargavan,	Z.	Durumeric,	P.	Gaudry,	M.	Green,	J.	A.	Halderman,	N.	
Heninger,	 D.	 Springall,	 E.	 Thomé,	 L.	 Valenta,	 B.	 VanderSloot,	 E.	 Wustrow,	 S.	 Zanella-
Béguelin,	and	P.	Zimmermann.	Imperfect	Forward	Secrecy:	How	Diffie-Hellman	Fails	in	
Practice.	In	Proceedings	of	the	22nd	ACM	Conference	on	Computer	and	Communications	
Security	(CCS),	Denver,	CO,	October	2015.	
[BAC+08]	A.	Bessani,	E.	Alchieri,	M.	Correia	and	 J.	Fraga.	DepSpace:	A	Byzantine	Fault-
Tolerant	Coordination	Service.	In	Proceedings	of	the	European	Conference	on	Computer	
Systems	(EuroSys).	April	2008.	
[BBD+15]	 B.	 Beurdouche,	 K.	 Bhargavan,	 A.	 Delignat-Lavaud,	 C.	 Fournet,	 and	 M.	
Kohlweiss.	 A	Messy	 State	 of	 the	Union:	 Taming	 the	 Composite	 State	Machines	 of	 TLS.	
IEEE	Symposium	on	Security	and	Privacy,	pages	1-19,	2015.	
[BFM+10]	K.	Butler,	T.R.	Farley,	P.	McDaniel,	 and	 J.	Rexford.	A	Survey	of	BGP	Security	
Issues	and	Solutions.	Proceedings	of	the	IEEE,	Vol.	98,	N.	1,	pp.	100-122,	2010.	
[C+03]	 Brent	 Chun,	 David	 Culler,	 Timothy	 Roscoe,	 Andy	 Bavier,	 Larry	 Peterson,	Mike	
Wawrzoniak,	and	Mic	Bowman.	2003.	PlanetLab:	an	overlay	testbed	for	broad-coverage	
services.	SIGCOMM	Comput.	Commun.	Rev.	33,	3	(July	2003),	3-12.	
[CDF+14]	M.	Carvalho,	J.	DeMott,	R.	Ford,	and	D.	Wheeler.	Heartbleed	101.	IEEE	Security	
&	Privacy,	Vol.	12,	N.	4,	pp.	63-67,	2014.	
[CSF+08]	D.	Cooper,	S.	Santesson,	S.	Farrel,	S.	Boeyen,	R.	Housley,	and	W.	Polk.	Internet	
X.509	Public	Key	Infrastructure	Certificate	and	Certificate	Revocation	List	(CRL)	Profile	
(RFC	5280).	May	2008.	
[DH76]	W.	Diffie	and	M.	Hellman.	New	Directions	in	Cryptography.	IEEE	Transactions	on	
Information	Theory,	Vol.	22,	N.	6,	pp.	644-654,	1976.	
[DR08]	T.	Dierks	and	E.	Rescorla.	The	Transport	Layer	Security	(TLS)	Protocol,	Version	
1.2	(RFC	5246),	2008.	
[Eni14]	ENISA.	Algorithms,	Key	Size	and	Parameters	Report	–	2014.	November,	2014		
[F99]	H.	Feistel.	Data	Encryption	Standard	(DES).	FIPS	Pub	46-3,	3,	1999.	
[FAB+03]	N.	Feamster,	D.	G.	Andersen,	H.	Balakrishnan,	M.	F.	Kaashoek.	Measuring	the	
Effects	 of	 Internet	 Path	 Faults	 on	 Reactive	 Routing,	 ACM	 SIGMETRICS	 Performance	
Evaluation	Review,	Vol.	31,	N.	1,	2003.	
[FRHB13]	 A.	 Ford,	 C.	 Raiciu,	 M.	 Handley,	 and	 O.	 Bonaventure.	 TCP	 Extensions	 for	
Multipath	Operation	with	Multiple	Addresses.	IETF	RFC	6824.	Jan.	2013.	

[FKC11]	A.	 Freier,	 P.	 Karlton,	 and	P.	 Kocher.	 The	 Secure	 Sockets	 Layer	 (SSL)	 Protocol	
Version	3.0	(RFC	6101),	2011.	
[GSG13]	P.	Gill,	M.	Schapira,	and	S.	Goldberg.	A	Survey	of	Interdomain	Routing	Policies.	
ACM	SIGCOMM	Computer	Communication	Review,	Vol.	44,	N.	1,	pp.	28-34,	2013.	
[HRE+14]	 L.	 S.	 Huang,	 A.	 Rice,	 E.	 Ellingsen,	 and	 C.	 Jackson.	 Analyzing	 forged	 SSL	
certificates	in	the	wild.	In	Proceedings	of	the	IEEE	Symposium	on	Security	and	Privacy,	
pp.	83-97,	2014.	

	 D1.1	-	Private	communication	middleware	architecture	 39	

[HRK+12]	 R.	 Holz,	 T.	 Riedmaier,	 N.	 Kammenhuber,	 and	 G.	 Carle.	 X.	 509	 Forensics:	
Detecting	 and	 Localising	 the	 SSL/TLS	 Men-in-the-middle.	 In	 Computer	 Security–
ESORICS,	pp.	217-234,	2012.	
[KAF+10]	 T.	 Kleinjung,	 K.	 Aoki,	 J.	 Franke,	 A.	 Lenstra,	 E.	 Thom_e,	 J.	 Bos,	 P.	 Gaudry,	 A.	
Kruppa,	 P.	 Montgomery,	 D.	 Osvik,	 H.	 Te	 Riele,	 A.	 Timofeev,	 and	 P.	 Zimmermann.	
Factorization	of	a	768-Bit	RSA	modulus.	LNCS	6223,	pp.	333-350,	2010.	
[KFR06]	 J.	 Karlin,	 S.	 Forrest,	 and	 J.	 Rexford.	 Pretty	 Good	 BGP:	 Improving	 BGP	 by	
Cautiously	Adopting	Routes.	Proceedings	of	the	14th	IEEE	International	Conference	on	
Network	Protocols	(ICNP),	2006.	
[KS05]	S.	Kent	and	K.	 Seo.	 Security	Architecture	 for	 the	 Internet	Protocol	 (RFC	4301),	
2005.	
[L14]	 A.	 Langley.	 The	 POODLE	 bites	 again.	 https://www.imperialviolet.org/2014/12/	
08/poodleagain.html,	Dec.	2014.		
[L98]	 S.	 Lucks.	 Attacking	 Triple	 Encryption.	 In	 Proceedings	 of	 the	 5th	 International	
Workshop	in	Fast	Software	Encryption	(FSE),	pp.	239-253,	1998.	
[M79]	 R.	 C.	 Merkle.	 Secrecy,	 Authentication,	 and	 Public	 Key	 Systems.	 PhD	 thesis,	
Stanford,	CA,	USA,	1979.	
[MDK14]	B.	Möller,	T.	Duong,	and	K.	Kotowicz.	This	POODLE	Bites:	Exploiting	The	SSL	
3.0	Fallback.	Security	Advisory.	Goole.	Sep.	2014.	
[MH81]	 R.	 Merkle	 and	 M.	 Hellman.	 On	 the	 Security	 of	 Multiple	 Encryption.	
Communications	of	the	ACM,	Vol.	24,	N.	7,	pp.	465-467,	1981.	
[ML14]	B.	Möller	and	A.	Langley.	TLS	Fallback	Signaling	Cipher	Suite	Value	 (SCSV)	 for	
Preventing	Protocol	Downgrade	Attacks	(DRAFT).	https://tools.ietf.org/html/draft-ietf-
tls-downgrade-scsv-00,	2014.		
[MOV96]	 A.	 Menezes,	 P.	 van	 Oorschot,	 and	 S.	 Vanstone.	 Handbook	 of	 Applied	
Cryptography.	CRC	Press,	1996.	
[NIST12]	NIST.	 Recommendation	 for	 Key	Management	 -	 Part	 1:	 General.	 NIST	 Special	
Publication	800-57,	Revision	3(July):1-147,	2012.	
[PS03]	 V.N.	 Padmanabhan	 and	 D.R.	 Simon.	 Secure	 Traceroute	 to	 Detect	 Faulty	 or	
Malicious	Routing.	ACM	SIGCOMM	Computer	Communication	Review,	Vol.	33,	N.	1,	pp.	
77-82,	2013.	
[R92]	R.	Rivest.	The	MD5	Message-Digest	Algorithm	(RFC	1321),	1992.	  	
[RLH06]	Y.	Rekhter,	T.	Li,	S.	Hares:	A	Border	Gateway	Protocol	4	(RFC	4271).	Jan.	2006.		
[RS92]	 C.	 Rackoff	 and	D.	 Simon.	 Non-Interactive	 Zero-Knowledge	 Proof	 of	 Knowledge	
and	Chosen	Ciphertext	Attack.	Advances	in	Cryptology	(CRYPTO),	pp.	433-444,	1992.	
[RSA78]	R.	Rivest,	A.	Shamir,	and	L.	Adleman.	A	Method	for	Obtaining	Digital	Signatures	
and	Public-Key	Cryptosystems.	Communications	of	the	ACM,	Vol.	21,	N.	2,	pp.	120–126,	
1978.	
[S15]	B.	Schneier.	SHA-1	Freestart	Collision.	https://www.schneier.com/blog/archives/	
2015/10/sha-1_freestart.html,	2015.		
[S90]	W.	R.	Stevens.	Unix	Network	Programming.	Prentice	Hall,	New	York,	NY,	1990.	

	 D1.1	-	Private	communication	middleware	architecture	 40	

[SCB13]	Schlamp,	J.,	Carle,	G.,	Biersack,	E.W.	A	Forensic	Case	Study	on	as	Hijacking:	the	
Attacker's	Perspective.	ACM	SIGCOMM	Computer	Communication	Review,	Vol.	43,	N.	2,	
pp.	5-12,	2013.	
[SHS15]	 Y.	 Sheffer,	 R.	 Holz,	 and	 P.	 Saint-Andre.	 Summarizing	 Known	 Attacks	 on	
Transport	Layer	Security	(TLS)	and	Datagram	TLS	(DTLS)	(RFC	7457),	2015.	
[SKP15]	 M.	 Stevens,	 P.	 Karpman,	 and	 T.	 Peyrin.	 Freestart	 Collision	 on	 Full	 SHA-1.	
Cryptology	ePrint	Archive,	Report	2015/967,	2015.	
[SP10]	E.	Stavrou	and	A.	Pitsillides.	A	Survey	on	Secure	Multipath	Routing	Protocols	in	
WSNs.	Computer	Networks,	54(13):2215-2238,	2010.	
[Ss12]	B.	Schneier.	When	Will	We	See	Collisions	for	SHA-1?,	2012.		
[S95]	 P.	 Shor.	 Polynomial-Time	 Algorithms	 for	 Prime	 Factorization	 and	 Discrete	
Logarithms	 on	 a	 Quantum	 Computer.	 SIAM	 Journal	 on	 Scientific	 and	 Statistical	
Computing,	26:1484,	1995.	
[St12]	M.	Stevens.	Attacks	on	Hash	Functions	and	Applications.	PhD	thesis,	2012.	
[STW12]	 R.	 Seggelmann,	M.	 Tuexen,	 and	M.	Williams.	 Transport	 Layer	 Security	 (TLS)	
and	Datagram	Transport	Layer	Security	(DTLS)	Heartbeat	Extension	(RFC	6520),	2012.	
[V15]	 F.	 Valsorda.	 Logjam:	 the	 latest	 TLS	 vulnerability	 explained.	
https://blog.cloudare.com/logjam-the-latest-tls-vulnerability-explained/,	2015.	
[VCB+13]	 G.	 S.	 Veronese,	 M.	 Correia,	 A.	 N.	 Bessani,	 L.	 C.	 Lung,	 P.	 Verissimo.	 Efficient	
Byzantine	Fault	Tolerance.	IEEE	Transactions	on	Computers,	vol.	62,	n.	1,	pp.	16-30,	Jan.	
2013.	
[WY05]	 X.	 Wang	 and	 H.	 Yu.	 How	 to	 Break	 MD5	 and	 Other	 Hash	 Functions.	 In	
Proceedings	of	the	24th	Annual	International	Conference	on	Theory	and	Applications	of	
Cryptographic	Techniques	(EUROCRYPT),	pp.	19–35,	2005.	
[YL06]	 T.	 Ylonen	 and	 C.	 Lonvick.	 The	 Secure	 Shell	 (SSH)	 Protocol	 Architecture	 (RFC	
4251),	2006.	
[ZSR02]	L.	Zhou,	F.	B.	Schneider,	and	R.	Van	Renesse.	COCA:	A	Secure	Distributed	Online	
Certification	Authority.	ACM	Transactions	on	Computer	Systems	Vol.	20,	N.	4,	2002.	

	

